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Abstract

InkTag is a virtualization-based architecture that givesrsy safety
guarantees to high-assurance processes even in the mexfeac
malicious operating system. InkTag advances the stateeofith
in untrusted operating systems in both the design of its twype
sor and in the ability to run useful applications withoussting the
operating system. We introdugaraverification a technique that
simplifies the InkTag hypervisor by forcing the untrusteeaing
system to participate in its own verificatiofttribute-based access
control allows trusted applications to create decentralized acces
control policies. InkTag is also the first system of its kincdehsure
consistency between secure data and metadata, ensurogirec
ability in the face of system crashes.

Categories and Subject DescriptorsdD.4.6 [Operating Systeniis
Security and Protection—Access controls, Invasive saftwa

General Terms Security, Verification

Keywords Application protection, Virtualization-based security,
Paraverification

1. Introduction

Operating systems are a vexing Achilles heel in the secarithi-
tecture of modern computing systems. The OS is the root ef,tru
so compromising the OS compromisageryprogram on the sys-
tem. On discretionary access control operating systerad fikux
and Windows, controlling any process running as root (aéstrax
tor) is a kernel compromise because the root user can loadarati
data into the kernel's address space. If an applicatiordo@rhain
safe even if the operating system were compromised, therabpe
ing system exploits would no longer have the security enternge
status that they have today.

This paper introduces InkTag, a system in which securet-trus
worthy programs cagfficiently verify an untrusted, commodity
operating system’s behavior with a small degree of assistance
from a small, trusted hypervisor. OS implementations arepiex.
However, verifying OS behavior is possible without reinmpént-
ing OS subsystems in the hypervisor, because OS servioas oft
have simple specifications. OS complexity comes from sujmpr
these simple services simultaneously for many differeot@sses.
Global behavior and resource management is much more compli
cated than the specification for an individual process. Rstance,
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swapping and copy-on-write heuristics in Linux require snénou-
sands of lines of code, but auditing an application’s pagkestsand
checksumming the page contents requires only a few hundeed.
ifying that the OS provides system services correctly adltvkTag
to avoid having to reason about the OS’s implementation @$eh
services.

Though feasible, efficiently and safely verifying OS beloavi
remains a significant challenge. The InkTag hypervisor nast
plement deep introspection into architecture-level piires, such
as page tables, to isolate trusted applications from amistes op-
erating system. The range of “normal” operating systemviehés
large, making recognition of malicious behavior a challighile
verifying OS behavior is hard, doing it efficiently is everrdher.
Modern virtualization hardware improves performance Hieve
ing hypervisor software from having to process many comnmn o
erations. Unfortunately, it is often those exact operatj@ng., page
table updates, that are crucial for verifying OS behavior.

InkTag introducegaraverification which enables verification
of OS behavior with limited hypervisor complexity. Most pi@us
systems have attempted to verify unmodified operating Byste
InkTag requires the untrusted OS to provide information sed
sources to both the hypervisor and application that alleswilio
efficiently verify the operating system’s actions. Usinggwerifi-
cation to force the OS to make verification easier and morei e
is similar to the way paravirtualization forces an OS to meikeI-
alization more efficient.

Prior work on untrusted operating syster4][has focused on
simply isolating trusted code and data from the OS, with mali
support for securely using OS features. InkTag addresgesriamt
issues in the completeness and usability of untrusted tpgra
systems, such as providing users of an untrusted OS wittbRexi
access control and crash consistency for hypervisor and &6 d
structures. InkTag advances the design and implementafiQs
verification in the following ways:

1. InkTag introduces paraverification, where an untrusieetat-
ing system is required to perform extra computation to make
verifying its own behavior easier.

2. InkTag is the first system to provide users of an untrust&d O
with flexible access control, that allows applications tdirde
access control policies for their own secure files (files with
privacy and integrity managed by InkTag). Access control is
vital for sharing data between processes with differenelkev
of privilege. Our prototype applies flexible access contol
a multi-user wiki application, providing hypervisor-enéed
privacy, integrity, and access control for wiki code ancadat

3. InkTag is the first system to provide crash consistencyden

security-critical metadata managed by the hypervisor atd d

managed by the untrusted OS.

. InkTag directly addressdago attacks[8], a new class of at-

tacks against systems providing trusted applications in un
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trusted operating systems that manipulates the returresalu
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Figure 1. InkTag design overview. In InkTag high-assurance processe
(HAPS) make hypercalls to the virtual machine hypervisor tofyettie
runtime behavior of the operating system. The hypervistusted.
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of system calls (e.gnmap) to cause a trusted application to
harm itself.
Section2 gives an overview of InkTag, while Sectidexplains
InkTag’s high-level design. Sectichintroduces paraverification.
Section5 describes access control in InkTag, followed by our
design for storage§6), implementation §7) and evaluation §g).
Section9 covers related work and Secti@0 concludes.

