BITS, BYTES, AND INTEGERS

SYSTEMS |

Today: Bits, Bytes, and Integers

71 Representing information as bits
O Bit-level manipulations
O Integers
O Representation: unsigned and signed
O Conversion, casting
O Expanding, truncating
O Addition, negation, multiplication, shifting
0 Making ints from bytes

O Summary

————————————————————————
Encoding Byte Values

4+ N

o Byte = 8 bits i)

Binary 00000000210 111111112
Decimal: 010 to 25510

Hexadecimal 0014 to FF16

® Base 16 number representation

m Use characters ‘O’ to ‘9’ and ‘A’ to ‘F’ 1001
® Write FA1D37B1¢ in C as 1011
1100

OxFA1D37B 1101
Oxfal1d37b 1110

L L e G e
ol ol in| oo N oy o s w(d = o
|—I
o
|—I
o

H(H(O(Q(w||o|oo|d|o|ui|d(w[Nro

Boolean Algebra

71 Developed by George Boole in 19th Century

Algebraic representation of logic

® Encode “True” as 1 and “False” as O

And Or
= A&B =1 when both A=1 and = A|B =1 when either A=1 or B=1
B=1& |0 1 | |0 1
O0({0 O 0|0 1
110 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = A’B = 1 when either A=1 or B=1, but not
~ both A0 1
IR ol[o 1
110 111 0

e e
General Boolean Algebras

11 Operate on Bit Vectors

Operations applied bitwise
01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

71 All of the Properties of Boolean Algebra Apply

—————————————————————————
Bit-Level Operations in C

o Operations &, |, ~, ™ Available in C

Apply to any “integral” data type
= long, int, short, char, unsigned

View arguments as bit vectors
Arguments applied bit-wise

1 Examples (Char data type [1 byte])

In gdb, p/t OXE prints 1110

~0x41 — OxBE

= ~01000001, — 101111102

~0x00 — OxFF

= ~000000002; — 11111111>

0x69 & 0x55 — 0x41

= 011010012 & 010101012, — 010000012
0x69 | Ox55 — 0x7D

= 011010012 | 010101012 — 01111101>

Representing & Manipulating Sets

1 Representation

Width w bit vector represents subsets of {0, ..., w—1}
a=1ifj €A

m 01101001 {0,3,5,6}
m 76543210
m MSB Least significant bit (LSB)

= 01010101 {0,2,4,6}
m 76543210
1 Operations
& Intersection 01000001 {0,6}
| Union 01111101 {0,2,3,4,5, 6}
A Symmetric difference 00111100 {2,3,4,5}

~ Complement 10101010 {1,3,57}

————————————————————————
Contrast: Logic Operations in C

11 Contrast to Logical Operators
&&, ||, !

® View O as “False”

® Anything nonzero as “True”
w Always return O or 1

m Short circuit

1 Examples (char data type)

I0x41 — 0x00
I0x00 — 0x01
110x41 — 0x01

0x69 && 0x55 — 0x01
0x69 || 0x55 — 0x01

p && *p (avoids null pointer access)

Shift Operations

o Left Shift: X <<y

Shift bit-vector X left Yy positions Argument x| 01100010
Throw away extra bits on left

m Fill with 0’s on right << 3 00010000

o Right Shift: X >>y Log.>> 2 | 00011000

Shift bit-vector X right Yy positions
® Throw away extra bits on right

Arith. >> 2| 00011000

Logical shift
m Fill with 0’s on left Argument x| 10100010

Arithmetic shift

® Replicate most significant bit on left
7 Undefined Behavior

Shift amount < 0 or > word size Arith. >> 2| 11101000

<< 3 00010000

Log.>> 2 | 00101000

Today: Bits, Bytes, and Integers

O Representing information as bits
0 Bit-level manipulations

0 Integers

O Representation: unsigned and signed

O Conversion, casting

O Expanding, truncating

O Addition, negation, multiplication, shifting
0 Making ints from bytes

O Summary

10

Data Representations

C Data Type Typical 32-bit Intel 1A32 x86-64
1 1 1

char

short

int

long

long long
float
double
long double

pointer

&~ ©0 ©o© H~ oo B B N

~ oo B BB DD

8
10/12
4

&~ © o B DD

8
10/16
8

1

How to encode unsigned integers?

