
Maximum Benefit from a
Minimal HTM

Owen Hofmann, Chris Rossbach, and Emmett Witchel

The University of Texas at Austin

Concurrency is here
Core count ever increasing
Parallel programming is
difficult
◦ Synchronization perilous
◦ Performance/complexity

Many ideas for simpler
parallelism
◦ TM, Galois, MapReduce

2 core

16 core

80 core

http://en.wikipedia.org/wiki/Image:Athlon64x2-6400plus.jpg

Transactional memory
Better performance from simple code
◦ Change performance/complexity tradeoff

Replace locking with memory transactions
◦ Optimistically execute in parallel
◦ Track read/write sets, roll back on conflict
◦ WA∩(RB WB) !=
◦ Commit successful changes

TM ain't easy
TM must be fast
◦ Lose benefits of concurrency

TM must be unbounded
◦ Keeping within size not easy programming model

TM must be realizable
◦ Implementing TM an important first step

TM ain't easy

Version and detect conflicts with existing structures
◦ Cache coherence, store buffer

Fast Realizable Unbounded

Best-effort
HTM ✔

TM ain't easy

Version and detect conflicts with existing structures
◦ Cache coherence, store buffer

Simple modifications to processor
◦ Very realizable (stay tuned for Sun Rock)

Fast Realizable Unbounded

Best-effort
HTM ✔ ✔

TM ain't easy

Version and detect conflicts with existing structures
◦ Cache coherence, store buffer

Simple modifications to processor
◦ Very realizable (stay tuned for Sun Rock)

Resource-limited
◦ Cache size/associativity, store buffer size

Fast Realizable Unbounded

Best-effort
HTM ✔ ✔ ✖

TM ain't easy

Software endlessly flexible
◦ Transaction size limited only by virtual memory

Slow
◦ Instrument most memory references

Fast Realizable Unbounded

Best-effort
HTM ✔ ✔ ✖

STM
✖

✔ ✔

TM ain't easy

Versioning unbounded data in hardware is difficult
◦ Unlikely to be implemented

Fast Realizable Unbounded

Best-effort
HTM ✔ ✔ ✖

STM
✖

✔ ✔

Unbounded
HTM ✔ ✖ ✔

TM ain't easy

Tight marriage of hardware and software
◦ Disadvantages of both?

Fast Realizable Unbounded

Best-effort
HTM ✔ ✔ ✖

STM
✖

✔ ✔

Unbounded
HTM ✔ ✖ ✔

Hybrid TM ~ ~ ✔

Fast Realizable Unbounded

Best-effort
HTM ✔ ✔ ✖

Back to basics

Cache-based HTM
◦ Speculative updates in L1
◦ Augment cache line with transactional state
◦ Detect conflicts via cache coherence

Operations outside transactions can conflict
◦ Asymmetric conflict
◦ Detected and handled in strong isolation

Fast Realizable Unbounded

Best-effort
HTM ✔ ✔ ✖

Back to basics

Transactions bounded by cache
◦ Overflow because of size or associativity
◦ Restart, return reason

Not all operations supported
◦ Transactions cannot perform I/O

Fast Realizable Unbounded

Best-effort
HTM ✔ ✔ ✖

Back to basics

Transactions bounded by cache
◦ Software finds another way

Not all operations supported
◦ Software finds another way

Fast Realizable Unbounded

Best-effort
HTM ✔ ✔ ✔

Maximum benefit

Creative software and ISA makes best-effort
unbounded

TxLinux
◦ Better performance from simpler synchronization

Transaction ordering
◦ Make best-effort unbounded

Linux: HTM proving ground
Large, complex application(s)
◦ With different synchronization

Jan. 2001: Linux 2.4
◦ 5 types of synchronization
◦ ~8,000 dynamic spinlocks
◦ Heavy use of Big Kernel Lock

Dec. 2003: Linux 2.6
◦ 8 types of synchronization
◦ ~640,000 dynamic spinlocks
◦ Restricted Big Kernel Lock use

Linux: HTM proving ground
Large, complex application
◦ With evolutionary snapshots

