BITS, BYTES, AND INTEGERS

SYSTEMS I

Today: Bits, Bytes, and Integers

- Representing information as bits
- □ Bit-level manipulations
- □ Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Making ints from bytes
- Summary

Encoding Byte Values

- \square Byte = 8 bits
 - Binary 00000002 to 1111111112
 - □ Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Decimanary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

■ A&B = 1 when both A=1 and

Or

■ A | B = 1 when either A=1 or B=1

	0	1
0	0	1
1	1	1

Not

~A = 1 when A=0

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not

both

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 1010101
```

All of the Properties of Boolean Algebra Apply

Bit-Level Operations in C

- □ Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (Char data type [1 byte])
 - □ **In gdb**, p/t 0xE prints 1110
 - $\sim 0x41 \rightarrow 0xBE$
 - $\sim 01000001_2 \rightarrow 10111110_2$
 - $\sim 0x00 \rightarrow 0xFF$
 - $\sim 000000002 \rightarrow 1111111112$
 - $0x69 \& 0x55 \rightarrow 0x41$
 - \bullet 01101001₂ & 01010101₂ \rightarrow 01000001₂
 - □ $0x69 \mid 0x55 \rightarrow 0x7D$
 - \blacksquare 01101001₂ | 01010101₂ \rightarrow 01111101₂

Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_i = 1 \text{ if } j \in A$
 - **0**1101001 { 0, 3, 5, 6 }
 - **76543210**
 - MSB Least significant bit (LSB)
 - 01010101 { 0, 2, 4, 6 }
 - **76543210**

Operations

- &	Intersection	01000001	{ 0, 6 }
	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
	Symmetric difference	00111100	{ 2, 3, 4, 5 }
□ ~	Complement	10101010	{ 1, 3, 5, 7 }

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - **4** &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Short circuit
- Examples (char data type)
 - □ !0x41 → 0x00
 - □ !0x00 \rightarrow 0x01
 - □ !!0x41 \rightarrow 0x01
 - $0x69 \&\& 0x55 \rightarrow 0x01$
 - □ 0x69 || 0x55 → 0x01
 - p && *p (avoids null pointer access)

Shift Operations

- □ Left Shift: X << y</p>
 - Shift bit-vector X left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- □ Right Shift: X >> y
 - Shift bit-vector X right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - \square Shift amount < 0 or \ge word size

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Today: Bits, Bytes, and Integers

- □ Representing information as bits
- □ Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Making ints from bytes
- □ Summary

Data Representations

C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

How to encode unsigned integers?

Just use exponential notation (4 bit numbers)

$$0110 = 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 = 6$$

$$\blacksquare 1001 = 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 = 9$$

- \square (Just like $13 = 1*10^1 + 3*10^0$)
- No negative numbers, a single zero (0000)

How to encode signed integers?

- Want: Positive and negative values
- Want: Single circuit to add positive and negative values (i.e., no subtractor circuit)
- Solution: Two's complement
- Positive numbers easy (4 bits)