01 Just use exponential notation (4 bit numbers)
0110 =0%23 + 1*%22 + 1*21 + 0*20 =6
1001 = 1%23 + 0*22 + 0*2" + 1*¥20 =9
(Just like 13 = 1*10' + 3*100)

1 No negative numbers, a single zero (0000)

12

How to encode signed integers?

7 Want: Positive and negative values

1 Want: Single circuit to add positive and negative
values (i.e., no subtractor circuit)

71 Solution: Two’s complement
-1 Positive numbers easy (4 bits)
0110 =0%23 + 1*¥22 + 1*21 + 0*20 =6
1 Negative numbers a bit weird
1+-1=0,500001 +X=0,s0X=1111

-1=1111 in two’s compliment

13

Encoding Integers

Unsigned Two’s Complement
w-—1) w—2 .
BRUKX) = Y x-2f BT(X) = —x, 2"+ x -2
i=0 i=0
short int x = 15213; \
short int y = -15213; Sign
Bit
1 C short 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y ~15213| c4 93] 11000100 10010011

o Sign Bit
For 2’s complement, most significant bit indicates sign

m O for nonnegative

w1 for negative

14

e e
Encodlng Example (Cont.)

= 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 409 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768

Sum 15213 -15213 15

Unsigned & Signed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 —7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 -2
1111 15 -1

-1 Equivalence

Same encodings for
nonnegative values

1 Uniqueness

Every bit pattern represents
unique integer value

Each representable integer
has unique bit encoding

1 = Can Invert Mappings
U2B(x) = B2U'(x)
w Bit pattern for unsigned integer
T2B(x) = B2T'(x)

w Bit pattern for two’s comp
infeger

16

Numeric Ranges

o1 Unsigned Values 0 Two’s Complement Values

UMin = 0 TMin — —ow-1
000...0 100...0
UMax = 2¥-1 TMax — ow-1 _

111...1 O011...1

1 Other Values

Minus 1

Values for W =16 ...

Decimal Hex Binary
UMax 65535(FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 0OOOOQOOOQO
-1 -1 FF FF| 11111111 11111111
0 O 00 00| 00000000 0000O0O0OQO

Values for Different Word Sizes

w
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
-1 Observations m CProgramming
. = Hinclude <limits.h>
| TMin | = TMax + 1
A = Declares constants, e.g.,
- .
symmetric range = ULONG_MAX
UMax = 2 * TMax + 1 = LONG_MAX

= LONG_MIN
= Values platform specific

18

Today: Bits, Bytes, and Integers

O Representing information as bits
0 Bit-level manipulations

0 Integers

O Representation: unsigned and signed

o1 Conversion, casting

O Expanding, truncating

O Addition, negation, multiplication, shifting
0 Making ints from bytes

O Summary

19

e e
Mapping Between Signed & Unsigned

Two’s Complement - Unsigned
X *| T2B 7’ B2U > UXx

Maintain Same Bit Pattern

Unsigned U2T Two’s Complement

ux > U2B [——| B2T - X
X

Maintain Same Bit Pattern

1 Mappings between unsigned and two’s complement numbers:
keep bit representations and reinterpret

20

————————————————————————
Mc:ppmg Signed <> Unsigned

Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 —JT2ul— 5
0110 6 6
0111 7 —U2T|— 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

21

————————————————————————
Mc:ppmg Signed <> Unsigned

Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 4 4—} 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 +/- 16 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

