FLOATING POINT

SYSTEMS I

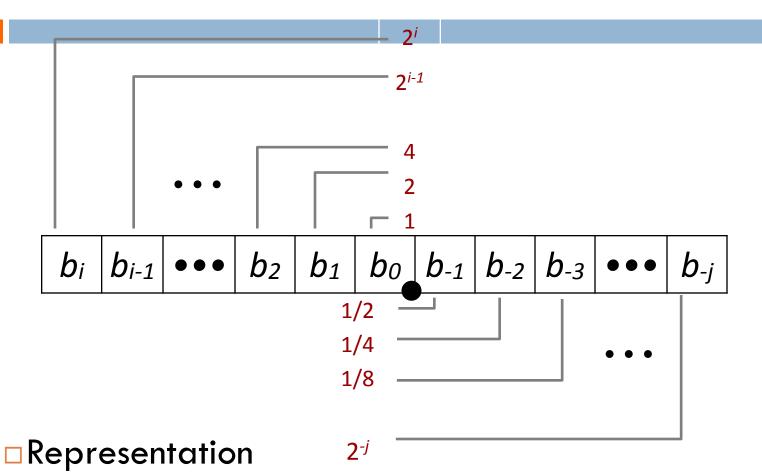
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- □ Floating point in C
- Summary

Fractional binary numbers

□ What is 1011.101₂?

Fractional Binary Numbers



- Bits to right of "binary point" represent fractional powers of 2 $\sum_{k=1}^{i} b_k \times 2^k$
- Represents rational number: k=-j

Fractional Binary Numbers: Examples

Value	Representation
5 3/4	101.11 ₂
2 7/8	10.111 ₂
1 7/16	1.0111 ₂
63/64	0.11111 ₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0
 - Use notation 1.0 ε

Representable Numbers

Limitation

- \blacksquare Can only exactly represent numbers of the form $x/2^k$
- Other rational numbers have repeating bit representations

- Value Representation
 - **1**/3 0.0101010101[01]...2
 - **1**/5 0.001100110011[0011]...2
 - □ 1/10 0.0001100110011[0011]...2

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- □ Floating point in C
- □ Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

Sign bit s determines whether number is negative or positive

- Significand M normally a fractional value in range [1.0,2.0).
- **Exponent** *E* weights value by power of two

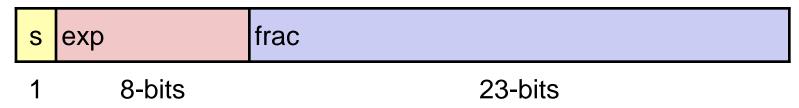
□ Encoding

- MSB S is sign bit S
- EXP field encodes *E* (but is not equal to E)
- frac field encodes *M* (but is not equal to M)

s exp

Precisions

□ Single precision: 32 bits



Double precision: 64 bits

S	exp	frac
1	11-bits	52-bits

Extended precision: 80 bits (Intel only)

S	exp	frac
1	15-bits	63 or 64-bits

Normalized Values

□ Condition: exp \neq 000...0 and exp \neq 111...1

- \Box Exponent coded as *biased* value: E = Exp Bias
 - Exp: unsigned value EXP
 - **D** $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- □ Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - XXX...X: bits of frac
 - **•** Minimum when 000...0 (M = 1.0)
 - **Δ** Maximum when 111...1 (*M* = 2.0 ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
Value: Float F = 15213.0;

