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 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
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Fractional binary numbers

 What is 1011.1012?
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Fractional Binary Numbers

Representation
 Bits to right of “binary point” represent fractional powers 

of 2
 Represents rational number:

• • •
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Fractional Binary Numbers: Examples

 Value Representation
5 3/4 101.112

2 7/8 10.1112

1 7/16 1.01112

63/64 0.111112

 Observations
 Divide by 2 by shifting right
 Multiply by 2 by shifting left
 Numbers of form 0.111111…2 are just below 1.0
 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0
 Use notation 1.0 – ε
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Representable Numbers

 Limitation
 Can only exactly represent numbers of the form x/2k

 Other rational numbers have repeating bit 
representations

 Value Representation
 1/3 0.0101010101[01]…2

 1/5 0.001100110011[0011]…2

 1/10 0.0001100110011[0011]…2
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IEEE Floating Point

 IEEE Standard 754
 Established in 1985 as uniform standard for floating point 

arithmetic
 Before that, many idiosyncratic formats

 Supported by all major CPUs

 Driven by numerical concerns
 Nice standards for rounding, overflow, underflow
 Hard to make fast in hardware
 Numerical analysts predominated over hardware designers in 

defining standard
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Floating Point Representation
 Numerical Form: 

(–1)s M 2E

 Sign bit s determines whether number is negative or positive
 Significand M normally a fractional value in range 

[1.0,2.0).
 Exponent E weights value by power of two

 Encoding
 MSB s is sign bit s
 exp field encodes E (but is not equal to E)
 frac field encodes M (but is not equal to M)

s exp frac
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Precisions

 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits
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Normalized Values

 Condition: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as biased value: E =  Exp – Bias
 Exp: unsigned value exp
 Bias = 2k-1 - 1, where k is number of exponent bits

 Single precision: 127 (Exp: 1…254, E: -126…127)
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M =  1.xxx…x2
 xxx…x: bits of frac
 Minimum when 000…0 (M = 1.0)
 Maximum when 111…1 (M = 2.0 – ε)
 Get extra leading bit for “free”
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Normalized Encoding Example

 Value: Float F = 15213.0;
 1521310 = 111011011011012  

= 1.11011011011012 x 213

 Significand
M = 1.11011011011012
frac= 110110110110100000000002

 Exponent
E = 13
Bias = 127
Exp = 140 = 100011002

 Result:

0 10001100 11011011011010000000000 
s exp frac
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Denormalized Values

 Condition: exp = 000…0
 Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)
 Significand coded with implied leading 0: M = 0.xxx…x2

 xxx…x: bits of frac

 Cases
 exp = 000…0, frac = 000…0

 Represents zero value (why +0 and -0?)
 exp = 000…0, frac ≠ 000…0

 Numbers very close to 0.0
 Lose precision as get smaller
 Equispaced

 1.23 * 10-6 is normalized, 0.01*10-6 is denormalized
 All +/- of unequal norms have non-zero result (gradual underflow)
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Special Values

 Condition: exp = 111…1

 Case: exp = 111…1, frac = 000…0
 Represents value ∞ (infinity)
 Operation that overflows
 Both positive and negative
 E.g., 1.0/0.0 = −1.0/−0.0 = +∞,  1.0/−0.0 = −∞

 Case: exp = 111…1, frac ≠ 000…0
 Not-a-Number (NaN)
 Represents case when no numeric value can be determined
 E.g., sqrt(–1), ∞ − ∞, ∞ × 0
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Visualization: Floating Point Encodings

+∞−∞

−0

+Denorm +Normalized−Denorm−Normalized

+0
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Tiny Floating Point Example

 8-bit Floating Point Representation
 the sign bit is in the most significant bit
 the next four bits are the exponent, with a bias of 7
 the last three bits are the frac

 Same general form as IEEE Format
 normalized, denormalized
 representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits
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s exp  frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001  -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1    = 1
0 0111 001 0 9/8*1    = 9/8
0 0111 010 0 10/8*1   = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

Dynamic Range (Positive Only)

closest to zero

largest denorm

smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers
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-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values

 6-bit IEEE-like format
 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 23-1-1 = 3

 Notice how the distribution gets denser toward zero. 
8 values

s exp frac

1 3-bits 2-bits
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Distribution of Values (close-up view)

 6-bit IEEE-like format
 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity
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Interesting Numbers

Description exp frac Numeric Value

 Zero 00…00 00…00 0.0

 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}

 Single ≈ 1.4 x 10–45

 Double ≈ 4.9 x 10–324

 Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022}

 Single ≈ 1.18 x 10–38

 Double ≈ 2.2 x 10–308

 Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}

 Just larger than largest denormalized

 One 01…11 00…00 1.0

 Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023}

 Single ≈ 3.4 x 1038

 Double ≈ 1.8 x 10308

{single,double}
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Special Properties of Encoding

 FP Zero Same as Integer Zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits
 Must consider −0 = 0
 NaNs problematic
 Will be greater than any other values
 What should comparison yield?