22

Conversion Visualized

1 2’s Comp. = Unsigned
Ordering Inversion

Negative — Big Positive

[

- TMax @

2’s Complement
Range

'T\I;:D

TMin

UMax
UMax —1
TMax +1
TMax

0

Unsigned
Range

24

Negation: Complement & Increment

11 Claim: Following Holds for 2’s Complement

~X + 1 == -x
1 Complement

Observation: ~x + x == 1111..111 == -1

25

Complement & Increment Examples

X =15213
Decimal | Hex Binary

X 15213(3B 6D| 00111011 01101101

~X -15214(¢4 92(11000100 10010010

~x+1 | -15213| C4 93| 11000100 10010011

y -15213| €4 93| 11000100 10010011
x=0

Decimal Hex Binary

0 0| 00 00 00000000 00000000

~0 -1| FF FF| 11111111 11111111

~0+1 0| 00 00| 00000000 0OOOOOOOO

26

e e
Signed vs. Unsigned in C

11 Constants
By default are considered to be signed integers

Unsigned if have “U” as suffix
0U, 42949672590

o1 Casting
Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;

unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

Implicit casting also occurs via assignments and procedure calls
tx = ux;

uy = ty;
27

Casting Surprises

11 Expression Evaluation

If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

Including comparison operations <, >, ==, <=, >=

-1 Constant, Constant, Relation Evaluation
0 ou == unsigned
-1 o) < signed
-1 ou > unsigned
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > sighed

28

————————————————————————
Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE] ;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user dest, kbuf, len);

return len;

0 Similar to code found in FreeBSD’s implementation of
getpeername

o1 There are legions of smart people trying to find
vulnerabilities in programs

29

e e
Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user _dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy_ from kernel (mybuf, MSIZE) ;
printf (“$s\n”, mybuf) ;

30

[J [)
~
MG I ICIOUS US /* Declaration of library function memcpy */

void *memcpy (void *dest, void *src, size t n);

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user _dest, kbuf, 1len);

return len;

#define MSIZE 528

void getstuff () ({
char mybuf [MSIZE] ;
copy_from kernel (mybuf, -MSIZE) ;

31

gummq ry

Casting Signed < Unsigned: Basic Rules

71 Bit pattern is maintained
11 But reinterpreted

1 Can have unexpected effects: adding or
subtracting 2%

11 Expression containing signed and unsigned int

1nt is cast to unsignedll

32

Today: Bits, Bytes, and Integers

O Representing information as bits
0 Bit-level manipulations

0 Integers

O Representation: unsigned and signed

O Conversion, casting

o1 Expanding, truncating

O Addition, negation, multiplication, shifting
0 Making ints from bytes

O Summary

33

Sign Extension

01 Task:

Given w-bit signed integer x

Convert it to wtk-bit integer with same value
71 Rule:

Make k copies of sign bit:

/ —
X - XW_‘I r1°°*y XW_'I ’ XW_'I ’ XW_2 r1°°**y XO

<€ 7, >
X o
k copies of MSB
X o000 ()
!
<€ k ><€ ", > “

e e
Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213(FF FF C4 93 11111111 11111111 11000100 10010011

1 Converting from smaller to larger integer data type

1 C automatically performs sign extension

35

gummq ry:

Expanding, Truncating: Basic Rules

1 Expanding (e.g., short int to int)
Unsigned: zeros added
Signed: sign extension
Both yield expected result

o Truncating (e.g., unsigned to unsigned short)
Unsigned /signed: bits are truncated
Result reinterpreted
Unsigned: mod operation
Signed: similar to mod

For small numbers yields expected behaviour

36

Today: Bits, Bytes, and Integers

O Representing information as bits
O Bit-level manipulations
0 Integers
O Representation: unsigned and signed
O Conversion, casting
O Expanding, truncating
o1 Addition, negation, multiplication, shifting

O Summary

37

e
Unsigned Addition

u eoo o0

Operands: w bits
+ v o0
True Sum: w+1 bits U+ —
Discard Carry: wbits ~ UAdd (u , v) “eo

