
Maximum Benefit from a 
Minimal HTM

Owen Hofmann, Chris Rossbach, and Emmett Witchel

The University of Texas at Austin



Concurrency is here
Core count ever increasing
Parallel programming is 
difficult
◦ Synchronization perilous
◦ Performance/complexity

Many ideas for simpler 
parallelism
◦ TM, Galois, MapReduce

2 core

16 core

80 core
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Transactional memory
Better performance from simple code
◦ Change performance/complexity tradeoff

Replace locking with memory transactions
◦ Optimistically execute in parallel
◦ Track read/write sets, roll back on conflict
◦ WA∩(RB WB) != 
◦ Commit successful changes



TM ain't easy
TM must be fast
◦ Lose benefits of concurrency

TM must be unbounded
◦ Keeping within size not easy programming model

TM must be realizable
◦ Implementing TM an important first step
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TM ain't easy

Version and detect conflicts with existing structures
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◦ Very realizable (stay tuned for Sun Rock)

Resource-limited
◦ Cache size/associativity, store buffer size 
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TM ain't easy

Software endlessly flexible
◦ Transaction size limited only by virtual memory

Slow
◦ Instrument most memory references
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✖

✔ ✔



TM ain't easy

Versioning unbounded data in hardware is difficult
◦ Unlikely to be implemented

Fast Realizable Unbounded

Best-effort 
HTM ✔ ✔ ✖

STM
✖

✔ ✔

Unbounded 
HTM ✔ ✖ ✔



TM ain't easy

Tight marriage of hardware and software
◦ Disadvantages of both?

Fast Realizable Unbounded

Best-effort 
HTM ✔ ✔ ✖

STM
✖

✔ ✔

Unbounded 
HTM ✔ ✖ ✔

Hybrid TM ~ ~ ✔



Fast Realizable Unbounded

Best-effort 
HTM ✔ ✔ ✖

Back to basics

Cache-based HTM
◦ Speculative updates in L1
◦ Augment cache line with transactional state
◦ Detect conflicts via cache coherence

Operations outside transactions can conflict
◦ Asymmetric conflict
◦ Detected and handled in strong isolation



Fast Realizable Unbounded

Best-effort 
HTM ✔ ✔ ✖

Back to basics

Transactions bounded by cache
◦ Overflow because of size or associativity
◦ Restart, return reason

Not all operations supported
◦ Transactions cannot perform I/O



Fast Realizable Unbounded

Best-effort 
HTM ✔ ✔ ✖

Back to basics

Transactions bounded by cache
◦ Software finds another way

Not all operations supported
◦ Software finds another way



Fast Realizable Unbounded

Best-effort 
HTM ✔ ✔ ✔

Maximum benefit

Creative software and ISA makes best-effort 
unbounded

TxLinux
◦ Better performance from simpler synchronization

Transaction ordering
◦ Make best-effort unbounded 



Linux: HTM proving ground
Large, complex application(s)
◦ With different synchronization

Jan. 2001: Linux 2.4
◦ 5 types of synchronization
◦ ~8,000 dynamic spinlocks
◦ Heavy use of Big Kernel Lock

Dec. 2003: Linux 2.6
◦ 8 types of synchronization
◦ ~640,000 dynamic spinlocks
◦ Restricted Big Kernel Lock use



Linux: HTM proving ground
Large, complex application
◦ With evolutionary snapshots

Linux 2.4
◦ Simple, coarse synchronization

Linux 2.6
◦ Complex, fine-grained synchronization
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Modified Andrew Benchmark
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HTM can help 2.4
Software must back up 
hardware
◦ Use locks

Cooperative transactional 
primitives
◦ Replace locking function
◦ Execute speculatively, 

concurrently in HTM
◦ Tolerate overflow, I/O
◦ Restart, (fairly) use locking if 

necessary

acquire_lock(lock)

release_lock(lock)
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Adding HTM
Spinlocks: good fit for best-effort transactions
◦ Short, performance-critical synchronization
◦ cxspinlocks (SOSP '07)

2.4 needs cooperative transactional mutexes
◦ Must support blocking
◦ Complicated interactions with BKL
◦ cxmutex
◦ Must modify wakeup behavior 



Adding HTM, cont.
Reorganize data structures
◦ Linked lists
◦ Shared counters
◦ ~120 lines of code

Atomic lock acquire
◦ Record locks
◦ Acquire in transaction
◦ Commit changes

Linux 2.4   TxLinux 2.4
◦ Change synchronization, not use

cx_begin(lock)

cx_end(lock)

stat++ TX B
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Adding HTM, cont.
Reorganize data structures
◦ Linked lists
◦ Shared counters
◦ ~120 lines of code

Atomic lock acquire
◦ Record locks
◦ Acquire in transaction
◦ Commit changes

Linux 2.4   TxLinux 2.4
◦ Change synchronization, not use

cx_begin(lock)

do_IO()

cx_end(lock)

do_IO()           Locking B



Evaluating TxLinux
MAB

Modified Andrew Benchmark

dpunish
Stress dcache synchronization

find
Parallel find + grep

config
Parallel software package configure

pmake
Parallel make



Evaluation: MAB

2.4 wastes 63% kernel time synchronizing



Evaluation: dpunish

2.4 wastes 57% kernel time synchronizing



Evaluation: config

2.4 wastes 30% kernel time synchronizing



From kernel to user
Best-effort HTM means simpler locking code
◦ Good programming model for kernel
◦ Fall back on locking when necessary
◦ Still permits concurrency