15213<sub>10</sub> = 11101101101<sub>2</sub>

= 1.1101101101<sub>2</sub> x 2<sup>13</sup>
```

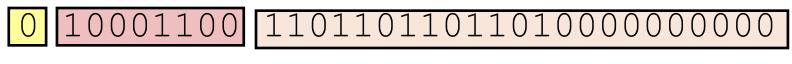
Significand

M =	1. <u>1101101101</u> 2
frac=	$\underline{1101101101101}000000000_2$

Exponent

Ε	=	13	
Bias	=	127	
Exp	=	140 =	100011002

Result:



s exp

Denormalized Values

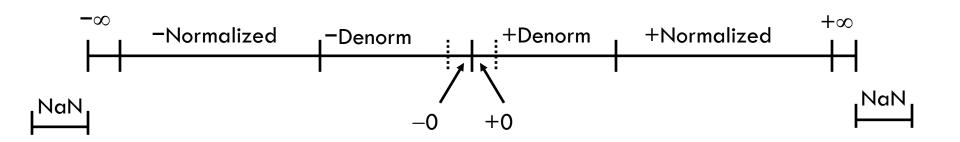
- \Box Condition: exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- □ Significand coded with implied leading 0: $M = 0.xxx...x_2$
 - xxx...x: bits of frac
- Cases
 - **exp** = 000...0, **frac** = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

 \Box Condition: **exp** = 111...1

- \blacksquare Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- **E.g.**, $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- □ Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - **E.g.**, sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings



Today: Floating Point

- Background: Fractional binary numbers
- EEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- □Floating point in C
- □Summary

Tiny Floating Point Example

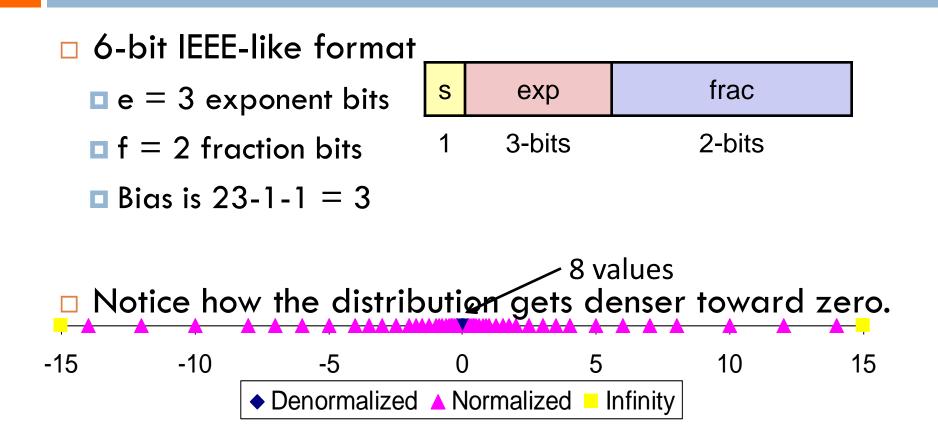
S	exp	frac
1	4-bits	3-bits

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 normalized, denormalized
 representation of 0, NaN, infinity

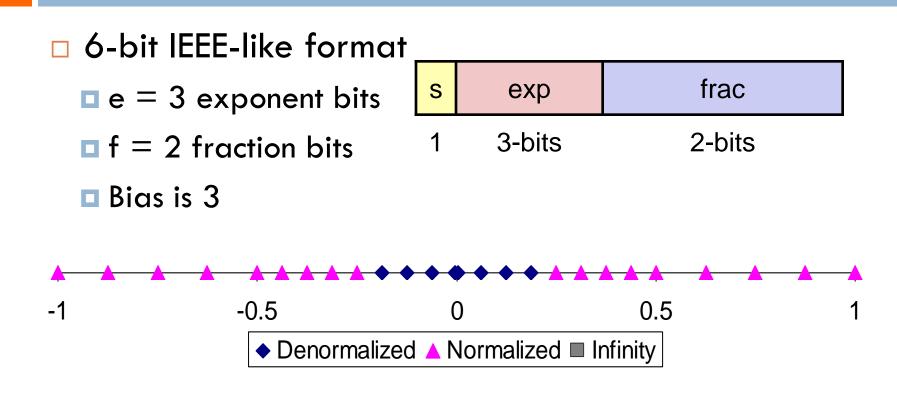
Dynamic Range (Positive Only)

		S	exp	frac	E	Value	
		0	0000	000	-6	0	
		0	0000	001	-6	$1/8 \times 1/64 = 1/512$ closest to	zero
Denormal	ized	0	0000	010	-6	2/8*1/64 = 2/512	2010
numbers							
		0	0000	110	-6	$6/8 \times 1/64 = 6/512$	
		0	0000	111	-6	7/8*1/64 = 7/512 largest de	enorm
		0	0001	000	-6	$8/8 \times 1/64 = 8/512$ smallest r	
		0	0001	001	-6	$9/8 \times 1/64 = 9/512$	
		0	0110	110	-1	$14/8 \times 1/2 = 14/16$	
		0	0110	111	-1	15/8*1/2 = 15/16 closest to	1 below
Normalize	ed	0	0111	000	0	8/8*1 = 1	
numbers		0	0111	001	0	9/8*1 = 9/8 closest to	1 above
		0	0111	010	0	10/8*1 = 10/8	
		0	1110	110	7	$14/8 \times 128 = 224$	
		0	1110	111	7	15/8*128 = 240 largest no	orm
		0	1111	000	n/a	inf	

Distribution of Values



Distribution of Values (close-up view)



Interesting Numbers

{single,double}

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
■ Single \approx 1.4 x 10 ⁻⁴⁵			
■ Double ≈ 4.9 x 10^{-324}			
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126, 1022\}}$
□ Single ≈ 1.18×10^{-38}			
■ Double $\approx 2.2 \times 10^{-308}$			
Smallest Pos. Normalized	0001	0000	1.0 x $2^{-\{126,1022\}}$
Just larger than largest denorm	alized		
One	0111	0000	1.0
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \ge 2^{\{127, 1023\}}$
■ Single $\approx 3.4 \times 10^{38}$			
Double $\approx 1.8 \times 10^{308}$			

Special Properties of Encoding

FP Zero Same as Integer Zero All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- □ Floating point in C
- □ Summary

Floating Point Operations: Basic Idea

 $\Box \mathbf{x} +_{f} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$