0 Standard Addition Function
Ignores carry output

1 Implements Modular Arithmetic
s = UAdd,[(u, V) = u+v mod?2”

+ +y<2¥
Uddd ,(u,y) = 1 -0 4TV
u+v-=-2" u+v>2"

38

Visualizing (Mathematical) Integer Addition

“Integer Addition Add,(u, v)

Integer Addition

4-bit integers u, v
Compute true sum

Add,(u, v)

Values increase
linearly with v and
v

Forms planar
surface

39

Visualizing Unsigned Addition

Overflow

1 Wraps Around \

If true sum > 2%

At most once

True Sum

w+lT
2 Overflow

s

0

Modular Sum

40

Mathematical Properties

7 Modular Addition Forms an Abelian Group

Closed under addition
0 <UAdd (u,v) < 2%-I

Commutative

UAdd (u,v) = UAdd (v, u)

Associative

UAdd_ (t, UAdd_(u, v)) = UAdd_(UAdd._(t, u), v)

O is additive identity
UAdd (u,0) = v
Every element has additive inverse

W Let UComp, (u) =2%—u
UAdd (v, UComp (u)) = O

41

Two’s Complement Addition

Operands: w bits U
+ v o 00
True Sum: w+1 bits
u + V oo
Discard Carry: w bits TAdd, (u , v) XX

- TAdd and UAdd have Identical Bit-Level Behavior
Signed vs. unsigned addition in C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t

u + v

Will give s ==t

42

TAdd Overflow

-1 Functionality

True sum requires
w1 bits

Drop off MSB

Treat remaining
bits as 2’s comp.
integer

0111..

0 100...

0 000...

1011...

1 000...

True Sum
2w-1 T
PosOver
2W—1 -
0 -
—w-1-]
| NegOver

TAdd Result

011..1

000...0

100...0

43

Visualizing 2’s Complement Addition

NegOver

1 Values \

4-bit two’s comp.

TAdd,(u, v)

Range from -8 to
+7

1 Wraps Around
If sum > 2*~!

® Becomes negative
m At most once

If sum < —2%-1

= Becomes positive u 4 6 PosOver

m At most once

44

Characterizing TAdd

Positive Overflow

01 Functionality TAdd(u , v)

True sum requires w1 >0 \

bits v \
<0

Drop off MSB /

Treat remaining bits as / <0 u’ 0

Negative Overflow

2’s comp. integer

e

u+v+2W u+v<TMin, (NegOver)
TAdd,,(u,v) = Ju+v TMin,, <u+v<TMax,,

u+v— 2w TMCDCW <uU+V (PosOver)
\§

45

Multiplication

1 Computing Exact Product of w-bit numbers x, y

Either signed or unsigned

1 Ranges
Unsigned: 0 < x ¥y < (2% = 1) 2 = 22v —2w*l +]
m Up to 2w bits
Two’s complement min: x ¥y > (=2%1)¥(2%1=1) = —22w=24 2w-!
m Up to 2w—1 bits
Two’s complement max: x ¥y < (—=2%71) 2 = 22w
= Up to 2w bits, but only for (TMin_)?
1 Maintaining Exact Results

Would need to keep expanding word size with each product
computed

Done in software by “arbitrary precision” arithmetic packages

46

Unsigned Multiplication in C

u o 00
Operands: w bits
%* o000
\ %
True Product: 2*w bits U " V o 00 coe
UMU.ltW(M . V) oo 0

Discard w bits: w bits

1 Standard Multiplication Function

Ignores high order w bits

7 Implements Modular Arithmetic
UMult (u,v) = u v mod 2%

47

Code Security Example #2

7 SUN XDR library

Widely used library for transferring data between

void* copy elements (void *ele src[], int ele cnt, size t ele size);

ele src

L | =

\

e ———

dhahdial

malloc(ele_cnt * ele_size)