$$\square 0110 = 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 = 6$$

Negative numbers a bit weird

$$\square$$
 1 + -1 = 0, so 0001 + X = 0, so X = 1111

 \Box -1 = 1111 in two's compliment

Encoding Integers

Unsigned

Two's Complement

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

Sign Bit

C short 2 bytes long

	Decimal	Decimal Hex Binary	
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

- □ Sign Bit
 - □ For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	13	-152	13
			*	
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
16384	0	0	_	

Sum 15213 -15213

15

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	-4
1101	13	- 3
1110	14	-2
1111	15	-1

- Equivalence
 - Same encodings for nonnegative values
- Uniqueness
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding
- □ ⇒ Can Invert Mappings
 - $\square U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $\square T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Numeric Ranges

Unsigned Values

- UMin = 0000...0
- $UMax = 2^w 1$

□ Two's Complement Values

- $TMin = -2^{w-1}$ 100...0
- $TMax = 2^{w-1} 1$

Other Values

Minus 1

111...1

Values for W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 11111111	
TMin	-32768	80 00	10000000 000000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	00000000 00000000	

Values for Different Word Sizes

			W	
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- \square | TMin | = TMax + 1
 - Asymmetric range
- \square UMax = 2 * TMax + 1

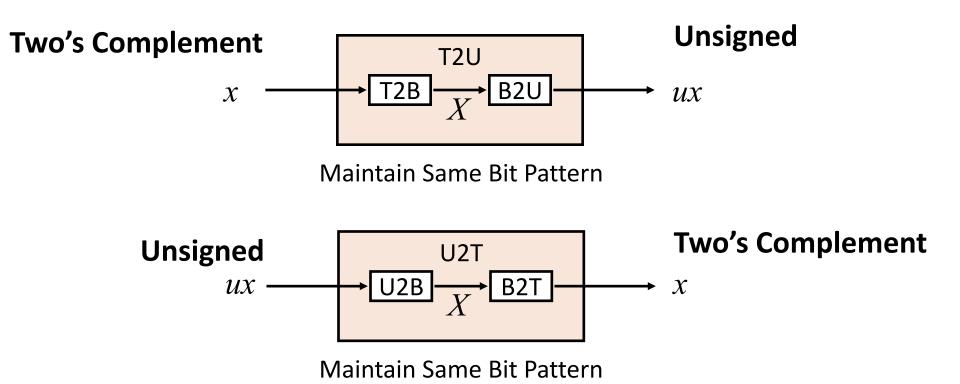
C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Today: Bits, Bytes, and Integers

- □ Representing information as bits
- □ Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Making ints from bytes
- □ Summary

Mapping Between Signed & Unsigned



Mappings between unsigned and two's complement numbers:
 keep bit representations and reinterpret

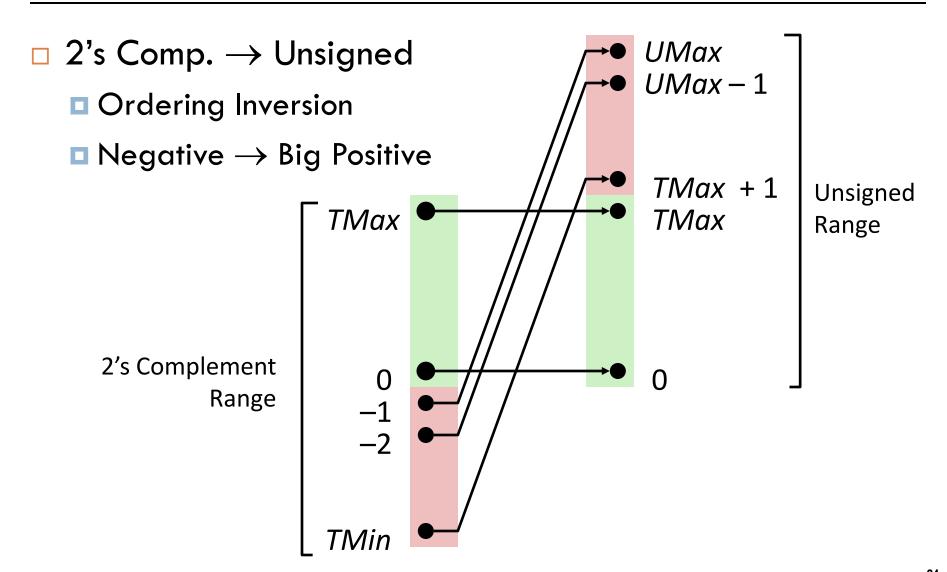
Mapping Signed ↔ Unsigned

Bits	Signed		Unsigned	
0000	0		0	
0001	1		1	
0010	2		2	
0011	3		3	
0100	4		4	
0101	5	$\longrightarrow \boxed{T2U} \longrightarrow$	5	
0110	6		6	
0111	7	←—U2T←—	7	
1000	-8		8	
1001	-7		9	
1010	-6		10	
1011	-5		11	
1100	-4		12	
1101	-3		13	
1110	-2		14	
1111	-1		15	

Mapping Signed ↔ Unsigned

	Bits	Signed		Unsigned	
	0000	0		0	
	0001	1		1	
	0010	2		2	
	0011	3	_ = .	3	
	0100	4	$\qquad \qquad \bullet$	4	
	0101	5		5	
	0110	6		6	
	0111	7		7	
L	1000	-8		8	
	1001	-7		9	
	1010	-6	. / 10	10	
	1011	-5	+/- 16	11	
	1100	-4		12	
	1101	-3		13	
	1110	-2		14	
	1111	-1		15	

Conversion Visualized



Negation: Complement & Increment

Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

- Complement
 - \square Observation: $\sim x + x == 1111...111 == -1$

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
~x	-15214	C4 92	11000100 10010010	
~x+1	-15213	C4 93	11000100 10010011	
У	-15213	C4 93	11000100 10010011	

$$x = 0$$

	Decimal	Hex	Binary
0	0	00 00	00000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix0U, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
```

