
CS 429, Fall 2012
Architecture Lab:

Optimizing the Performance of a Pipelined Processor

1 Introduction

In this lab, you will learn about the design and implementation of a pipelined Y86 processor, optimizing both
it and a benchmark program to maximize performance. You are allowed to make any semantics preserving
transformations to the benchmark program, or to make enhancements to the pipelined processor, or both.
When you have completed the lab, you will have a keen appreciation for the interactions between code and
hardware that affect the performance of your programs.

The lab is organized into three parts, each with its own handin. In Part A you will write some simple Y86
programs and become familiar with the Y86 tools. In Part B, you will extend the SEQ simulator with two
new instructions. These two parts will prepare you for Part C, the heart of the lab, where you will optimize
the Y86 benchmark program and the processor design.

2 Logistics

You will work on this lab alone.

Any clarifications and revisions to the assignment will be posted on the course Web page.

3 Handout Instructions

1. Start by copying the filearchlab-handout.tar to a (protected) directory in which you plan to
do your work.

2. Then give the command:tar xvf archlab-handout.tar . This will cause the following files
to be unpacked into the directory:README,Makefile , sim.tar , archlab.ps ,archlab.pdf ,
andsimguide.pdf .

3. Next, give the commandtar xvf sim.tar . This will create the directorysim , which contains
your personal copy of the Y86 tools. You will be doing all of your work inside this directory.

1

4. Finally, change to thesim directory and build the Y86 tools:

unix> cd sim
unix> make clean; make

4 Part A - Assigned: Sep 21, Due: Oct 4, 11:59PM

You will be working in directorysim/misc in this part.

Your task is to write and simulate the following three Y86 programs. The required behavior of these pro-
grams is defined by the example C functions inexamples.c . Be sure to put your name, EID, and CS ID
in a comment at the beginning of each program. You can test your programs by first assemblying them with
the programYAS and then running them with the instruction set simulatorYIS.

In all of your Y86 functions, you should follow the IA32 conventions for the structure of the stack frame and
for register usage instructions, including saving and restoring any callee-save registers that you use. Also
you should make sure your programs reserveat least 4096 bytesfor the stack.

sum.ys: Iteratively sum linked list elements

Write a Y86 programsum.ys that iteratively sums the elements of a linked list. Your program should
consist of some code that sets up the stack structure, invokes a function, and then halts. In this case, the
function should be Y86 code for a function (sum list) that is functionally equivalent to the Csum list
function in Figure 3.You should label the elements of your input list as eleXX where XX is the 1-based
index of the element (e.g. ele1, ele23).Test your program using the following three-element list:

Sample linked list
.align 4
ele1:

.long 0x00a

.long ele2
ele2:

.long 0x0b0

.long ele3
ele3:

.long 0xc00

.long 0

rsum.ys: Recursively sum linked list elements

Write a Y86 programrsum.ys that recursively sums the elements of a linked list. This code should be
similar to the code insum.ys , except that it should use a functionrsum list that recursively sums a list
of numbers, as shown with the C functionrsum list in Figure 3.You should label the elements of your
input list the same as you did above.Test your program using the above sample list.

2

copy.ys: Copy a source block to a destination block

Write a program (copy.ys) that copies a block of words from one part of memory to another (non-
overlapping area) area of memory, computing the checksum (Xor) of all the words copied.

Your program should consist of code that sets up a stack frame, invokes a functioncopy block , and
then halts. The function should be functionally equivalentto the C functioncopy block shown in Figure
Figure 3. Test your program using the following three-element source and destination blocks:

.align 4
Source block
src:

.long 0x00a

.long 0x0b0

.long 0xc00

Destination block
dest:

.long 0x111

.long 0x222

.long 0x333

5 Part B - Assigned: Nov 02, Due: Nov 8, 11:59PM

You will be working in directorysim/seq in this part.

Your task in Part B is to extend the SEQ processor to support two new instructions:iaddl (described
in Homework problems 4.47 and 4.49) andleave (described in Homework problems 4.48 and 4.50). To
add these instructions, you will modify the fileseq-full.hcl , which implements the version of SEQ
described in the CS:APP2e textbook. In addition, it contains declarations of some constants that you will
need for your solution.