48

XDR Code

void* copy elements (void *ele src[], int ele cnt, size t ele_size) {
/*
* Allocate buffer for ele cnt objects, each of ele size bytes
* and copy from locations designated by ele_src
*/
void *result = malloc(ele cnt * ele size);
if (result == NULL)
/* malloc failed */
return NULL;
void *next = result;
int i;
for (i = 0; 1 < ele cnt; i++) {
/* Copy object i to destination */
memcpy (next, ele src[i], ele size);
/* Move pointer to next memory region */
next += ele size;
}

return result;

49

XDR Vulnerability

malloc(ele_cnt * ele_size)

o What if:
ele cnt =220 + 1
ele size = 4096 = 2'2
Allocation = 2¢

1 How can | make this function secure?

50

Signed Multiplication in C

u o 00
Operands: w bits
* o0 o0
%
True Product: 2*w bits U * Vv ° o0 v oo
TMult, (u , v) Y

Discard w bits: w bits

1 Standard Multiplication Function
Ignores high order w bits

Some of which are different for signed vs.
unsigned multiplication

Lower bits are the same

51

Power-of-2 Multiply with Shift

1 Operation
u << kgivesu * 2k

Both signed and unsigned k
Operands: w bits .

* 2k D Y Q 1 Q YY) m
True Product: w+k bits u - 2K oo Ql e 100
Discard k bits: w bits UMult,(u , 2%) ooo 0l e [0]0

TMult (u , 2F
0 Examples uih, 2

u << 3 == u * 8
u<<5-u<3 == u * 24
Most machines shift and add faster than multiply
m Compiler generates this code automatically

52

Compiled Multiplication Code

C Function

int mull2 (int x)
{

return x*12;

}

Compiled Arithmetic Operations Explanation
leal (%eax,%eax,2), %eax t <- x+x*2
sall $2, %eax return t << 2;

11 C compiler automatically generates shift/add code
when multiplying by constant

53

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
u >> kgives Lu / 2¢]
Uses logical shift

k
0 4 u L see Binary Point
perands:
l 2k Q YY) Q 1 Q YY) m
DIVISIOnZ U / 2k Q Y m Y { 000
Result: | u/2k] L0l - 100
Division Computed Hex Binary
X 15213 15213 3B 6D| 00111011 01101101
x >> 1 7606.5 7606 1D B6| 00011101 10110110
x >> 4 950.8125 950 03 B6| 00000011 10110110
x >> 8 | 59.4257813 59 00 3B| 00000000 00111011

54

Compiled Unsigned Division Code

C Function

unsigned udiv8 (unsigned x)

{

return x/8;

}

Compiled Arithmetic Operations Explanation

shrl $3, %eax # Logical shift
return x >> 3;

11 Uses logical shift for unsigned

1 For Java Users
Logical shift written as >>>

55

Signed Power-of-2 Divide with Shift

0 Quotient ot Jdigned by Power ot 2
x > kgives Lx / 2¢]

Uses arithmetic shift

Rounds wrong direction whenu < 0

k
X see see Binary Point
Operands:
l 2k Q YY) Q 1 Q YY) m /
Division: x / 2k L L |/ Ll
Result: RoundDown(x / 2¥) eoe eoe
Division Computed Hex Binary
Yy -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

56

e
Arithmetic: Basic Rules

o Addition:

Unsigned /signed: Normal addition followed by truncate,
same operation on bit level

Unsigned: addition mod 2%
® Mathematical addition + possible subtraction of 2w

Signed: modified addition mod 2" (result in proper range)
® Mathematical addition + possible addition or subtraction of 2w

1 Multiplication:

Unsigned /signed: Normal multiplication followed by truncate,
same operation on bit level

Unsigned: multiplication mod 2%
Signed: modified multiplication mod 2% (result in proper range)

60

Arithmetic: Basic Rules

71 Unsigned ints, 2’s complement ints are isomorphic rings:
isomorphism = casting

0 Left shift
Unsigned /signed: multiplication by 2k
Always logical shift

71 Right shift
Unsigned: logical shift, div (division + round to zero) by 2%
Signed: arithmetic shift

= Positive numbers: div (division + round to zero) by 2¢

= Negative numbers: div (division + round away from zero) by 2¢
Use biasing to fix