Casting Surprises

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
 - □Including comparison operations <, >, ==, <=, >=

Constant ₁	Constant ₂	Relation	Evaluation
0	OU	==	unsigned
-1	0	<	signed
-1	OU	>	unsigned
2147483647	-2147483647-1	>	signed
21 <i>4</i> 7483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	21 <i>4</i> 7483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

Typical Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

Malicious Uscaration of library function memory */

```
void *memcpy(void *dest, void *src, size t n);
```

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;</pre>
   memcpy(user dest, kbuf, len);
   return len;
```

```
#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy from kernel (mybuf, -MSIZE);
```

Summary

Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w

- Expression containing signed and unsigned int
 - □ int is cast to unsigned!!

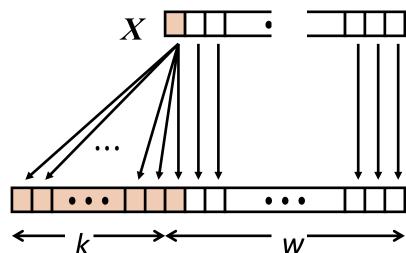
Today: Bits, Bytes, and Integers

- □ Representing information as bits
- □ Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Making ints from bytes
- □ Summary

Sign Extension

- □ Task:
 - □ Given w-bit signed integer x
 - \square Convert it to w+k-bit integer with same value
- □ Rule:
 - Make k copies of sign bit:

k copies of MSB



Sign Extension Example

```
short int x = 15213;
int        ix = (int) x;
short int y = -15213;
int        iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary:

Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behaviour

Today: Bits, Bytes, and Integers

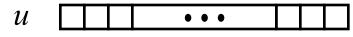
- □ Representing information as bits
- □ Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- □ Summary

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits



+ v •••

u + v

$$UAdd_{w}(u, v)$$

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

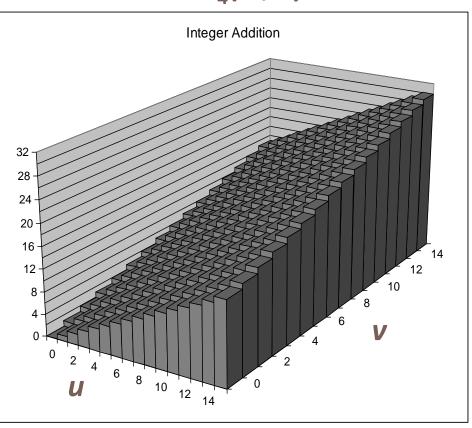
$$s = UAdd_{w}(u, v) = u + v \mod 2^{w}$$

$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

Visualizing (Mathematical) Integer Addition

- □Integer Addition
 - ■4-bit integers u, v
 - Compute true sum $Add_{\Delta}(u, v)$
 - Values increase linearly with u and v
 - Forms planar surface

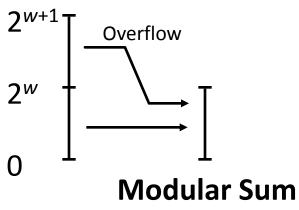
$Add_4(u, v)$

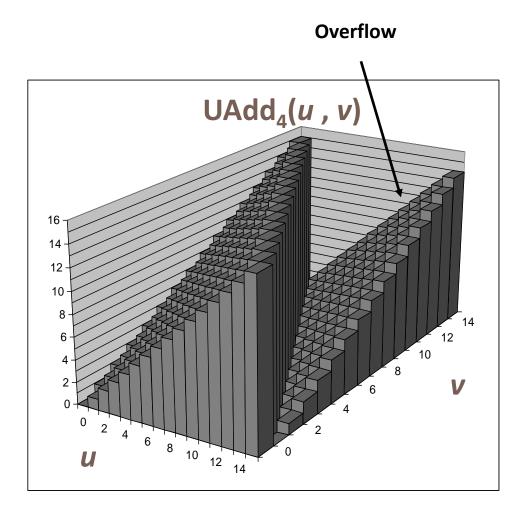


Visualizing Unsigned Addition

- Wraps Around
 - \square If true sum $\ge 2^{\text{w}}$
 - At most once

True Sum





Mathematical Properties

- Modular Addition Forms an Abelian Group
 - Closed under addition

$$0 \leq \mathsf{UAdd}_{w}(u, v) \leq 2^{w} - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