Your HCL file must begin with a header comment containing the following information:

• Your name, EID, and CSID.

• A description of the computations required for theiaddl instruction. Use the descriptions of
irmovl andOPl in Figure 4.18 in the CS:APP2e text as a guide.

• A description of the computations required for theleave instruction. Use the description ofpopl
in Figure 4.20 in the CS:APP2e text as a guide.

Building and Testing Your Solution

Once you have finished modifying theseq-full.hcl file, then you will need to build a new instance of
the SEQ simulator (ssim) based on this HCL file, and then test it:

3

• Building a new simulator.You can usemake to build a new SEQ simulator:

unix> (cd ../misc; make clean all) && make clean && make VERSION=full

This builds a version ofssim that uses the control logic you specified inseq-full.hcl . To save
typing, you can assignVERSION=full in the Makefile.

• Testing your solution on a simple Y86 program.For your initial testing, we recommend running
simple programs such asasumi.yo (testing iaddl) and asuml.yo (testing leave) in TTY
mode, comparing the results against the ISA simulation:

unix> (cd ../y86-code/; make clean all;) && ./ssim -t ../y86-code/asumi.yo
unix> (cd ../y86-code/; make clean all;) && ./ssim -t ../y86-code/asuml.yo

If the ISA test fails, then you should debug your implementation by single stepping the simulator in
GUI mode:

unix> (cd ../y86-code/; make clean all;) && ./ssim -g ../y86-code/asumi.yo
unix> (cd ../y86-code/; make clean all;) && ./ssim -g ../y86-code/asuml.yo

• Retesting your solution using the benchmark programs.Once your simulator is able to correctly
execute small programs, then you can automatically test it on the Y86 benchmark programs in
../y86-code :

unix> (cd ../y86-code; make testssim)

This will run ssim on the benchmark programs and check for correctness by comparing the resulting
processor state with the state from a high-level ISA simulation. Note that none of these programs test
the added instructions. You are simply making sure that yoursolution did not inject errors for the
original instructions. See file../y86-code/README file for more details.

• Performing regression tests.Once you can execute the benchmark programs correctly, thenyou
should run the extensive set of regression tests in../ptest . To test everything exceptiaddl
andleave :

unix> (cd ../ptest; make SIM=../seq/ssim)

To test your implementation ofiaddl :

unix> (cd ../ptest; make SIM=../seq/ssim TFLAGS=-i)

To test your implementation ofleave :

unix> (cd ../ptest; make SIM=../seq/ssim TFLAGS=-l)

To test bothiaddl andleave :

unix> (cd ../ptest; make SIM=../seq/ssim TFLAGS=-il)

For more information on the SEQ simulator refer to the handout CS:APP2e Guide to Y86 Processor Simu-
lators (simguide.pdf).

4

6 Part C - Assigned: Nov 9, Due: Nov 29, 11:59PM

You will be working in directorysim/pipe in this part.

The ncopy function in Figure 1 copies alen -element integer arraysrc to a non-overlappingdst , re-
turning a count of the number of positive integers containedin src . The filepipe-full.hcl contains a
copy of the HCL code for PIPE, along with a declaration of the constant valueIIADDL .

Your task in Part C is to modifyncopy.ys andpipe-full.hcl with the goal of makingncopy.ys
run as fast as possible.

You will be handing in two files:pipe-full.hcl andncopy.ys . Each file should begin with a header
comment with the following information:

• Your name, EID, and CSID.

• A high-level description of your code. In each case, describe how and why you modified your code.

Coding Rules

You are free to make any modifications you wish, with the following constraints:

• Your ncopy.ys function must work for arbitrary array sizes. You might be tempted to hardwire
your solution for 64-element arrays by simply coding 64 copyinstructions, but this would be a bad
idea because we will be grading your solution based on its performance on arbitrary arrays.

• Your ncopy.ys function must run correctly withYIS. By correctly, we mean that it must correctly
copy thesrc block andreturn (in%eax) the correct number of positive integers.

• The assembled version of yourncopy file must not be more than 1000 bytes long. You can check the
length of any program with thencopy function embedded using the provided scriptcheck-len.pl :

unix> ./check-len.pl < ncopy.yo

• Yourpipe-full.hcl implementation must pass the regression tests in../y86-code and../ptest
(without the-il flags that testiaddl andleave).

Other than that, you are free to implement theiaddl instruction if you think that will help. You may
make any semantics preserving transformations to thencopy.ys function, such as reordering instruc-
tions, replacing groups of instructions with single instructions, deleting some instructions, and adding other
instructions. You may find it useful to read about loop unrolling in Section 5.8 of CS:APP2e.

Figure 2 shows the baseline Y86 version ofncopy .

5

1 / *
2 * ncopy - copy src to dst, returning number of positive ints
3 * contained in src array.
4 * /
5 int ncopy(int * src, int * dst, int len)
6 {
7 int count = 0;
8 int val;
9

10 while (len > 0) {
11 val = * src++;
12 * dst++ = val;
13 if (val > 0)
14 count++;
15 len--;
16 }
17 return count;
18 }

Figure 1:C version of the ncopy function. See sim/pipe/ncopy.c.

Building and Running Your Solution

In order to test your solution, you will need to build a driverprogram that calls yourncopy function. We
have provided you with thegen-driver.pl program that generates a driver program for arbitrary sized
input arrays. For example, typing

unix> make drivers

will construct the following two useful driver programs:

• sdriver.yo : A small driver programthat tests anncopy function on small arrays with 4 elements.
If your solution is correct, then this program will halt witha value of 2 in register%eaxafter copying
thesrc array.

• ldriver.yo : A large driver programthat tests anncopy function on larger arrays with 63 ele-
ments. If your solution is correct, then this program will halt with a value of 31 (0x1f) in register
%eaxafter copying thesrc array.

Each time you modify yourncopy.ys program, you can rebuild the driver programs by typing

unix> make drivers

Each time you modify yourpipe-full.hcl file, you can rebuild the simulator by typing

unix> make psim VERSION=full

6

1 ### ###############
2 # ncopy.ys - Copy a src block of len ints to dst.
3 # Return the number of positive ints (>0) contained in src.
4 #
5 # Include your name, EID, and CSID here.
6 #
7 # Describe how and why you modified the baseline code.
8 #
9 ### ###############

10 # Do not modify this portion
11 # Function prologue.
12 ncopy: pushl %ebp # Save old frame pointer
13 rrmovl %esp,%ebp # Set up new frame pointer
14 pushl %esi # Save callee-save regs
15 pushl %ebx
16 pushl %edi
17 mrmovl 8(%ebp),%ebx # src
18 mrmovl 16(%ebp),%edx # len
19 mrmovl 12(%ebp),%ecx # dst
20

21 ### ###############
22 # You can modify this portion
23 # Loop header
24 xorl %eax,%eax # count = 0;
25 andl %edx,%edx # len <= 0?
26 jle Done # if so, goto Done:
27

28 Loop: mrmovl (%ebx), %esi # read val from src...
29 rmmovl %esi, (%ecx) # ...and store it to dst
30 andl %esi, %esi # val <= 0?
31 jle Npos # if so, goto Npos:
32 irmovl $1, %edi
33 addl %edi, %eax # count++
34 Npos: irmovl $1, %edi
35 subl %edi, %edx # len--
36 irmovl $4, %edi
37 addl %edi, %ebx # src++
38 addl %edi, %ecx # dst++
39 andl %edx,%edx # len > 0?
40 jg Loop # if so, goto Loop:
41 ### ###############
42 # Do not modify the following section of code
43 # Function epilogue.
44 Done:
45 popl %edi # Restore callee-save registers
46 popl %ebx
47 popl %esi
48 rrmovl %ebp, %esp
49 popl %ebp
50 ret
51 ### ###############
52 # Keep the following label at the end of your function
53 End:

Figure 2:Baseline Y86 version of the ncopy function. See sim/pipe/ncopy.ys.