61

Today: Integers

0 Representing information as bits
O Bit-level manipulations
0 Integers
O Representation: unsigned and signed
O Conversion, casting
O Expanding, truncating
O Addition, negation, multiplication, shifting
o Summary

O Making ints from bytes

O Summary

62

Properties of Unsigned Arithmetic

11 Unsigned Multiplication with Addition Forms Commutative
Ring
Addition is commutative group
Closed under multiplication
0 <UMult, (u,v) < 2% -1
Multiplication Commutative
UMult (u, v) = UMult (v, v)
Multiplication is Associative
UMult (t, UMult (u, v)) = UMult (UMult (1, u), v)
1 is multiplicative identity
UMult (u, 1) = v
Multiplication distributes over addtion
UMult (f, UAdd,_(u, v)) = UAdd,_(UMult (t, u), UMult (t, v))

63

Properties of Two’s Comp. Arithmetic

01 Isomorphic Algebras

Unsigned multiplication and addition
® Truncating to w bits

Two’s complement multiplication and addition
® Truncating to w bits

©1 Both Form Rings
Isomorphic to ring of integers mod 2%
1 Comparison to (Mathematical) Integer Arithmetic

Both are rings
Integers obey ordering properties, e.g.,

u>0 = utv>y

u>0,v>0 = wu-v>0

These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin

15213 * 30426 == -10030 (16-bit words)

64

Why Should | Use Unsigned?

1 Don’t Use Just Because Number Nonnegative

Easy to make mistakes
unsigned i;
for (i = ent-2; 1 >= 0; i--)
a[i] += a[i+l];
Can be very subtle
#define DELTA sizeof (int)
int 1i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

1 Do Use When Performing Modular Arithmetic
Multiprecision arithmetic
7 Do Use When Using Bits to Represent Sets

Logical right shift, no sign extension
65

Today: Integers

0 Representing information as bits
O Bit-level manipulations
O Integers
O Representation: unsigned and signed
O Conversion, casting
O Expanding, truncating
O Addition, negation, multiplication, shifting
O Summary

1 Making ints from bytes

O Summary

66

e
Byte-Oriented Memory Organization

00. Qe.

1 Programs Refer to Virtual Addresses
Conceptually very large array of bytes
Actually implemented with hierarchy of different memory types

System provides address space private to particular “process”
® Program being executed

® Program can clobber its own data, but not that of others

1 Compiler + Run-Time System Control Allocation
Where different program objects should be stored

All allocation within single virtual address space

67

Machine Words

-1 Machine Has “Word Size”

Nominal size of integer-valued data

® Including addresses

Most current machines use 32 bits (4 bytes) words

® Limits addresses to 4GB

® Becoming too small for memory-intensive applications
High-end systems use 64 bits (8 bytes) words

= Potential address space = 1.8 X 10’7 bytes

m x86-64 machines support 48-bit addresses: 256 Terabytes
Machines support multiple data formats

® Fractions or multiples of word size
w Always integral number of bytes

68

Word-Oriented Memory Organization

V?/%z; V?/irbc:; Bytes Addr.
1 Addresses Specify Byte
0000
Locations Addr 0001
Address of first byte in word Q000 Addr 888?
Addresses of successive 0000 0004
Addr
words differ by 4 (32-bit) or = 8882
0004
8 (64-bit) 0007
0008
Addr 0009
0008 Addr 0010
_ 0011
0008 0012
Addr 0013
00_12 0014
0015

69

—————————————————————————
Byte Ordering

o How should bytes within a multi-byte word be
ordered in memory?
1 Conventions

Big Endian: Sun, PPC Mac, Internet
w Least significant byte has highest address

Little Endian: x86

m Least significant byte has lowest address

70

————————————————————————
Byte Ordering Example

0 Big Endian
Least significant byte has highest address
1 Little Endian

Least significant byte has lowest address

1 Example
Variable x has 4-byte representation 0x01234567
Address given by &x is Ox100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67
Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