0 is additive identity

$$UAdd_{w}(u, 0) = u$$

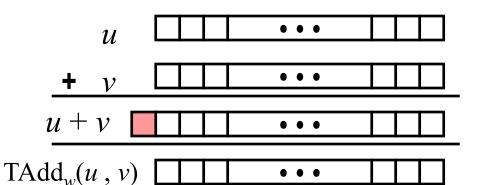
- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits



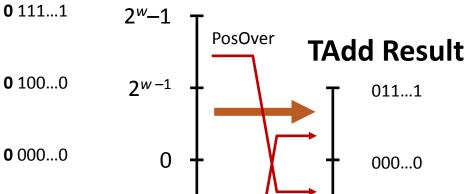
- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

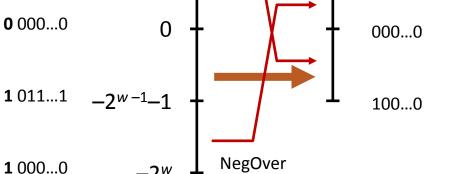
■ Will give s == t

TAdd Overflow

- Functionality
 - True sum requiresw+1 bits
 - Drop off MSB
 - Treat remaining bits as 2's comp. integer



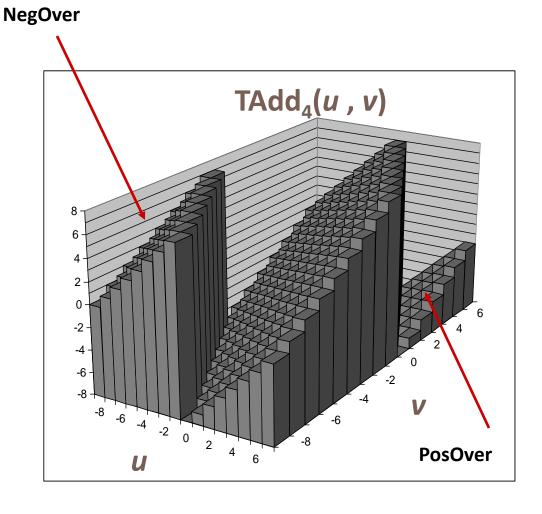
True Sum



Visualizing 2's Complement Addition

Values

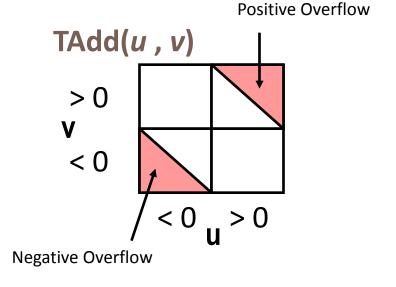
- 4-bit two's comp.
- Range from -8 to +7
- Wraps Around
 - □ If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - □ If sum $< -2^{w-1}$
 - Becomes positive
 - At most once



Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as2's comp. integer

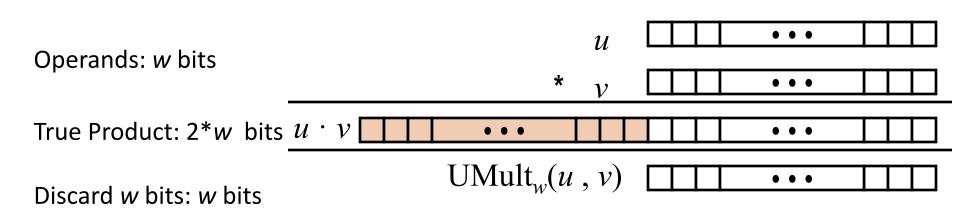


$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \leq u+v \leq TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Multiplication

- \square Computing Exact Product of w-bit numbers x, y
 - Either signed or unsigned
- Ranges
 - □ Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
 - □ Two's complement min: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2w-1 bits
 - Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for $(TMin_w)^2$
- Maintaining Exact Results
 - Would need to keep expanding word size with each product computed
 - Done in software by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C