HTM promises transactions
◦ Good model for user
◦ Need software synchronization fallback
◦ Don’t want to expose to user
◦ Want concurrency  



Software, save me!
HTM falls back on software transactions
◦ Global lock
◦ STM

Concurrency
◦ Conflict detection
◦ HTM workset in cache
◦ STM workset in memory
◦ Global lock – no workset

Communicate between disjoint SW and HW
◦ No shared data structures



Hardware, save me!
HTM has strong isolation
◦ Detect conflicts with software
◦ Restart hardware transaction
◦ Only if hardware already has value in read/write set

Transaction ordering
◦ Commit protocol for hardware
◦ Wait for concurrent software TX
◦ Resolve inconsistencies
◦ Hardware/OS contains bad side effects



Transaction ordering
char* r int idx



Transaction ordering

Transaction A

begin_transaction()

r[idx] = 0xFF

end_transaction()

Transaction B

begin_transaction()

r = new_array

idx = new_idx

end_transaction()

Invariant: idx is valid for r

char* r int idx



Transaction ordering

Transaction A

begin_transaction()

r[idx] = 0xFF

end_transaction()

Transaction B

begin_transaction()

r = new_array

idx = new_idx

end_transaction()

Invariant: idx is valid for r
Inconsistent read causes bad data write

char* r int idx



Transaction ordering

A(HW)

B(HW)

read:
write:

read:
write:

r = old_array

idx = old_idxtime

r=new_array                          idx=new_idx

r[idx] = 0xFF



Transaction ordering

A(HW)

B(HW)

read:
write: r

read:
write:

r = new_array

idx = old_idxtime

r[idx] = 0xFF

r=new_array                          idx=new_idx



r[idx] = 0xFF

time

Transaction ordering

A(HW)

B(HW)

read:
write: r

read: r
write:

r = new_array

idx = old_idx

r=new_array                          idx=new_idx

Conflict!
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time
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r=new_array                          idx=new_idx

Transaction ordering

A(SW)

B(HW)
read:
write:

idx = old_idx

r = old_array

time

r[idx] = 0xFF



r=new_array                          idx=new_idx

Transaction ordering

A(SW)

B(HW)
read:
write:

idx = old_idx

r = new_array

time

r[idx] = 0xFF



r=new_array                          idx=new_idx

r[idx] = 0xFF

time

Transaction ordering

A(SW)

B(HW)
read: r
write:

idx = old_idx

r = new_array
Conflict not 

detected



Transaction ordering

new_array[old_idx] = 0xFF

A(SW)

B(HW)
read: r, idx
write: r[idx]

idx = old_idx

r = new_array

time

r=new_array                          idx=new_idx

r[idx] = 0xFF



Transaction ordering

new_array[old_idx] = 0xFF

A(SW)

B(HW)
read: r, idx
write: r[idx]

idx = old_idx

r = new_array

time

r=new_array                          idx=new_idx

r[idx] = 0xFFOh, no!



time

Transaction ordering

Hardware contains effects of B
◦ Unless B commits

A(SW)

B(HW)
read: r, idx
write: r[idx]

idx = old_idx

r = new_array

r=new_array                          idx=new_idx

r[idx] = 0xFF
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time

Transaction ordering
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time

Transaction ordering

A(SW)

B(HW)
read: r, idx
write: r[idx]

r = new_array

r=new_array                          idx=new_idx

r[idx] = 0xFF

Hardware contains effects of B
◦ Unless B commits

idx = new_idx

Asymmetric
conflict!



time

Transaction ordering

A(SW)

B(HW)
read: a, idx
write: a[idx]

r = new_array

r=new_array                          idx=new_idx

r[idx] = 0xFF Restart

Hardware contains effects of B
◦ Unless B commits

idx = new_idx



Software + hardware mechanisms

Commit protocol
◦ Hardware commit waits for any current software TX
◦ Implemented as sequence lock

Operating system
◦ Inconsistent data can cause spurious fault
◦ Resolve faults by TX restart

Hardware
◦ Even inconsistent TX must commit correctly
◦ Pass commit protocol address to 
transaction_begin()



Transaction ordering
Safe, concurrent hardware and software
Evaluated on STAMP benchmarks
◦ ssca2 – graph kernels
◦ vacation – reservation system

High-contention
Low-contention

◦ yada – Delauney mesh refinement

Best-effort + Single Global Lock STM (ordered)
Idealized HTM (free)



Evaluation: ssca2

No overflow – performance == ideal



Evaluation: vacation-low

<1% overflow – performance == ideal



Evaluation: vacation-high

~3% overflow – performance near ideal



Evaluation: yada

• ~11% overflow – software bottleneck
• 85% execution spent in software



Evaluation
Small overflow rates, performance near ideal
◦ Typical overflow unknown
◦ TxLinux 2.4: <1%

Can be limited by software synchronization
◦ Global lock: yada has long critical path
◦ STM can help



Related work
Best-effort HTM
◦ Herlihy & Moss ISCA '93
◦ Sun Rock (Dice et al.  ASPLOS '09)

Speculative Lock Elision
◦ Rajwar & Goodman MICRO '01,  ASPLOS '02

Hybrid TM
◦ Damron et al.  ASPLOS '06
◦ Saha et al. MICRO '06
◦ Shriraman et al. TRANSACT '06



We have the technology
TxLinux 2.4
◦ Add concurrency to simpler locking

Transaction ordering
◦ Best-effort becomes unbounded

Creative software + simple ISA additions
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