- $\Box \mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \operatorname{Round}(\mathbf{x} \times \mathbf{y})$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	—
\$1.50					
Towards zero	\$1	\$1	\$1	\$2	-\$1
■ Round down (¬∞)	\$1	\$1	\$1	\$2	-\$2
Round up ($+\infty$)	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

What are the advantages of the modes?

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action I	Rounded Value
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2-dov	wn) 2
2 3/16	10.00110 ₂	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2-dov	vn) 21/2

FP Multiplication

\Box (-1)^{s1} **M1** 2^{E1} x (-1)^{s2} **M2** 2^{E2}

- $\square \text{ Exact Result: } (-1)^{\text{s}} M 2^{\text{E}}$
 - □ Sign *s*: *s*1 ^ *s*2
 - □ Significand *M*: *M*1 × *M*2
 - **Exponent** *E*: E1 + E2

Fixing

- □ If $M \ge 2$, shift *M* right, increment *E*
- □ If *E* out of range, overflow
- Round *M* to fit **frac** precision

Implementation

Biggest chore is multiplying significands

Mathematical Properties of FP Add

 Compare to those of Abelian G Closed under addition? 	roup Yes
 But may generate infinity or NaN Commutative? Associative? 	Yes No
 Overflow and inexactness of round O is additive identity? Every element has additive invers Except for infinities & NaNs 	Yes
 □ Monotonicity □ a ≥ b ⇒ a+c ≥ b+c? ■ Except for infinities & NaNs 	Almost

Mathematical Properties of FP Mult

 Compare to Commutative Ring Closed under multiplication? But may generate infinity or NaN 	Yes
Multiplication Commutative?	Yes
Multiplication is Associative?	No
Possibility of overflow, inexactness of rounding	
1 is multiplicative identity?	Yes
Multiplication distributes over addition?	Νο
Possibility of overflow, inexactness of rounding	

Monotonicity

- $\Box a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c?$
 - Except for infinities & NaNs

Almost

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- □ Summary

Floating Point in C

- C Guarantees Two Levels
 float single precision
 double double precision
- Conversions/Casting

Casting between int, float, and double changes bit representation

- \Box double/float \rightarrow int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- \Box int \rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
- \Box int \rightarrow float
 - Will round according to rounding mode

Floating Point Puzzles

□ For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

int x = ...; float f = ...; double d = ...;

Assume neither **d** nor **f** is NaN

- x == (int)(float) x
- x == (int)(double) x
- f == (float)(double) f
- d == (float) d
- f == -(-f);
- 2/3 == 2/3.0
- $d < 0.0 \qquad \Rightarrow \quad ((d^*2) < 0.0)$
- $d > f \Rightarrow -f > -d$
- d * d >= 0.0
- (d+f)-d == f

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Summary

- IEEE Floating Point has clear mathematical properties
- \square Represents numbers of form M x 2^{E}
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers