
Performance Analysis

Topics

 Measuring performance of systems

 Reasoning about performance

 Amdahl’s law

Systems I

2

Evaluation Tools

Benchmarks, traces, & mixes

 macrobenchmarks & suites

 application execution time

 microbenchmarks

 measure one aspect of

performance

 traces

 replay recorded accesses

» cache, branch, register

Simulation at many levels

 ISA, cycle accurate, RTL, gate, circuit

 trade fidelity for simulation rate

Area and delay estimation

Analysis

 instructions, throughput, Amdahl’s law

 e.g., queuing theory

MOVE 39%

BR 20%

LOAD 20%

STORE 10%

ALU 11%

LD 5EA3

ST 31FF

….

LD 1EA2

….

3

Metrics of Evaluation

Level of design  performance metric

Examples

 Applications perspective

 Time to run task (Response Time)

 Tasks run per second (Throughput)

 Systems perspective

 Millions of instructions per second (MIPS)

 Millions of FP operations per second (MFLOPS)

 Bus/network bandwidth: megabytes per second

 Function Units: cycles per instruction (CPI)

 Fundamental elements (transistors, wires, pins): clock rate

4

Basis of Evaluation

Actual Target Workload

Full Application Benchmarks

Small “Kernel”

Benchmarks

Microbenchmarks

Pros Cons

• representative
• very specific

• non-portable

• difficult to run, or

 measure

• hard to identify cause
• portable

• widely used

• improvements

useful in reality

• easy to run, early in

design cycle

• identify peak

capability and

potential bottlenecks

•less representative

• easy to “fool”

• “peak” may be a long

way from application

performance

Slide courtesy of D. Patterson

5

Some Warnings about Benchmarks

Benchmarks measure the whole
system

 application

 compiler

 operating system

 architecture

 implementation

Popular benchmarks typically
reflect yesterday’s programs

 what about the programs

people are running today?

 need to design for

tomorrow’s problems

Benchmark timings are
sensitive

 alignment in cache

 location of data on disk

 values of data

Danger of inbreeding or
positive feedback

 if you make an operation

fast (slow) it will be used

more (less) often

 therefore you make it faster

(slower)

» and so on, and so on…

 the optimized NOP

6

Know what you are measuring!

Compare apples to apples

Example

 Wall clock execution time:

 User CPU time

 System CPU time

 Idle time (multitasking, I/O)

csh> time latex lecture2.tex

csh> 0.68u 0.05s 0:01.60 45.6%

% CPU time

elapsed

system

user

7

Two notions of “performance”

° Time to do the task (Execution Time)

 – execution time, response time, latency

° Tasks per day, hour, week, sec, ns. .. (Performance)

 – throughput, bandwidth

 Response time and throughput often are in opposition

Plane

Boeing 747

Concorde

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

Which has higher performance?

Slide courtesy of D. Patterson

8

Brief History of Benchmarking

Early days (1960s)

 Single instruction execution time

 Average instruction time [Gibson

1970]

 Pure MIPS (1/AIT)

Simple programs(early 70s)

 Synthetic benchmarks

(Whetstone, etc.)

 Kernels (Livermore Loops)

Relative Performance (late 70s)

 VAX 11/780  1-MIPS

 but was it?

 MFLOPs

“Real” Applications (late 80s-
now)

 SPEC

 Desktop

 Scientific

 Java

 Media

 Parallel

 etc.

 TPC

 Transaction Processing

 Graphics

 3D-Mark

 Real games (Assassin’s

Creed, Call of Duty, Flight

Simulator, etc.)

9

SPEC: Standard Performance Evaluation
Corporation (www.spec.org)

System Performance and Evaluation Cooperative

 HP, DEC, Mips, Sun

 Portable O/S and high level languages

Spec89  Spec92  Spec95  Spec2000  SPEC2006....