4

Reading Byte-Reversed Listings

1 Disassembly

Text representation of binary machine code
Generated by program that reads the machine code
1 Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx
8048366 81 c3 ab 12 00 00 add $0x12ab, $ebx
804836¢: 83 bb 28 00*()0 00 00 cmpl ;6x0,0x28 (%ebx)
-1 Deciphering Numbers /

Value: 0x12ab

Pad to 32 bits: 0x000012ab

Split into bytes: 00 00 12 ab

Reverse: ab 12 00 00

72

—————————————————————————
Examining Data Representations

1 Code to Print Byte Representation of Data

Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

void show bytes (pointer start, int len) {
int i;
for (i = 0; i < len; i++)
printf ("$p\t0x%.2x\n",start+i, start[i]);
printf ("\n") ;

}

Printf directives:
%p: Print pointer
%0X: Print Hexadecimal

73

——————————————————————————_—————_——_—————
show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux):

int a = 15213;

Ox11ffffcb8 0Oxo6d
Ox11ffffcb9 0x3b
Ox11ffffcba 0x00
Ox11ffffcbb 0x00

74

—————————————————————————
Data alignment

1 A memory address q, is said to be n-byte aligned
when a is a multiple of n bytes.

n is a power of two in all interesting cases
Every byte address is aligned
A 4-byte quantity is aligned at addresses O, 4, 8,...

1 Some architectures require alignment (e.g., MIPS)

1 Some architectures tolerate misalignment at
performance penalty (e.g., x86)

75

————————————————————————_——————_——————
Data alignment in C structs

1 Struct members are never reordered in C & C++

1 Compiler adds padding so each member is aligned
struct {char a; char b;} no padding
struct {char a; short b;} one byte pad after a

7 Last member is padded so the total size of the

structure is a multiple of the largest alignment of
any structure member (so struct can go in array)

struct containing int requires 4-byte alignment

struct containing long requires 8-byte (on 64-bit arch)

76

—————————————————————————
Data alignment malloc

1 malloc(1)
16-byte aligned results on 32-bit
32-byte aligned results on 64-bit
7 int posix_memalign(void **memptr, size_t
alignment, size_t size);
Allocates size bytes
Places the address of the allocated memory in *memptr

Address will be a multiple of alignment, which must be
a power of two and a multiple of sizeof(void *)

77

Decimal: 15213

Represenﬁng Infege Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A =15213; long int C = 15213:
|IA32, Xx86-64 Sun

|A32 X86-64 Sun

6D
3B
00
00

Int B =-15213;
IA32, X86-64 sSun

Two’s complement representation
(Covered later)

78

—————————————————————————
Representing Pointers

e e G
e TP = @8 sun IA32 x86-64

EF D4 0C

FF F8 89

FB == EC

2C BF ==

==

7F

00

00

Different compilers & machines assign different locations to objects

79

————————————————————————_——————_——————
Representing Strings

char S[6] = "18243";

0 Strings in C
Represented by array of characters

Each character encoded in ASCIl format

m Standard 7-bit encoding of character set
® Character “0” has code 0x30

Linux/Alpha Sun
Digit i has code Ox30+/ e
. . 31 [t » 31
String should be null-terminated 5 | s
® Final character = 0 30 |+ Y
1 Compatibility 34 | " 34
Byte ordering not an issue 3 T 133
00 [" 00

80

Integer C Puzzles

Initialization

int x = foo();
inty = bar();
unsigned ux = x;

unsigned uy = y;

x<0

ux>=0
X&7==

ux > -1

X>y
X*x>=0
x>0&&y>0
x>=0

x<=0
(x]-x)>>31 == -
ux >> 3 == ux/8
x>> 3 ==x/8
x&(x-1)!1=0

= ((x*2)<0)
= (x<<30)<0
= X<-y

= x+y>0

= x<=0
= Xx>=0

81