7

1 / * linked list element * /
2 typedef struct ELE {
3 int val;
4 struct ELE * next;
5 } * list_ptr;
6

7 / * sum_list - Sum the elements of a linked list * /
8 int sum_list(list_ptr ls)
9 {

10 int val = 0;
11 while (ls) {
12 val += ls->val;
13 ls = ls->next;
14 }
15 return val;
16 }
17

18 / * rsum_list - Recursive version of sum_list * /
19 int rsum_list(list_ptr ls)
20 {
21 if (!ls)
22 return 0;
23 else {
24 int val = ls->val;
25 int rest = rsum_list(ls->next);
26 return val + rest;
27 }
28 }
29

30 / * copy_block - Copy src to dest and return xor checksum of src * /
31 int copy_block(int * src, int * dest, int len)
32 {
33 int result = 0;
34 while (len > 0) {
35 int val = * src++;
36 * dest++ = val;
37 result ˆ= val;
38 len--;
39 }
40 return result;
41 }

Figure 3:C versions of the Y86 solution functions. See sim/misc/examples.c

8

If you want to rebuild the simulator and the driver programs,type

unix> make VERSION=full

To test your solution in GUI mode on a small 4-element array, type

unix> ./psim -g sdriver.yo

To test your solution on a larger 63-element array, type

unix> ./psim -g ldriver.yo

Once your simulator correctly runs your version ofncopy.ys on these two block lengths, you will want
to perform the following additional tests:

• Testing your driver files on the ISA simulator.Make sure that yourncopy.ys function works prop-
erly with YIS:

unix> make drivers
unix> ../misc/yis sdriver.yo

• Testing your code on a range of block lengths with the ISA simulator. The Perl scriptcorrectness.pl
generates driver files with block lengths from 0 up to some limit (default 65), plus some larger sizes.
It simulates them (by default withYIS), and checks the results. It generates a report showing the status
for each block length:

unix> ./correctness.pl

This script generates test programs where the result count varies randomly from one run to another,
and so it provides a more stringent test than the standard drivers.

If you get incorrect results for some lengthK, you can generate a driver file for that length that
includes checking code, and where the result varies randomly:

unix> ./gen-driver.pl -f ncopy.ys -n K -rc > driver.ys
unix> make driver.yo
unix> ../misc/yis driver.yo

The program will end with register%eaxhaving the following value:

0xaaaa : All tests pass.

0xbbbb : Incorrect count

0xcccc : Function ncopy is more than 1000 bytes long.

0xdddd : Some of the source data was not copied to its destination.

0xeeee : Some word just before or just after the destination region was corrupted.

9

• Testing your pipeline simulator on the benchmark programs.Once your simulator is able to correctly
executesdriver.ys and ldriver.ys , you should test it against the Y86 benchmark programs
in ../y86-code :

unix> (cd ../y86-code; make testpsim)

This will run psim on the benchmark programs and compare results withYIS.

• Testing your pipeline simulator with extensive regressiontests.Once you can execute the benchmark
programs correctly, then you should check it with the regression tests in../ptest . For example, if
your solution implements theiaddl instruction, then

unix> (cd ../ptest; make SIM=../pipe/psim TFLAGS=-i)

• Testing your code on a range of block lengths with the pipeline simulator. Finally, you can run the
same code tests on the pipeline simulator that you did earlier with the ISA simulator

unix> ./correctness.pl -p

7 Evaluation

The lab is worth 220 points: 40 points for Part A, 70 points forPart B, and 110 points for Part C. Please
note that you need to submit a brief report for each of three parts.

Part A

Part A is worth 40 points, 10 points for each Y86 solution program and 10 points for the writeup. Each
solution program will be evaluated for correctness, including proper handling of the stack and registers, as
well as functional equivalence with the example C functionsin examples.c .

The programssum.ys and rsum.ys will be considered correct if the graders do not spot any errors in
them, and their respectivesum list andrsum list functions return the sum0xcba in register%eax.

The programcopy.ys will be considered correct if the graders do not spot any errors in them, and the
copy block function returns the sum0xcba in register%eax, copies the three words0x00a , 0x0b ,
and0xc to the 12 contiguous memory locations beginning at addressdest , and does not corrupt other
memory locations.