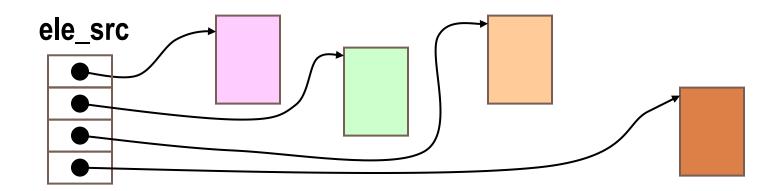
- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_{w}(\upsilon, v) = \upsilon \cdot v \mod 2^{w}$$

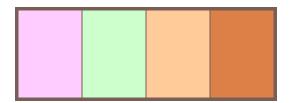
Code Security Example #2

- SUN XDR library
 - Widely used library for transferring data between

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```



malloc(ele_cnt * ele_size)



XDR Code

```
void* copy elements(void *ele src[], int ele cnt, size t ele size) {
    /*
     * Allocate buffer for ele cnt objects, each of ele size bytes
     * and copy from locations designated by ele src
     */
    void *result = malloc(ele cnt * ele size);
    if (result == NULL)
       /* malloc failed */
       return NULL:
    void *next = result;
    int i;
    for (i = 0; i < ele cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele src[i], ele size);
       /* Move pointer to next memory region */
       next += ele size;
    return result;
```

XDR Vulnerability

```
malloc(ele_cnt * ele_size)
```

■ What if:

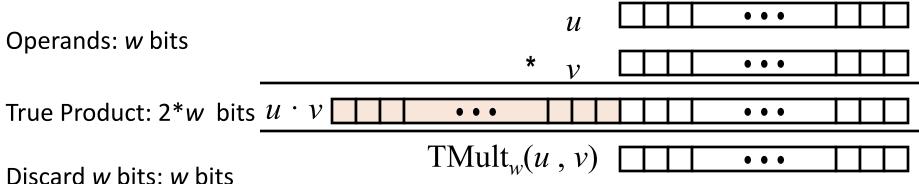
```
 = 2^{20} + 1
```

• ele size = 4096 = 2^{12}

■ Allocation = ??

How can I make this function secure?

Signed Multiplication in C

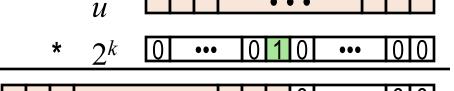


- - Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

Power-of-2 Multiply with Shift

- Operation
 - $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^{\mathbf{k}}$
 - Both signed and unsigned