Linux 2.4
◦ Simple, coarse synchronization

Linux 2.6
◦ Complex, fine-grained synchronization

Linux: HTM proving ground

Modified Andrew Benchmark

Linux: HTM proving ground

Modified Andrew Benchmark

HTM can help 2.4
Software must back up
hardware
◦ Use locks

Cooperative transactional
primitives
◦ Replace locking function
◦ Execute speculatively,

concurrently in HTM
◦ Tolerate overflow, I/O
◦ Restart, (fairly) use locking if

necessary

acquire_lock(lock)

release_lock(lock)

HTM can help 2.4
Software must back up
hardware
◦ Use locks

Cooperative transactional
primitives
◦ Replace locking function
◦ Execute speculatively,

concurrently in HTM
◦ Tolerate overflow, I/O
◦ Restart, (fairly) use locking if

necessary

cx_begin(lock)

cx_end(lock)

HTM can help 2.4
Software must back up
hardware
◦ Use locks

Cooperative transactional
primitives
◦ Replace locking function
◦ Execute speculatively,

concurrently in HTM
◦ Tolerate overflow, I/O
◦ Restart, (fairly) use locking if

necessary

cx_begin(lock)

cx_end(lock)

TX A

TX B

HTM can help 2.4
Software must back up
hardware
◦ Use locks

Cooperative transactional
primitives
◦ Replace locking function
◦ Execute speculatively,

concurrently in HTM
◦ Tolerate overflow, I/O
◦ Restart, (fairly) use locking if

necessary

cx_begin(lock)

cx_end(lock)

TX A

do_IO() TX B

HTM can help 2.4
Software must back up
hardware
◦ Use locks

Cooperative transactional
primitives
◦ Replace locking function
◦ Execute speculatively,

concurrently in HTM
◦ Tolerate overflow, I/O
◦ Restart, (fairly) use locking if

necessary

cx_begin(lock)

cx_end(lock)

TX A

Locking B

HTM can help 2.4
Software must back up
hardware
◦ Use locks

Cooperative transactional
primitives
◦ Replace locking function
◦ Execute speculatively,

concurrently in HTM
◦ Tolerate overflow, I/O
◦ Restart, (fairly) use locking if

necessary

cx_begin(lock)

cx_end(lock)

TX A

Locking B

Adding HTM
Spinlocks: good fit for best-effort transactions
◦ Short, performance-critical synchronization
◦ cxspinlocks (SOSP '07)

2.4 needs cooperative transactional mutexes
◦ Must support blocking
◦ Complicated interactions with BKL
◦ cxmutex
◦ Must modify wakeup behavior

Adding HTM, cont.
Reorganize data structures
◦ Linked lists
◦ Shared counters
◦ ~120 lines of code

Atomic lock acquire
◦ Record locks
◦ Acquire in transaction
◦ Commit changes

Linux 2.4 TxLinux 2.4
◦ Change synchronization, not use

cx_begin(lock)

cx_end(lock)

stat++ TX B

Adding HTM, cont.
Reorganize data structures
◦ Linked lists
◦ Shared counters
◦ ~120 lines of code

Atomic lock acquire
◦ Record locks
◦ Acquire in transaction
◦ Commit changes

Linux 2.4 TxLinux 2.4
◦ Change synchronization, not use

cx_begin(lock)

cx_end(lock)

stat[CPU]++ TX B

Adding HTM, cont.
Reorganize data structures
◦ Linked lists
◦ Shared counters
◦ ~120 lines of code

Atomic lock acquire
◦ Record locks
◦ Acquire in transaction
◦ Commit changes

Linux 2.4 TxLinux 2.4
◦ Change synchronization, not use

cx_begin(lock)

do_IO()

cx_end(lock)

TX B

Adding HTM, cont.
Reorganize data structures
◦ Linked lists
◦ Shared counters
◦ ~120 lines of code

Atomic lock acquire
◦ Record locks
◦ Acquire in transaction
◦ Commit changes

Linux 2.4 TxLinux 2.4
◦ Change synchronization, not use

cx_begin(lock)

do_IO()

cx_end(lock)

acquire_locks() TX B

Adding HTM, cont.
Reorganize data structures
◦ Linked lists
◦ Shared counters
◦ ~120 lines of code