Part B

This part of the lab is worth 60 points:

• 10 points for your description of the computations requiredfor the iaddl instruction.

• 10 points for your description of the computations requiredfor the leave instruction.

10

• 10 points for passing the benchmark regression tests iny86-code , to verify that your simulator still
correctly executes the benchmark suite.

• 15 points for passing the regression tests inptest for iaddl .

• 15 points for passing the regression tests inptest for leave .

Part C

This part of the Lab is worth 80 points:You will not receive any credit if either your code for ncopy.ys
or your modified simulator fails any of the tests described earlier.

• 20 points each for your descriptions in the headers ofncopy.ys andpipe-full.hcl and the
quality of these implementations.

• 60 points for performance. To receive credit here, your solution must be correct, as defined earlier.
That is,ncopy runs correctly withYIS, andpipe-full.hcl passes all tests iny86-code and
ptest .

We will express the performance of your function in units ofcycles per element(CPE). That is, if the
simulated code requiresC cycles to copy a block ofN elements, then the CPE isC/N . The PIPE
simulator displays the total number of cycles required to complete the program. The baseline version
of thencopy function running on the standard PIPE simulator with a large63-element array requires
914 cycles to copy 63 elements, for a CPE of914/63 = 14.51.

Since some cycles are used to set up the call toncopy and to set up the loop withinncopy , you
will find that you will get different values of the CPE for different block lengths (generally the CPE
will drop asN increases). We will therefore evaluate the performance of your function by computing
the average of the CPEs for blocks ranging from 1 to 64 elements. You can use the Perl script
benchmark.pl in thepipe directory to run simulations of yourncopy.ys code over a range of
block lengths and compute the average CPE. Simply run the command

unix> ./benchmark.pl

to see what happens. For example, the baseline version of thencopy function has CPE values ranging
between46.0 and14.51, with an average of16.44. Note that this Perl script does not check for the
correctness of the answer. Use the scriptcorrectness.pl for this.

You should be able to achieve an average CPE of less than10.0. Our best version averages9.27. If
your average CPE isc, then your scoreS for this portion of the lab will be:

S =











0 , c > 12.5
24.0 · (12.5 − c) , 10.0 ≤ c ≤ 12.5
60 , c < 10.0

By default, benchmark.pl andcorrectness.pl compile and testncopy.ys . Use the-f
argument to specify a different file name. The-h flag gives a complete list of the command line
arguments.

11

8 Handin Instructions

• You will be handing in three sets of files:

– Part A:sum.ys , rsum.ys , copy.ys , anddoc .

– Part B:seq-full.hcl

– Part C:ncopy.ys , andpipe-full.hcl

• Your writeup file should be inPLAIN TEXT format and beNAMED AS doc . No other for-
mats/names will be accepted.

• Make sure you have included your name, EID, and CS ID in a comment at the top of each of your
handin files, including the writeup.

• Make sure you turn inALL files needed andONLY files needed for each part. Files submitted to a
wrong part willNOT be graded.

unix> turnin --submit ysseung archlabA sum.ys rsum.ys copy.ys doc
unix> turnin --submit ysseung archlabB seq-full.hcl
unix> turnin --submit ysseung archlabC ncopy.ys pipe-full.hcl

9 Hints

• By design, bothsdriver.yo andldriver.yo are small enough to debug with in GUI mode. We
find it easiest to debug in GUI mode, and suggest that you use it.

• If you running in GUI mode on a Unix server, make sure that you have initialized the DISPLAY
environment variable:

unix> setenv DISPLAY myhost.edu:0

• With some X servers, the “Program Code” window begins life asa closed icon when you runpsim
or ssim in GUI mode. Simply click on the icon to expand the window.

• With some Microsoft Windows-based X servers, the “Memory Contents” window will not automati-
cally resize itself. You’ll need to resize the window by hand.

• Thepsim andssim simulators terminate with a segmentation fault if you ask them to execute a file
that is not a valid Y86 object file.

12

