
FLOATING POINT

COMPUTER ARCHITECTURE AND
ORGANIZATION

2

University of Texas at Austin

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

3

University of Texas at Austin

Fractional binary numbers

 What is 1011.1012?

4

University of Texas at Austin

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

Representation
 Bits to right of “binary point” represent fractional powers

of 2
 Represents rational number:

• • •

5

University of Texas at Austin

Fractional Binary Numbers: Examples

 Value Representation
5 3/4 101.112

2 7/8 10.1112

1 7/16 1.01112

63/64 0.111112

 Observations
 Divide by 2 by shifting right
 Multiply by 2 by shifting left
 Numbers of form 0.111111…2 are just below 1.0
 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0
 Use notation 1.0 – ε

6

University of Texas at Austin

Representable Numbers

 Limitation
 Can only exactly represent numbers of the form x/2k

 Other rational numbers have repeating bit
representations

 Value Representation
 1/3 0.0101010101[01]…2

 1/5 0.001100110011[0011]…2

 1/10 0.0001100110011[0011]…2

7

University of Texas at Austin

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

8

University of Texas at Austin

IEEE Floating Point

 IEEE Standard 754
 Established in 1985 as uniform standard for floating point

arithmetic
 Before that, many idiosyncratic formats

 Supported by all major CPUs

 Driven by numerical concerns
 Nice standards for rounding, overflow, underflow
 Hard to make fast in hardware
 Numerical analysts predominated over hardware designers in

defining standard

9

University of Texas at Austin

Floating Point Representation
 Numerical Form:

(–1)s M 2E

 Sign bit s determines whether number is negative or positive
 Significand M normally a fractional value in range

[1.0,2.0).
 Exponent E weights value by power of two

 Encoding
 MSB s is sign bit s
 exp field encodes E (but is not equal to E)
 frac field encodes M (but is not equal to M)

s exp frac

10

University of Texas at Austin

Precisions

 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits

11

University of Texas at Austin

Normalized Values

 Condition: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as biased value: E = Exp – Bias
 Exp: unsigned value exp
 Bias = 2k-1 - 1, where k is number of exponent bits

 Single precision: 127 (Exp: 1…254, E: -126…127)
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M = 1.xxx…x2
 xxx…x: bits of frac
 Minimum when 000…0 (M = 1.0)
 Maximum when 111…1 (M = 2.0 – ε)
 Get extra leading bit for “free”

12

University of Texas at Austin

Normalized Encoding Example

 Value: Float F = 15213.0;
 1521310 = 111011011011012

= 1.11011011011012 x 213

 Significand
M = 1.11011011011012
frac= 110110110110100000000002

 Exponent
E = 13
Bias = 127
Exp = 140 = 100011002

 Result:

0 10001100 11011011011010000000000
s exp frac

13

University of Texas at Austin

Denormalized Values

 Condition: exp = 000…0
 Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)
 Significand coded with implied leading 0: M = 0.xxx…x2

 xxx…x: bits of frac

 Cases
 exp = 000…0, frac = 000…0

 Represents zero value (why +0 and -0?)
 exp = 000…0, frac ≠ 000…0

 Numbers very close to 0.0
 Lose precision as get smaller
 Equispaced

 1.23 * 10-6 is normalized, 0.01*10-6 is denormalized
 All +/- of unequal norms have non-zero result (gradual underflow)

14

University of Texas at Austin

Special Values

 Condition: exp = 111…1

 Case: exp = 111…1, frac = 000…0
 Represents value ∞ (infinity)
 Operation that overflows
 Both positive and negative
 E.g., 1.0/0.0 = −1.0/−0.0 = +∞, 1.0/−0.0 = −∞

 Case: exp = 111…1, frac ≠ 000…0
 Not-a-Number (NaN)
 Represents case when no numeric value can be determined
 E.g., sqrt(–1), ∞ − ∞, ∞ × 0

15

University of Texas at Austin

Visualization: Floating Point Encodings

+∞−∞

−0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

16

University of Texas at Austin

Today: Floating Point

Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties
Rounding, addition, multiplication
Floating point in C
Summary

17

University of Texas at Austin

Tiny Floating Point Example

 8-bit Floating Point Representation
 the sign bit is in the most significant bit
 the next four bits are the exponent, with a bias of 7
 the last three bits are the frac

 Same general form as IEEE Format
 normalized, denormalized
 representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits

18

University of Texas at Austin

s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

Dynamic Range (Positive Only)

closest to zero

largest denorm

smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

19

University of Texas at Austin

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values

 6-bit IEEE-like format
 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 23-1-1 = 3

 Notice how the distribution gets denser toward zero.
8 values

s exp frac

1 3-bits 2-bits

20

University of Texas at Austin

Distribution of Values (close-up view)

 6-bit IEEE-like format
 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity

21

University of Texas at Austin

Interesting Numbers

Description exp frac Numeric Value

 Zero 00…00 00…00 0.0

 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}

 Single ≈ 1.4 x 10–45

 Double ≈ 4.9 x 10–324

 Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022}

 Single ≈ 1.18 x 10–38

 Double ≈ 2.2 x 10–308

 Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}

 Just larger than largest denormalized

 One 01…11 00…00 1.0

 Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023}

 Single ≈ 3.4 x 1038

 Double ≈ 1.8 x 10308

{single,double}

22

University of Texas at Austin

Special Properties of Encoding

 FP Zero Same as Integer Zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits
 Must consider −0 = 0
 NaNs problematic
 Will be greater than any other values
 What should comparison yield?

