MACHINE-LEVEL PROGRAMMING I:
BASICS

CS 429H: SYSTEMS |

Instructor:
Emmett Witchel

University of Texas at Austi

Today: Machine Programming |: Basics

* History of Intel processors and architectures
* C, assembly, machine code

* Assembly Basics: Registers, operands, move

University of Texas at Austi

Intel x86 Processors

* Totally dominate laptop /desktop /server market

* Evolutionary design

Backwards compatible up until 8086, introduced in 1978
Added more features as time goes on

* Complex instruction set computer (CISC)
Many different instructions with many different formats
* But, only small subset encountered with Linux programs

Hard to match performance of Reduced Instruction Set
Computers (RISC)

But, Intel has done just that!

* In terms of speed. Less so for low power.

University of Texas at Austi

Intel x86 Evolution: Milestones

Name Date Transistors MHz

* 8086 1978 29K 5-10
First 16-bit processor. Basis for IBM PC & DOS
1MB address space

* 386 1985 275K 16-33

First 32 bit processor , referred to as IA32

Added “flat addressing”

Capable of running Unix

32-bit Linux /gcc uses no instructions introduced in later models

* Pentium 4F 2004 125M 2800-3800
First 64-bit processor, referred to as x86-64

* Core i/ 2008 73TM 2667-3333

Intel x86 Processors: Overview

Architectures Processors
X86-16 8086
286
X86-32/1A32 386
486
Pentium
MMX Pentium MMX
SSE Pentium Il
SSE2 Pentium 4
SSE3 Pentium 4E
X86-64 / EM64t Pentium 4F
Core 2 Duo
SSE4 Corei7

IA: often redefined as latest Intel architecture 5

Intel x86 Processors, contd.

* Machine Evolution

386 1985 Integrated:Memory Controller'~:3:Ch DDR3:
Pentium 1993 |

Pentium/MMX 1997 |

PentiumPro 1995 Core 0 Core 1 Core2 - Core3
Pentium I 1999

Pentium 4 2001

Core 2 Duo 2006

Core i7 2008 Shared L3 Cache

* Added Features

Instructions to support multimedia operations
* Parallel operations on 1, 2, and 4-byte data, both integer & FP

Instructions to enable more efficient conditional operations

* Linux/GCC Evolution
Two major steps: 1) support 32-bit 386. 2) support 64-bit x86-64

x86 Clones: Advanced Micro Devices (AMD)

* Historically
AMD has followed just behind Intel

A little bit slower, a lot cheaper

* Then

Recruited top circuit designers from Digital Equipment
Corp. and other downward trending companies

Built Opteron: tough competitor to Pentium 4

Developed x86-64, their own extension to 64 bits

University of Texas at Austi

Intel’s 64-Bit

Intel Attempted Radical Shift from IA32 to 1A64

Totally different architecture (Itanium)
Executes IA32 code only as legacy
Performance disappointing

AMD Stepped in with Evolutionary Solution
x86-64 (now called “AMD64”)

Intel Felt Obligated to Focus on |A64
Hard to admit mistake or that AMD is better

2004: Intel Announces EM64T extension to I1A32
Extended Memory 64-bit Technology
Almost identical to x86-64!

All but low-end x86 processors support x86-64

But, lots of code still runs in 32-bit mode

10

Our Coverage

* |A32
The traditional x86

* x86-64/EM64T

The emerging standard

* Presentation
Book presents IA32 in Sections 3.1—3.12
Covers x86-64in 3.13

1"

University of Texas at Austi

Today: Machine Programming |: Basics

* History of Intel processors and architectures
* C, assembly, machine code

* Assembly Basics: Registers, operands, move

12

University of Texas at Austi

Definitions

* Architecture: (also instruction set architecture: ISA)
The parts of a processor design that one needs to
understand to write assembly code.

Examples: instruction set specification, registers.

* Microarchitecture: Implementation of the
architecture.

Examples: cache sizes and core frequency.

* Example ISAs (Intel): x86, IA, IPF

13

Assembly Programmer’s View

— CPU Memory
Addresses
Registers | Object Code
PC Dat
. atd | Program Data
Condition) Instructions O5\Data
Codes)

Stack

* Programmer-Visible State

PC: Program counter

* Address of next instruction
* Called “EIP” (IA32) or “RIP” (x86-64)

Register file

* Heavily used program data Memory

Condition codes * Byte addressable array

 Store status information about most * Code, user data, (some) OS data

recent arithmetic operation * Includes stack used to support

* Used for conditional branching procedures

14

University of Texas at Austi

Program to Process

- We write a program in e.g., C.
« A compiler turns that program into an instruction list.

- The CPU interprets the instruction list (which is more a graph of
basic blocks).

void X (int b) {
if(b == 1) {

int main() {
2;

int a
X(a);

15

Process in Memory

¢ What is in memory.

Program to process.

¢+ What you wrote main; a =2 Stack
X;b=2
void X (int b) { l
if(b == 1) { T
Heap

void X (int b) {

int main() { if(b == 1) {

2;

int a

X(a);
int main() {

int a = 2;
X(a);
} Code

+ What must the OS track for
a process?