 Otherwise OK
 Denorm vs. normalized
 Normalized vs. infinity



23

University of Texas at Austin

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary



24

University of Texas at Austin

Floating Point Operations: Basic Idea

 x +f y = Round(x + y)

 x ×f y = Round(x × y)

 Basic idea
 First compute exact result
 Make it fit into desired precision
 Possibly overflow if exponent too large
 Possibly round to fit into frac
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Rounding

 Rounding Modes (illustrate with $ rounding)

 $1.40 $1.60 $1.50 $2.50 –$1.50
 Towards zero $1 $1 $1 $2 –$1
 Round down (−∞) $1 $1 $1 $2 –$2
 Round up (+∞) $2 $2 $2 $3 –$1
 Nearest Even (default)$1 $2 $2 $2 –$2

 What are the advantages of the modes?
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Closer Look at Round-To-Even
 Default Rounding Mode
 Hard to get any other kind without dropping into assembly
 All others are statistically biased
 Sum of set of positive numbers will consistently be over- or under-

estimated

 Applying to Other Decimal Places / Bit Positions
 When exactly halfway between two possible values
 Round so that least significant digit is even

 E.g., round to nearest hundredth
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)
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Rounding Binary Numbers

 Binary Fractional Numbers
 “Even” when least significant bit is 0
 “Half way” when bits to right of rounding position = 100…2

 Examples
 Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action        Rounded Value
2 3/32 10.000112 10.002 (<1/2—down) 2
2 3/16 10.001102 10.012 (>1/2—up) 2 1/4
2 7/8 10.111002 11.002 (  1/2—up) 3
2 5/8 10.101002 10.102 (  1/2—down) 2 1/2
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FP Multiplication

 (–1)s1 M1 2E1 x   (–1)s2 M2 2E2

 Exact Result: (–1)s M 2E

 Sign s: s1 ^ s2
 Significand M: M1 x M2
 Exponent E: E1 + E2

 Fixing
 If M ≥ 2, shift M right, increment E
 If E out of range, overflow 
 Round M to fit frac precision

 Implementation
 Biggest chore is multiplying significands
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Mathematical Properties of FP Add

 Compare to those of Abelian Group
 Closed under addition?
 But may generate infinity or NaN

 Commutative?
 Associative?
 Overflow and inexactness of rounding

 0 is additive identity?
 Every element has additive inverse
 Except for infinities & NaNs

 Monotonicity
 a ≥ b ⇒ a+c ≥ b+c?
 Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost
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Mathematical Properties of FP Mult

 Compare to Commutative Ring
 Closed under multiplication?
 But may generate infinity or NaN

 Multiplication Commutative?
 Multiplication is Associative?
 Possibility of overflow, inexactness of rounding

 1 is multiplicative identity?
 Multiplication distributes over addition?
 Possibility of overflow, inexactness of rounding

 Monotonicity
 a ≥ b & c ≥ 0  ⇒ a * c ≥ b *c?
 Except for infinities & NaNs

Yes

Yes
No

Yes
No

Almost
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Floating Point in C

 C Guarantees Two Levels
float single precision
double double precision

 Conversions/Casting
Casting between int, float, and double changes bit representation
 double/float→ int
 Truncates fractional part
 Like rounding toward zero
 Not defined when out of range or NaN: Generally sets to TMin

 int→ double
 Exact conversion, as long as int has ≤ 53 bit word size

 int→ float
 Will round according to rounding mode
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Floating Point Puzzles

 For each of the following C expressions, either:
 Argue that it is true for all argument values
 Explain why not true

• x == (int)(float) x
• x == (int)(double) x
• f == (float)(double) f
• d == (float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 ⇒ ((d*2) < 0.0)
• d > f ⇒ -f > -d
• d * d >= 0.0
• (d+f)-d == f

int x = …;
float f = …;
double d = …;

Assume neither
d nor f is NaN
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Summary

 IEEE Floating Point has clear mathematical  
properties

 Represents numbers of form M x 2E

 One can reason about operations independent of 
implementation
 As if computed with perfect precision and then rounded

 Not the same as real arithmetic
 Violates associativity/distributivity
 Makes life difficult for compilers & serious numerical 

applications programmers
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