 Otherwise OK
 Denorm vs. normalized
 Normalized vs. infinity

23

University of Texas at Austin

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

24

University of Texas at Austin

Floating Point Operations: Basic Idea

 x +f y = Round(x + y)

 x ×f y = Round(x × y)

 Basic idea
 First compute exact result
 Make it fit into desired precision
 Possibly overflow if exponent too large
 Possibly round to fit into frac

25

University of Texas at Austin

Rounding

 Rounding Modes (illustrate with $ rounding)

 $1.40 $1.60 $1.50 $2.50 –$1.50
 Towards zero $1 $1 $1 $2 –$1
 Round down (−∞) $1 $1 $1 $2 –$2
 Round up (+∞) $2 $2 $2 $3 –$1
 Nearest Even (default)$1 $2 $2 $2 –$2

 What are the advantages of the modes?

26

University of Texas at Austin

Closer Look at Round-To-Even
 Default Rounding Mode
 Hard to get any other kind without dropping into assembly
 All others are statistically biased
 Sum of set of positive numbers will consistently be over- or under-

estimated

 Applying to Other Decimal Places / Bit Positions
 When exactly halfway between two possible values
 Round so that least significant digit is even

 E.g., round to nearest hundredth
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)

27

University of Texas at Austin

Rounding Binary Numbers

 Binary Fractional Numbers
 “Even” when least significant bit is 0
 “Half way” when bits to right of rounding position = 100…2

 Examples
 Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
2 3/32 10.000112 10.002 (<1/2—down) 2
2 3/16 10.001102 10.012 (>1/2—up) 2 1/4
2 7/8 10.111002 11.002 (1/2—up) 3
2 5/8 10.101002 10.102 (1/2—down) 2 1/2

28

University of Texas at Austin

FP Multiplication

 (–1)s1 M1 2E1 x (–1)s2 M2 2E2

 Exact Result: (–1)s M 2E

 Sign s: s1 ^ s2
 Significand M: M1 x M2
 Exponent E: E1 + E2

 Fixing
 If M ≥ 2, shift M right, increment E
 If E out of range, overflow
 Round M to fit frac precision

 Implementation
 Biggest chore is multiplying significands

30

University of Texas at Austin

Mathematical Properties of FP Add

 Compare to those of Abelian Group
 Closed under addition?
 But may generate infinity or NaN

 Commutative?
 Associative?
 Overflow and inexactness of rounding

 0 is additive identity?
 Every element has additive inverse
 Except for infinities & NaNs

 Monotonicity
 a ≥ b ⇒ a+c ≥ b+c?
 Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost

31

University of Texas at Austin

Mathematical Properties of FP Mult

 Compare to Commutative Ring
 Closed under multiplication?
 But may generate infinity or NaN

 Multiplication Commutative?
 Multiplication is Associative?
 Possibility of overflow, inexactness of rounding

 1 is multiplicative identity?
 Multiplication distributes over addition?
 Possibility of overflow, inexactness of rounding

 Monotonicity
 a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c?
 Except for infinities & NaNs

Yes

Yes
No

Yes
No

Almost

32

University of Texas at Austin

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

33

University of Texas at Austin

Floating Point in C

 C Guarantees Two Levels
float single precision
double double precision

 Conversions/Casting
Casting between int, float, and double changes bit representation
 double/float→ int
 Truncates fractional part
 Like rounding toward zero
 Not defined when out of range or NaN: Generally sets to TMin

 int→ double
 Exact conversion, as long as int has ≤ 53 bit word size

 int→ float
 Will round according to rounding mode

34

University of Texas at Austin
Carnegie Mellon

Floating Point Puzzles

 For each of the following C expressions, either:
 Argue that it is true for all argument values
 Explain why not true

• x == (int)(float) x
• x == (int)(double) x
• f == (float)(double) f
• d == (float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 ⇒ ((d*2) < 0.0)
• d > f ⇒ -f > -d
• d * d >= 0.0
• (d+f)-d == f

int x = …;
float f = …;
double d = …;

Assume neither
d nor f is NaN

35

University of Texas at Austin

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

36

University of Texas at Austin

Summary

 IEEE Floating Point has clear mathematical
properties

 Represents numbers of form M x 2E

 One can reason about operations independent of
implementation
 As if computed with perfect precision and then rounded

 Not the same as real arithmetic
 Violates associativity/distributivity
 Makes life difficult for compilers & serious numerical

applications programmers

	Floating Point��Computer architecture and ORganization
	Today: Floating Point
	Fractional binary numbers
	Fractional Binary Numbers
	Fractional Binary Numbers: Examples
	Representable Numbers
	Today: Floating Point
	IEEE Floating Point
	Floating Point Representation
	Precisions
	Normalized Values
	Normalized Encoding Example
	Denormalized Values
	Special Values
	Visualization: Floating Point Encodings
	Today: Floating Point
	Tiny Floating Point Example
	Dynamic Range (Positive Only)
	Distribution of Values
	Distribution of Values (close-up view)
	Interesting Numbers
	Special Properties of Encoding
	Today: Floating Point
	Floating Point Operations: Basic Idea
	Rounding
	Closer Look at Round-To-Even
	Rounding Binary Numbers
	FP Multiplication
	Mathematical Properties of FP Add
	Mathematical Properties of FP Mult
	Today: Floating Point
	Floating Point in C
	Floating Point Puzzles
	Today: Floating Point
	Summary