Categories

 CPU (most popular)

 JVM, JBB

 SpecWeb - web server performance

 SFS - file server performance

Benchmarks change with the times and technology

 Elimination of Matrix 300

 Compiler restrictions

10

How to Compromise a Benchmark

0

100

200

300

400

500

600

700

800

gcc spice nasa7 matrix300 fpppp

S
p

e
c
8
9
 P

e
rf

o
rm

a
n

c
e
 R

a
ti

o

compiled

enhanced

11

The compiler reorganized the code!

Change the memory system performance

 Matrix multiply cache blocking

 You will see this later in “performance

programming”

Before

After

12

Spec2006 Suite
12 Integer benchmarks (C/C++)

 compression

 C compiler

 Perl interpreter

 Database

 Chess

 Bioinformatics

17 FP applications (Fortran/C)

 Shallow water model

 3D graphics

 Quantum chromodynamics

 Computer vision

 Speech recognition

Characteristics

 Computationally

intensive

 Little I/O

 Relatively small code

size

 Variable data set sizes

13

Improving Performance:
Fundamentals
Suppose we have a machine with two instructions

 Instruction A executes in 100 cycles

 Instruction B executes in 2 cycles

We want better performance….

 Which instruction do we improve?

14

CPU Performance Equation

3 components to execution time:

Factors affecting CPU execution time:

Cycle

Seconds

nInstructio

Cycles

Program

nsInstructio

Program

Seconds
 timeCPU 

Inst. Count CPI Clock Rate

Program X

Compiler X (X)

Inst. Set X X (X)

Organization X X

MicroArch X X

Technology X

• Consider all three elements when optimizing

• Workloads change!

15

Cycles Per Instruction (CPI)

Depends on the instruction

Average cycles per instruction

Example:

RateClock n instructio of timeExecution  iCPI i





n

i tot

i
iii

IC

IC
FFCPICPI

1

 where

Op Freq Cycles CPI(i) %time

ALU 50% 1 0.5 33%

Load 20% 2 0.4 27%

Store 10% 2 0.2 13%

Branch 20% 2 0.4 27%

CPI(total) 1.5

16

Amdahl’s Law

How much performance could you get if you could speed up some part
of your program?

Performance improvements depend on:

 how good is enhancement

 how often is it used

Speedup due to enhancement E (fraction p sped up by factor S):

E w/out Perf

E w/ Perf

E w/ ExTime

E w/out ExTime
 Speedup(E) 

  









S

p
pExTimeExTime oldnew 1

 
S

p
p

ExTime

ExTime
ESpeedup

new

old





1

1
)(

17

Amdahl’s Law: Example

FP instructions improved by 2x

But….only 10% of instructions are FP

Speedup bounded by

oldoldnew ExTimeExTimeExTime 







 95.0

2

1.0
9.0

053.1
95.0

1
totalSpeedup

enhancednot timeoffraction

1

18

Amdahl’s Law: Example 2

• Parallelize (vectorize) some portion of your program
• Make it 100x faster?

• How much faster does the whole program get?











S

p
pTT)1(01

Speedup vs. Vector Fraction

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of code vectorizable

S
p

e
e
d

u
p

19

Amdahl’s Law: Summary message

Make the Common Case fast

Examples:
 All instructions require instruction fetch, only fraction

require data

 optimize instruction access first

– Data locality (spatial, temporal), small memories faster

storage hierarchy: most frequent accesses to small, local

memory

20

Is Speed the Last Word in
Performance?

Depends on the application!

Cost

 Not just processor, but other components (ie. memory)

Power consumption

 Trade power for performance in many applications

Capacity

 Many database applications are I/O bound and disk bandwidth is

the precious commodity

Throughput (a form of speed)

 An individual program isn’t faster, but many more programs can be

completed per unit time

 Example: Google search (processes many, many searches

simultaneously)

21

Summary

Today

 Performance analysis overview

 Amdahl’s law

Next Time

 Making the processor faster: pipelining