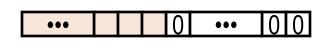
Operands: w bits



True Product: <u>w+k</u> bits

Discard *k* bits: *w* bits

 $UMult_{w}(u, 2^{k})$ $TMult_{w}(u, 2^{k})$



k

- Examples
 - □ u << 3

 $u\cdot 2^k$

- □ u << 5 u << 3 ==
- u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

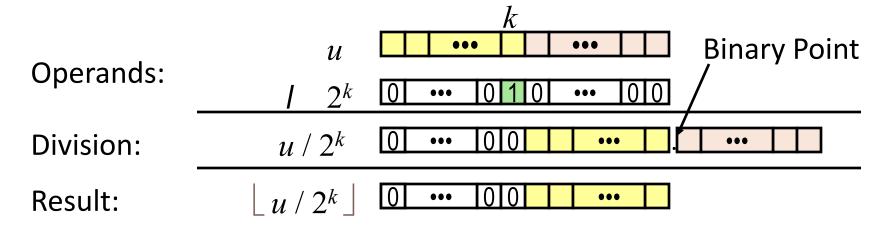
Explanation

```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - \square u >> k gives \lfloor u / $2^k\rfloor$
 - Uses logical shift



	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

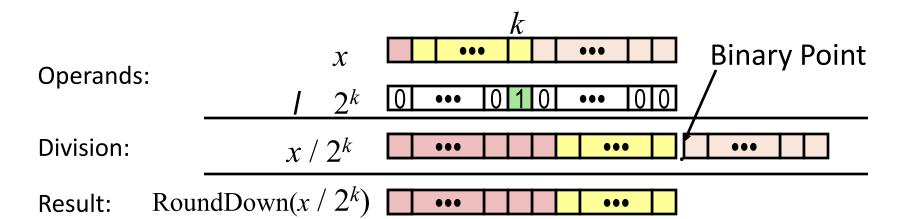
Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $\mathbf{x} \gg \mathbf{k}$ gives $\lfloor \mathbf{x} / 2^k \rfloor$
 - Uses arithmetic shift
 - \blacksquare Rounds wrong direction when $\mathbf{u} < \mathbf{0}$



	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2*
 - Mathematical addition + possible subtraction of 2w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2*
- Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: Basic Rules

- Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting
- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift
- Right shift
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Today: Integers

- □ Representing information as bits
- □ Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Making ints from bytes
- Summary

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative group
 - Closed under multiplication $0 \le UMult_w(u, v) \le 2^w 1$
 - Multiplication Commutative $UMult_w(u, v) = UMult_w(v, u)$
 - Multiplication is Associative $UMult_{w}(t, UMult_{w}(u, v)) = UMult_{w}(UMult_{w}(t, u), v)$
 - 1 is multiplicative identity $UMult_{w}(u, 1) = u$
 - Multiplication distributes over addtion $UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$

Properties of Two's Comp. Arithmetic

- Isomorphic Algebras
 - Unsigned multiplication and addition
 - Truncating to w bits
 - Two's complement multiplication and addition
 - Truncating to w bits
- Both Form Rings
 - Isomorphic to ring of integers mod 2^w
- Comparison to (Mathematical) Integer Arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,

$$u > 0$$
 $\Rightarrow u + v > v$
 $u > 0, v > 0$ $\Rightarrow u \cdot v > 0$

□ These properties are not obeyed by two's comp. arithmetic

$$TMax + 1 == TMin$$

 $15213 * 30426 == -10030$ (16-bit words)

Why Should I Use Unsigned?

- Don't Use Just Because Number Nonnegative
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Can be very subtle

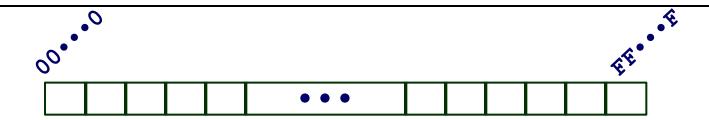
```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Today: Integers

- □ Representing information as bits
- □ Bit-level manipulations
- □ Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Making ints from bytes
- Summary

Byte-Oriented Memory Organization



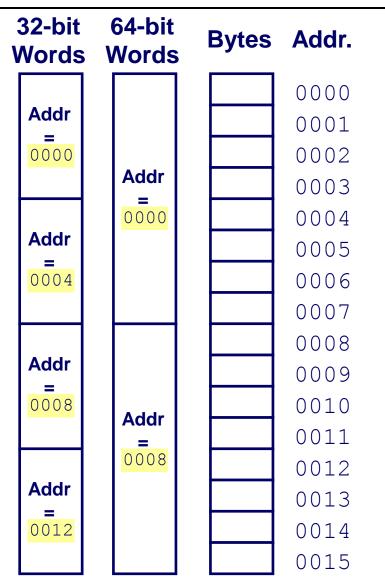
- Programs Refer to Virtual Addresses
 - Conceptually very large array of bytes
 - Actually implemented with hierarchy of different memory types
 - System provides address space private to particular "process"
 - Program being executed
 - Program can clobber its own data, but not that of others
- Compiler + Run-Time System Control Allocation
 - Where different program objects should be stored
 - All allocation within single virtual address space

Machine Words

- Machine Has "Word Size"
 - Nominal size of integer-valued data
 - Including addresses
 - Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8 X 10¹⁹ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
 - Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

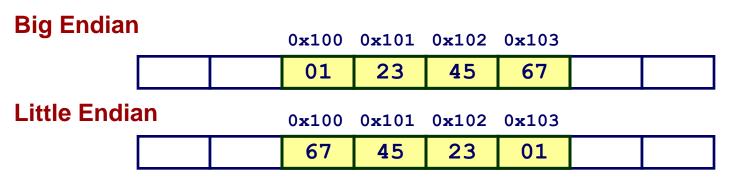


Byte Ordering

- How should bytes within a multi-byte word be ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address

Byte Ordering Example

- Big Endian
 - Least significant byte has highest address
- Little Endian
 - Least significant byte has lowest address
- Example
 - Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100



Reading Byte-Reversed Listings

- Disassembly
 - Text representation of binary machine code
 - Generated by program that reads the machine code
- Example Fragment

Address	Instruction Code	Assembly Rendition			
8048365:	5b	pop %ebx			
8048366:	81 c3 ab 12 00 00	add \$0x12ab, %ebx			
804836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)			
 Deciphering Numbers 					