2. Overview

InkTag is a hypervisor-based system that protects trugtptica-
tions from an untrusted OS, allowing trusted applicatiomse-
curely use untrusted OS services. The hypervisor protegtéca-
tion code, data, and control flow from the OS, allowing aggilans
to execute in isolation. Mutually trusting secure applmas can
securely and privately share data without interferencenfiloee OS
or other applications. Each secure application coordindirectly
with the InkTag hypervisor via hypercalls to detect OS mighe
ior.

Figurel shows an overview of the InkTag architecture. Trusted
application code executes inhéggh-assurance process, or HAP
which is isolated from the OS. Nearly all application-leekhnges
are contained in a small, 2000-line library (libinktag) thee of
which is largely encapsulated in the standard C libraryTéuk
extends a standard hypervisor to monitor the untrusted @f§ us
paravirtualized device drivers and virtualization hardwdnkTag
defines new hypercalls feraps to verify OS behavior.

InkTag shares its basic threat model and security guarantee
with previous work where a trusted hypervisor verifies amusted
operating system’s actions; such as $#7], and especially Over-

2.2 Size of trusted computing base (TCB)

The operating system consists of millions of lines of codeits
elimination from the trusted computing base seqmnisa facie to
increase security. However, the KVM hypervisor includegatire
OS (sometimes called a type 2 hypervisor). Eliminatingttiughe
guest instance of Linux is of little security value if the leypisor
contains its own instance.

However, simpler hypervisors (type 1) exist, and containeie
lines of code than a typical operating system. Additionahg hy-
pervisor interface is a hardware interface, which is fangénand
easier to make secure than the hundreds of semanticallyleemp
system calls exported by a general-purpose operatingnsy$ter
example, from 2010 to 2012, a search of the National Vulrierab
ity Database 31] returns 12 exploits for Xen and 16 exploits for
KVM that have an impact worse than denial of service. By asitr
there are 53 such vulnerabilities published for the Linuskéin
2012, of which only 7 are driver vulnerabilities. These \argbil-
ities spanned many different core kernel services such asomye
management, file systems, network protocol implementstiand
syscalls. The situation is not much better for Windows 7:042,
there were 9 privilege escalation and 31 remote code exechitil-
letins listed [L].

2.3 Security guarantees

Here we summarize the security guarantees provided to dagnk
application. The InkTag hypervisor ensures thatAp's process
context (registers) and address space are isolated frotheluper-
ating system. Then, InkTag ensures thata® can use a subset of
services provided by the untrusted OS to interact with sefiles
(files with privacy and integrity managed by InkTag through e
cryption and hashing), and verify that those services wereiged
correctly. InkTag shares these basic security guaranssesyell
as implementation techniques, with previous work such asr-Ov
shadow.

In addition to the majority ofAP code that executes in a trusted
context, eaclAP also contains a small amountwfitrusted tram-
poline code that interacts with the operating system (this is simil
to Overshadow’sincloaked shim The InkTag hypervisor switches
control between secureap code and the untrusted trampoline,
while the untrusted operating system schedules among the un
trusted trampoline and other contexts. This allows the dgkiy-
pervisor to control switches into and out of a secure coraext
ensure control flow integrity. Then, the InkTag hypervisocrypts
and hasheBAP pages to ensure privacy and integrity for thep’s

shadow L1]. We first discuss issues generic to all approaches, then address space: this is analogous to Overshadmuls-shadowing

starting with Sectior2.4 discuss issues specific to InkTag.

2.1 Threat Model

InkTag assumes that the OS is completely untrusted and ¢tevbe
in arbitrarily malicious ways. Applications running on t&& have
both an untrusted context maintained by the OS used for stigge
OS services, and a trusted context used for executing catimtrst
be isolated from the OS. The developer trusts the InkTagrigmr
and the trusted execution context of the application. Thstéd
application context is isolated from the OS by the hypenviso

InkTag does not address application-level bugs, and will no
stop an application that deliberately divulges secret (@@, by
putting it in the arguments of a system call that the OS hadle

InkTag cannot guarantee untrusted OS availability, butden
tect this class of mishehavior. Trivially, a malicious OSilcbsim-
ply shut down every time it was started, though the InkTageinyp
visor will detect such mishehavior. More subtle availdbitittacks
are possible, such as deleting volatile data, which will bected
in a timely manner, but may result in the loss of data betwesa m
behavior and detection.

technique.