16

A shell forks and execs a calculator

int padc=m&onK)]
ifiptdg== U) {
cdoserfitlifistory”);
exnct“gbtninpht/() ;

int pid = fork() ;s
if (pid == 0) {
close(“.history”) ;
exec (“/bin/calc”) ;

} else {
wait (pid) ;

} exee in(1ln);

wait (pid) ;

v | 7
l

05 pid = 128
open files = “.history” Process Control
last cpu=0 Blocks (PCBs)
pid = 128
open files =
last_cpu=0

A shell forks and then execs a

Calimaineder Stack Stack
0xFC0933ca Heap 0x43178050 Heap
int shell main() { int calc main() {
Code Code
USER 7y 7
OS5 Toid = 128
open files = “.history” Process Control
|ast_cpu =0 Blocks (PCBs)
pid = 128
open files =
last_cpu =0

18

Anatomy of a Process

Header mapped segment
Code DLL's
Process's Stack
Initialized data address space T
° o
° Heap
o
Initialized data
Executable File
Code

19

University of Texas at Austi

Turning C intfo Object Code

Code in files pl.c p2.c
Compile with command: gcec =01 pl.c p2.c -0 p

* Use basic optimizations (-01)
* Put resulting binary in file p

text C program (pl.c p2.c)

j Compiler (gcc -S)

text Asm program (pl.s p2.s)

Assembler (gcc or as)

binary Object program (pl.o p2.0) Static libraries
(.a)

Linker (gcc or 1d)

v

binary Executable program (p) 2

Compiling Into Assembly

C Code Generated I1A32 Assembly
int sum(int x, int y) sum:
{ pushl $%ebp
int t = x+ty; movl %esp, $ebp
return t; movl 12 (%ebp) , %$eax
} addl 8 (%ebp) , %eax
popl %ebp
//’ret

Some compilers use
instruction “leave”

Obtain with command
/usr/local/bin/gcc -0l -S code.c

Produces file code. s 21

University of Texas at Austi

Assembly Characteristics: Data Types

* “Integer” data of 1, 2, or 4 bytes
Data values

Addresses (untyped pointers)

* Floating point data of 4, 8, or 10 bytes

* No aggregate types such as arrays or structures

Just contiguously allocated bytes in memory

University of Texas at Austi

Assembly Characteristics: Operations

* Perform arithmetic function on register or memory data

* Transfer data between memory and register
Load data from memory into register

Store register data into memory

* Transfer control
Unconditional jumps to/from procedures

Conditional branches

23

Obiject Code

Code for sum * Assembler

Translates . s into .0
0x401040 <sum>:

0x55 Binary encoding of each instruction
0x89 Nearly-complete image of executable
Oxe5
0x8b code
0x45 Missing linkages between code in
0x0c different files
0x03
0x45 * Linker
gxgz e Total of 11 bytes Resolves references between files
X
0xc3 °* Each instruction Combines with static run-time libraries
1,2, or 3 bytes * E.g., code formalloc, printf
e Starts at address

0x401040 Some libraries are dynamically linked

* Linking occurs when program begins

execution
24

Disassembling Object Code

Disassembled

080483c4 <sum>:

80483c4: 55 push %ebp

80483c5: 89 e5 mov sesp, $ebp
80483c7: 8b 45 Oc mov Oxc (%ebp) , $eax
80483ca: 03 45 08 add 0x8 (%ebp) , $eax
80483cd: 5d pop %ebp

80483ce: c3 ret

* Disassembler
objdump -d p
Useful tool for examining object code
Analyzes bit pattern of series of instructions
Produces approximate rendition of assembly code
Can be run on either a.out (complete executable) or . o file

University of Texas at Austi

Alternate Disassembly

Disassembled

Object
0x401040:
0x55 Dump of assembler code for function sum:
0x89 0x080483c4 <sum+0>: push sebp
0xe5 0x080483c5 <sum+1l>: mov %esp, sebp
0x8b 0x080483c7 <sum+3>: mov Oxc (%ebp) , $eax
0x45 0x080483ca <sum+6>: add 0x8 (%ebp) , Seax
0x0c 0x080483cd <sum+9>: pop %ebp
0x03 0x080483ce <sum+1l0>: ret
0x45
0x08 * Within gdb Debugger
0x5d
db
0xc3 gob P
disassemble sum

Disassemble procedure
x/11xb sum

Examine the 11 bytes starting at sum
27

University of Texas at Austi

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text.:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov sesp, $ebp
30001003: 6a ff push SOXffffffff

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $S0x304cdc91l

* Anything that can be interpreted as executable code

* Disassembler examines bytes and reconstructs assembly

source N

University of Texas at Austi

Today: Machine Programming |: Basics

* History of Intel processors and architectures
* C, assembly, machine code

* Assembly Basics: Registers, operands, move

29

Integer Registers (IA32) origin

(mostly obsolete)