Atomic lock acquire
◦ Record locks
◦ Acquire in transaction
◦ Commit changes

Linux 2.4 TxLinux 2.4
◦ Change synchronization, not use

cx_begin(lock)

do_IO()

cx_end(lock)

do_IO() Locking B

Evaluating TxLinux
MAB

Modified Andrew Benchmark

dpunish
Stress dcache synchronization

find
Parallel find + grep

config
Parallel software package configure

pmake
Parallel make

Evaluation: MAB

2.4 wastes 63% kernel time synchronizing

Evaluation: dpunish

2.4 wastes 57% kernel time synchronizing

Evaluation: config

2.4 wastes 30% kernel time synchronizing

From kernel to user
Best-effort HTM means simpler locking code
◦ Good programming model for kernel
◦ Fall back on locking when necessary
◦ Still permits concurrency

HTM promises transactions
◦ Good model for user
◦ Need software synchronization fallback
◦ Don’t want to expose to user
◦ Want concurrency

Software, save me!
HTM falls back on software transactions
◦ Global lock
◦ STM

Concurrency
◦ Conflict detection
◦ HTM workset in cache
◦ STM workset in memory
◦ Global lock – no workset

Communicate between disjoint SW and HW
◦ No shared data structures

Hardware, save me!
HTM has strong isolation
◦ Detect conflicts with software
◦ Restart hardware transaction
◦ Only if hardware already has value in read/write set

Transaction ordering
◦ Commit protocol for hardware
◦ Wait for concurrent software TX
◦ Resolve inconsistencies
◦ Hardware/OS contains bad side effects

Transaction ordering
char* r int idx

Transaction ordering

Transaction A

begin_transaction()

r[idx] = 0xFF

end_transaction()

Transaction B

begin_transaction()

r = new_array

idx = new_idx

end_transaction()

Invariant: idx is valid for r

char* r int idx

Transaction ordering

Transaction A

begin_transaction()

r[idx] = 0xFF

end_transaction()

Transaction B

begin_transaction()

r = new_array

idx = new_idx

end_transaction()

Invariant: idx is valid for r
Inconsistent read causes bad data write

char* r int idx

Transaction ordering

A(HW)

B(HW)

read:
write:

read:
write:

r = old_array

idx = old_idxtime

r=new_array idx=new_idx

r[idx] = 0xFF

Transaction ordering

A(HW)

B(HW)

read:
write: r

read:
write:

r = new_array

idx = old_idxtime

r[idx] = 0xFF

r=new_array idx=new_idx

r[idx] = 0xFF

time

Transaction ordering

A(HW)

B(HW)

read:
write: r

read: r
write:

r = new_array

idx = old_idx

r=new_array idx=new_idx

Conflict!

r[idx] = 0xFF

time

Transaction ordering

A(HW)

B(HW)

read:
write: r

read:
write:

r = new_array

idx = old_idx

r=new_array idx=new_idx

Restart

Transaction ordering

A(HW)

B(HW)

read:
write:

read:
write:

r = old_array

idx = old_idxtime

r=new_array idx=new_idx

r[idx] = 0xFF

r=new_array idx=new_idx

Transaction ordering

A(SW)

B(HW)
read:
write:

idx = old_idx

r = old_array

time

r[idx] = 0xFF

r=new_array idx=new_idx

Transaction ordering

A(SW)

B(HW)
read:
write:

idx = old_idx

r = new_array

time

r[idx] = 0xFF

r=new_array idx=new_idx

r[idx] = 0xFF

time

Transaction ordering

A(SW)

B(HW)
read: r
write:

idx = old_idx

r = new_array
Conflict not

detected

Transaction ordering

new_array[old_idx] = 0xFF

A(SW)

B(HW)
read: r, idx
write: r[idx]

idx = old_idx

r = new_array

time

r=new_array idx=new_idx

r[idx] = 0xFF

Transaction ordering

new_array[old_idx] = 0xFF

A(SW)

B(HW)
read: r, idx
write: r[idx]

idx = old_idx

r = new_array

time

r=new_array idx=new_idx

r[idx] = 0xFFOh, no!

time

Transaction ordering

Hardware contains effects of B
◦ Unless B commits

A(SW)

