
Cloaking Malware with the
Trusted Platform Module

Alan Dunn, Owen Hofmann,

 Brent Waters, Emmett Witchel

University of Texas at Austin

USENIX Security

August 12, 2011

Trusted Computing

• Goal: Secure environment for computation

• Trust rooted in hardware

• Most familiar: Trusted Platform Module (TPM)

– Standard by Trusted Computing Group (TCG)

– IC in x86 machines connected to southbridge

– Widely deployed (> 350 million TPMs)

Uses of Trusted Computing

• Typical: TPM provides hardware root of trust

– Store cryptographic hash of executed software

– Perform cryptography, store secret keys

– Provide hardware-protected execution environment

• Ours: TPM provides hardware cloak for malware

– Only run unmodified malware

– Store malware secret keys

– No monitoring/debuggers/virtualization

Conficker B Explanation
get_updates()

gen_domains()

 date = get_date_from_web()

 calculate domains…

for domain in domains:

 content = fetch_content(domains)

 if (check_sig(content))

 apply_update(content)

!
Contact
websites

www.google.com

aijuer.com

lkpexhjz.org

…

“8/13/11” “8/12/11”

Goal for malware
writers: Secure and

hidden malware sub-
computation

Secure date
mechanism

Conficker B Analysis

TPM can help malware writers achieve this goal:
Execute computation securely in non-analyzable

environment

Outline

• Protocol Overview

• Protocol

• Implementation

• Defenses

Late launch environment

Infected Platform Malware Distribution Platform
(MDP)

• Put platform in known non-
analyzable state
• Restrict payload decryption
to non-analyzable state

Protocol Overview

Infection
Payload
Loader

main()

…

sensitive_calc()

…

normal_calc()

…

sensitive_calc()

…

Put platform in non-analyzable state

• Suspend all system software, jump into known
software state

• Late launch performs jump, records program
jumped to via hash

Infected Platform

Late launch environment

Infection
Payload
Loader

Restricting payload decryption

• TPM controls private key use for keypairs it generates

• Binding key constrained to use in non-analyzable state

• Certificates show Endorsement Key (EK) belongs to legitimate
TPM

• Remote attestation proves binding key generated by same
party as EK, so payload only decryptable in late launch

Infected Platform Malware Distribution Platform
(MDP) Binding key

Malicious payload

Late Launch

• SENTER instruction transfers control to binary,
sets TPM register based upon cryptographic hash
of binary

– Allows binary to execute securely: stop other cores,
turn off interrupts

• For malware:

– Transfer control to Infection Payload Loader (IPL)

– IPL hash satisfies key use constraint

– IPL decrypts, transfers control to malicious payload

Validating the Binding Key

• Endorsement Key (EK) – unique identifying
key, certified by TPM manufacturer

Sign(EK, M1)

Sign(EK, M2)

Correlate
transactions A

P1

P2

• Sign binding key with
EK? Forbidden!

• EK identifying,
compromises
anonymity

TPM Identity (EK) with Indirection (AIK)

• Attestation Identity Keys (AIKs) fix anonymity

• Privacy CA vouches that AIK represents EK

Sign(AIK1, M1)

Sign(AIK2, M2)

A

P1

P2

C

Establish EK
legitimacy,
AIKs proxy

for EK C vouches for
legitimacy of

AIKs

C is a Privacy CA

• Problem: Privacy
CAs don’t exist

• Solution: Malware
Distribution
Platform acts as
Privacy CA

Can malware generate an AIK?

• Owner AuthData
required for AIK
generation

• Owner AuthData not
needed on platform,
used rarely

• Capture from
keylogging or from
memory (Windows:
cached for days)

Remote attestation details
Infected Platform Malware Distribution Platform

(MDP)

2) PKEK, PKAIK, Sign(SKmanuf.,H(PKEK))

4) Enc(PKEK, cred || H(PKAIK))

Phase 1: cred  AIK represents EK

1) Generate AIK

5) Activate AIK: if H(PKAIK) matches AIK
generated on that platform, TPM releases cred

3) Verify EK sig

Remote attestation details (cont’d)

2) PKbind, key use constraint, cred,
Sign(SKAIK,H(PKbind||key use constraint))

Phase 2: Prove binding key is
from TPM that controls EK

1) Generate binding key with
use constraint

3) Verify use
constraint, cred

Infected Platform Malware Distribution Platform
(MDP)

4) Send encrypted
malicious payload

Malicious payload 5) Late launch,
decrypt and
run payload

Implementation

• Protocol until late launch (w/TrouSerS)
• Late launch (via Flicker v0.2) on Intel platforms

– Infection Payload Loader (IPL): decrypt, execute
payload

– IPL run appears as 3 second system freeze on Infected
Platform due to TPM key operations in late launch

• Three malicious payloads
– Conficker B-like example

• Secure time via Ubuntu package manifests

– DDoS timebomb
– Secret text search

Defense: Whitelisting late launch binaries

• Hypervisor-level whitelisting

– Trap on SENTER, check late launch binary

• List of hashes of whitelisted binaries

• Digitally sign binaries, whitelist signing keys

• Problems

– Requires hypervisor: tough for home users

– Late launch binary updates

– Signatures: Revocation, trust management
(certificate chains)

Defense: Manufacturer Cooperation

• Manufacturer breaks TPM guarantees for analyst
• Fake Endorsement Key (EK)

– Manufacturer produces certificate for EK that is not
TPM controlled

– Problem: EK leak can compromise TPM security
properties

• Fake Attestation Identity Key (AIK)
– Manufacturer uses EK to complete AIK activation for

AIK that is not TPM controlled
– Problem: AIK requests need manufacturer response

online

Defense: Physical Compromises

• TPM compromise has been demonstrated

– Simple: Grounding LPC bus allowed faking of TPM
code measurement

– Exotic: Etching away casing, probing around
tamper-resistant wiring allowed EK recovery

• Industry incentives to fix

• Further discussion in paper (e.g. cold boot)

Conclusion

• TPM can cloak malware sub-computations,
hiding them from analysts

• Concrete implementation of TPM-based
malware cloaking

– Remote attestation

– Late launch

• Strengthening TPM guarantees makes attack
more resilient