—
$eax %ax %ah 2al accumulate
$ecx $cx $ch Scl counter

2

o sedx $dx $dh $dl data

o L

©

o $ebx sbx $bh bl base

g,
O/ . source
oSl $si o den
o . o destination

L (o] edl odl index
o o stack
€SP e pointer

base
% $b
2 ebp P pointer
\)

16-bit virtdal registers
(backwards compatibility) 30

University of Texas at Austi

Simple Memory Addressing Modes

* Normal (R) Mem[Reg[R]]

Register R specifies memory address
movl (%ecx) ,%eax
* Displacement D(R) Mem[Reg[R]+D]

Register R specifies start of memory region

Constant displacement D specifies offset

movl 8 (%ebp) , $edx

33

University of Texas at Austi

Using Simple Addressing Modes

swap:
pushl %$ebp h
void swap (int *xp, int *yp) movl %esp,3%ebp . Set
{ int £0 = *xp; pushl %ebx J Up
int tl1 = *yp; A
*xp = t1; movl 8 (%ebp), %edx
*yp = t0; movl 12 (%ebp), %ecx
} movl Fedx) , %ebx > Body
movl secx), %eax
movl %eax, (%edx)
movl %ebx, (%ecx) y
popl %ebx
popl %ebp Finish

ret

34

Using Simple Addressing Modes

swap:
void swap (int *xp, int *yp)
{
int t0 = *xp;
int tl1 = *yp; A
*xp = t1; movl 8 (%ebp), %edx
*yp = tO0; movl 12 (%ebp), %Secx
} movl (%edx), %ebx > Body
movl (%ecx), %eax
movl %eax, (%edx)
movl %ebx, (%ecx) y

35

Understanding Swap

void swap (int *xp, int *yp) . Stack
{ [)
int t0 = *xp; Offset) (m memory)
int t1 = *yp;
*yp = t0; 8 Xp
}
4 Rtn adr

0 |0Old %ebpj[—— %ebp

-4 |0ld %ebx[+— %esp

Register Value

Fedx Xp

secx YP

o movl 8 (%ebp), %edx # edx = xp

%ebx t0

. movl 12 (%ebp), %ecx # ecx = yp

ceax tl movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

36

University of Texas at Austi

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
%eax 0x118
2 edx Offset 0x114
Secx YP 12 [0x120 | ox110
8 | 0x124
%ebx xP o 0x10c
4 Rtn adr 0x108
sesi 0
tebp — 0x104
$edi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
%ebp| 0x104 movl 12(%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %$ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

37

University of Texas at Austi

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
%eax 0x118
$edx| 0x124 Offset Ox114
Secx YP 12 | 0x120 | ox110
8 | 0x124
%ebx xP o 0x10c
4 Rtn adr 0x108
sesi 0
tebp — 0x104
$edi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
%ebp| 0x104 movl 12(%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %$ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

38

University of Texas at Austi

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
%eax 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 [0x120 | ox110
8 | 0x124
%ebx xP e 0x10c
4 Rtn adr 0x108
sesi 0
tebp — 0x104
$edi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
tebp| 0x104 movl 12(%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %$ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

39

University of Texas at Austi

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
%eax 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 [0x120 | ox110
2 ebx 123 Xp 8 0x124 0x10c
4 Rtn adr 0x108
sesi 0
tebp — 0x104
$edi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
%ebp| 0x104 movl 12(%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %$ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

40

University of Texas at Austi

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
%eax 456 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 [0x120 | ox110
2 ebx 123 Xp 8 0x124 0x10c
4 Rtn adr 0x108
sesi 0
tebp — 0x104
$edi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
%ebp| 0x104 movl 12(%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

41

University of Texas at Austi

Address
Understanding Swap 156 | ox124
456 0x120
Oxllc
%eax 456 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 [0x120 | ox110
2 ebx 123 Xp 8 0x124 0x10c
4 Rtn adr 0x108
sesi 0
tebp — 0x104
$edi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
%ebp| 0x104 movl 12(%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %$ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

42

University of Texas at Austi

Address
Understanding Swap 456 | ox124
123 0x120
Oxllc
%eax 456 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 [0x120 | ox110
2 ebx 123 Xp 8 0x124 0x10c
4 Rtn adr 0x108
sesi 0
tebp — 0x104
$edi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
%ebp| 0x104 movl 12(%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %$ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

43

University of Texas at Austi

Complete Memory Addressing Modes

* Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
D: Constant “displacement” 1, 2, or 4 bytes

Rb: Base register: Any of 8 integer registers

Ri: Index register: Any, except for sesp
* Unlikely you’d use $ebp, either

S: Scale: 1, 2, 4, or 8 (why these numbers?)

* Special Cases

(Rb,Ri) Mem[Reg[Rb]+ReglRi]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]] u

x86-64 Integer Registers

$rax %eax 3sr8 $r8d

$rbx $ebx $r9 $r9d

$rcx $ecx $rl0 $rl0d
Srdx $edx srll srlld
$rsi %esi $rl2 $rlad
Srdi $edi $rl3 srl3d
$rsp %esp $rld $rldd
srbp sebp $rl5 $rl15d

Extend existing registers. Add 8 new ones.

Make $ebp/%rbp general purpose

University of Texas at Austi

47