Control flow integrity As with traditional applications, &ApP
running in InkTag may be interrupted at any time by the operat
ing system. InkTag must not allow the operating system td oza
modify the application’s processor registers. Doing solddeak
private data, or allow the operating system to modify theliapp
tion’s control flow or data by changing the instruction peintcon-
dition flags, or a register value. The InkTag hypervisor ripbses

on every context switch between a secure HAP and the opegratin
system. On context switches, the hypervisor saves processis-
ters, and overwrites their values before switching to the OS

Address space integrity In addition to application registers, the
InkTag hypervisor must ensure privacy and integrity foreaahd

data in aHAP's address space. When an untrusted operating system

attempts to read application memory, InkTag hashes menraty a
encrypts it, ensuring that the untrusted operating systanmat
read application secrets. When thep accesses the memory again,
the InkTag hypervisor decrypts it and verifies the hash, &uen
that the memory was not modified by the operating system.



The position and order of pages in an application’s virtuhl a
dress space is also an important integrity property. Inleragures

that every page of memory is mapped at the virtual address re-

quested by the application, either via information aboetHhpr’s

initial state contained in the ELF binary, or via a request tnem-
ory mapping function such dsr k() or map() . The problem
of synchronizing the mapping information between appitaand
hypervisor motivates our primary contribution, paravesfion, de-
scribed in detail in Sectiod.

File /O To perform useful work, aiAP isolated from an un-
trusted operating system must still be able to use a subgetof
services. The InkTag hypervisor must ensure that the agifgit
can still rely on those services even when running on a noal&i
Os.

Most importantly, InkTag providesAps with the ability to se-
curely interact with files despite the fact that they are feaah and
written to disk by the untrusted operating system, by guaring
integrity for file memory mappings. InkTag applicationsrpair-
ily identify files through a 64-bibbject identifiey or OID. Most
file operations are expressed as operations on OIDs, evegttho
real applications generally expect to use string filenamegping
string filenames to OIDs is a contribution of InkTag, as disad
later in this section. When an application maps an OID intonme
ory (through a call tammap) and receives an address for the new
mapping, InkTag ensures that later references to that sslavil
access the desired file. Privacy and integrity for file da¢zeasured
via InkTag’s guarantee of address space privacy and ityegs
hashing and encrypting in-memory file data in response tesses
by the untrusted operating system. To handle file I/Ongad()
andwr i t e() system calls, our application-level library translates
these calls into operations on memory-mapped files.

Process control HAPS may also create new processes through
calls tof ork() and execute binaries in these processes with
exec() . The InkTag hypervisor ensures that the untrusted op-
erating system executes these operations correctly. leabe of
fork(), InkTag ensures that the newap is a clone of its parent.
Forexec(), InkTag ensures that the nemap, specified by the
identifier of the binary file passed exec() is loaded into mem-
ory correctly (i.e., each section in the binary is loaded adified

into the correct virtual address), based on the informatjmecified

by the ELF format binary.

Other OS services Because InkTag guarantees control flow and
data integrity forHAPS, aHAP may safely invoke system calls
not explicitly secured by InkTag. However, it must consides
results of those system calls as it considers any data dy an
untrusted source. For example, InkTag does not manage rietwo
1/0, however it is possible for applications to safely conmicate
over the network via mechanisms such as transport layerigecu
(TLS [13), that enable secure communication over an untrusted
channel.

2.4 InkTag contributions

InkTag advances work on untrusted operating systems alsag t
axes: the underlying architecture for isolating procedsas the
operating system, and the set of core OS services that apphs
may use securely.

Paraverification Isolating an application’s address space from an
untrusted operating system is a daunting task. Whereasopeev
work has used unmodified OS kernels, InkTag emplmysverifi-
cation, a technique similar to paravirtualization, in which the un
trusted kernel is required to send to the hypervisor infadiona
about updates to process state (that the hypervisor thetkshe
for correctness). Paraverification simplifies the desigthefink-
Tag hypervisor by allowing it to directly use high-levelénfmation

from the kernel, rather than having to deduce that inforomftiom
low-level updates such as changes to bits on process pdgs.tab

Hardware virtualization The utility of virtualization has prompted
the rapid introduction of hardware support for virtual@ipro-
cessor state, as well as hardware support for virtualizieghory
management. Eliminating software from these performamitieal
processing paths is a clear advantage, but systems likednieF
quire validation of OS updates teap page tables. InkTag min-
imizes the performance impact of validation via a comborati
of the efficiency afforded by paraverification and a two-lexe-
proach to protection. InkTag uses hardware MMU virtualtrat
for coarse-grained separation between secure and insdatae
Then it uses software only when needed, to manage the userspa
portions ofHAP page tables.