B(HW)
read: r, idx
write: r[idx]

idx = old_idx

r = new_array

r=new_array idx=new_idx

r[idx] = 0xFF

time

Transaction ordering

A(SW)

B(HW)
read: r, idx
write: r[idx]

idx = old_idx

r = new_array

r=new_array idx=new_idx

r[idx] = 0xFF

Hardware contains effects of B
◦ Unless B commits

time

Transaction ordering

A(SW)

B(HW)
read: r, idx
write: r[idx]

r = new_array

r=new_array idx=new_idx

r[idx] = 0xFF

Hardware contains effects of B
◦ Unless B commits

idx = new_idx

time

Transaction ordering

A(SW)

B(HW)
read: r, idx
write: r[idx]

r = new_array

r=new_array idx=new_idx

r[idx] = 0xFF

Hardware contains effects of B
◦ Unless B commits

idx = new_idx

Asymmetric
conflict!

time

Transaction ordering

A(SW)

B(HW)
read: a, idx
write: a[idx]

r = new_array

r=new_array idx=new_idx

r[idx] = 0xFF Restart

Hardware contains effects of B
◦ Unless B commits

idx = new_idx

Software + hardware mechanisms

Commit protocol
◦ Hardware commit waits for any current software TX
◦ Implemented as sequence lock

Operating system
◦ Inconsistent data can cause spurious fault
◦ Resolve faults by TX restart

Hardware
◦ Even inconsistent TX must commit correctly
◦ Pass commit protocol address to
transaction_begin()

Transaction ordering
Safe, concurrent hardware and software
Evaluated on STAMP benchmarks
◦ ssca2 – graph kernels
◦ vacation – reservation system

High-contention
Low-contention

◦ yada – Delauney mesh refinement

Best-effort + Single Global Lock STM (ordered)
Idealized HTM (free)

Evaluation: ssca2

No overflow – performance == ideal

Evaluation: vacation-low

<1% overflow – performance == ideal

Evaluation: vacation-high

~3% overflow – performance near ideal

Evaluation: yada

• ~11% overflow – software bottleneck
• 85% execution spent in software

Evaluation
Small overflow rates, performance near ideal
◦ Typical overflow unknown
◦ TxLinux 2.4: <1%

Can be limited by software synchronization
◦ Global lock: yada has long critical path
◦ STM can help

Related work
Best-effort HTM
◦ Herlihy & Moss ISCA '93
◦ Sun Rock (Dice et al. ASPLOS '09)

Speculative Lock Elision
◦ Rajwar & Goodman MICRO '01, ASPLOS '02

Hybrid TM
◦ Damron et al. ASPLOS '06
◦ Saha et al. MICRO '06
◦ Shriraman et al. TRANSACT '06

We have the technology
TxLinux 2.4
◦ Add concurrency to simpler locking

Transaction ordering
◦ Best-effort becomes unbounded

Creative software + simple ISA additions

	Maximum Benefit from a Minimal HTM
	Concurrency is here
	Transactional memory
	TM ain't easy
	TM ain't easy
	TM ain't easy
	TM ain't easy
	TM ain't easy
	TM ain't easy
	TM ain't easy
	Back to basics
	Back to basics
	Back to basics
	Maximum benefit
	Linux: HTM proving ground
	Linux: HTM proving ground
	Linux: HTM proving ground
	Linux: HTM proving ground
	HTM can help 2.4
	HTM can help 2.4
	HTM can help 2.4
	HTM can help 2.4
	HTM can help 2.4
	HTM can help 2.4
	Adding HTM
	Adding HTM, cont.
	Adding HTM, cont.
	Adding HTM, cont.
	Adding HTM, cont.
	Adding HTM, cont.
	Evaluating TxLinux
	Evaluation: MAB
	Evaluation: dpunish
	Evaluation: config
	From kernel to user
	Software, save me!
	Hardware, save me!
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Transaction ordering
	Software + hardware mechanisms
	Transaction ordering
	Evaluation: ssca2
	Evaluation: vacation-low
	Evaluation: vacation-high
	Evaluation: yada
	Evaluation
	Related work
	We have the technology