- Value:
- Pad to 32 bits:
- Split into bytes:
- Reverse:

0x12ab 0x000012ab 00 00 12 ab ab 12 00 00

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * creates byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, int len) {
  int i;
  for (i = 0; i < len; i++)
    printf("%p\t0x%.2x\n",start+i, start[i]);
  printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```
int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11ffffcba 0x00
0x11ffffcbb 0x00
```

Data alignment

- A memory address a, is said to be n-byte aligned when a is a multiple of n bytes.
 - n is a power of two in all interesting cases
 - Every byte address is aligned
 - □ A 4-byte quantity is aligned at addresses 0, 4, 8,...
- Some architectures require alignment (e.g., MIPS)
- Some architectures tolerate misalignment at performance penalty (e.g., x86)

Data alignment in C structs

- □ Struct members are never reordered in C & C++
- Compiler adds padding so each member is aligned
 - struct {char a; char b;} no padding
 - struct {char a; short b;} one byte pad after a
- Last member is padded so the total size of the structure is a multiple of the largest alignment of any structure member (so struct can go in array)
 - struct containing int requires 4-byte alignment
 - struct containing long requires 8-byte (on 64-bit arch)

Data alignment malloc

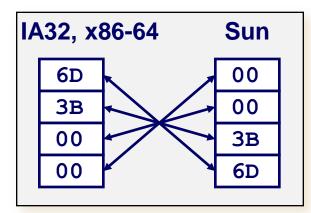
- malloc(1)
 - 16-byte aligned results on 32-bit
 - 32-byte aligned results on 64-bit
- int posix_memalign(void **memptr, size_t alignment, size_t size);
 - Allocates size bytes
 - Places the address of the allocated memory in *memptr
 - Address will be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *)

Representing Intege Binary: 0011 1011 0110 1101

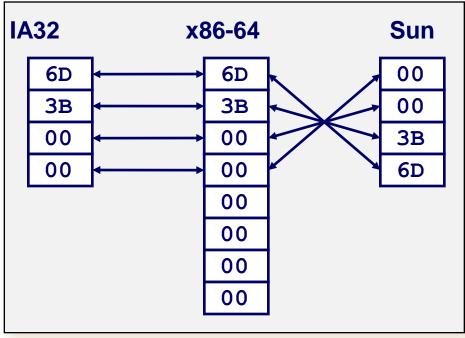
Decimal: 15213

Hex: 3 6 B D

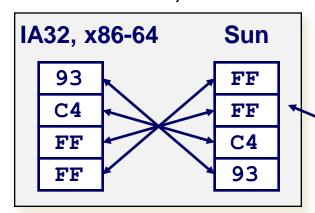
int A = 15213;



long int C = 15213;



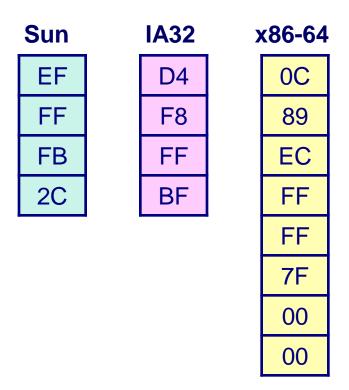
int B = -15213;



Two's complement representation (Covered later)

Representing Pointers

int
$$B = -15213$$
;
int *P = &B

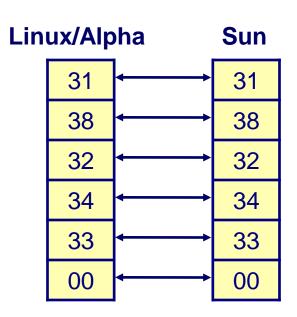


Different compilers & machines assign different locations to objects

Representing Strings

char S[6] = "18243";

- Strings in C
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0
- Compatibility
 - Byte ordering not an issue



Integer C Puzzles

Initialization

$$\Rightarrow$$
 ((x*2) < 0)

$$\Rightarrow$$
 (x<<30) < 0

•
$$x > 0 & y > 0$$

$$\Rightarrow$$
 x + y > 0

•
$$x >= 0$$

$$\Rightarrow$$
 -x >= 0

•
$$(x|-x)>>31==-1$$

•
$$ux >> 3 == ux/8$$

•
$$x >> 3 == x/8$$

•
$$x & (x-1) != 0$$