Access control and naming The InkTag hypervisor allowsApPs
to specify access control policies on secure files, withgasvand
integrity managed by InkTag through encryption and hasHimg
Tag's access control mechanism is described in detall iti3es.
Although InkTag applications identify files via an integetD)
most applications and users expect to reference files threug
string name. InkTag allows applications to map from stringies
to OIDs, while maintaining important integrity propertigsich as
the trusted nature of thleet c directory).

Consistency To protect the integrity of file contents, InkTag, like
similar systems, must maintain additional metadata in e fof
hashes of file data pages. InkTag is the first such system widero
crash consistency between file metadata and data. Comsisten
vital in this setting: without consistent data and metaddta Ink-
Tag hypervisor cannot protect file integrity. An applicatimust
either discard the inconsistent data, or accept the pdigsitfitam-
pering by an untrusted OS.

25 API

HAPS communicate with the InkTag hypervisor primarily by mak-
ing hypercalls. InkTag maintains the simplicity of the hgysor
interface by adding only 14 hypervisor calls. Tatllsummarizes
InkTag’s hypercall interface. It refers to several consepat will

be introduced shortly, but what is clear is that the numberatis

is limited and their function is mostly intuitive.

In addition to invoking operations through hypercalls, thie-
Tag hypervisor shares two data structures with the guesekand
HAPs First, an InkTag application must describe the layout ®f it
virtual address space. AAP enters each of its memory mappings
into an array of descriptors in its virtual address spaceci§ging
the base address of the array as part of teT hypercall. Second,
the untrusted kernel sends information about updates tcepso
state to the InkTag hypervisor. These updates are comntadica
through a shared queue, similar to existing paravirtuarfates.

3. Address space management

Address space management is the foundation for InkTagilgisgc
guarantees. We discuSgpages, InkTag’s abstraction for secure ad-
dress spaces, and how InkTag uses hardware memory managemen
virtualization features that are part of modern virtuai@a hard-
ware.

3.1 Objects and secure pages

InkTag’s basic file abstraction is abject All files, including bi-
nary executables, are represented by an InkTag object.c@bje
are identified by a 64-bibbject identifier(OID). Section5.4 dis-
cusses translating between human-readable names and@is,
ever OIDs are the main abstraction used by the InkTag hyg@tvi



Hypercall

| Arguments

Description |

Process control

system call by specifying a program counter value for a serwutine in untrusteg
code.SYSCALL is used when invoking a system call is the only desired behavi

INIT control addr Starts a newiAP. TheHAP passes to the hypervisor the address of a control structure,
which specifies which binary theap was loaded from, and the base address of|the
HAP's list of virtual memory mappings.

EXEC new hap OID Start aHAP, ensuring that it is loaded from the binary identified®iD.

CLONE Create a newiAP that is a duplicate of the current state of the callip.

SW TCH.TOHAP | hapid Invoked by untrusted trampoline code to switch context hattkaHAP.

SYSCALL new PC On any hypercall, alAP may request a switch out of secure execution to invoKe a

Memory management

UNVAP memory range Ensure thaf-pages within the specified virtual address range are unetapp

REMAP old_range, newrange | Move anyS-page mappings frorald_rangeto newrange

Files and access control

ACCESS OID Check if the currentAP has access tOID.

CREATE OID, namespace Create a new file within the given namespace.

SET_LENGTH OID Set the length of a file for which theap has write permission.

O DACL OID, acl Set the ACL on a file.

ADD_DROP add attr, drop_attr Add and/or drop attributes frommaP’s list of attributes.

Paraverification

MMJ_REGQ STER | queue addr Invoked by the untrusted kernel to specify a location in mgntieat contains a queuge
of updates ta1AP address spaces (such as page table updates).

MMU_FLUSH Invoked by the untrusted kernel to notify the InkTag hypgovithat the queue is full

and must be processed.

Table 1. The hypercall interface to the InkTag hypervisor

Throughout the rest of the paper, we use the term OID integpa
ably with object.

Objects are comprised secure pagesS¢pages)which are the
basic mechanism by which InkTag enforces address spaaepriv
address space integrity, and access control policy for. filgmges
consist of a block of data (4 KB for most pages on x86 proces-
sors), in memory or on disk, with additional metad&taages in-
clude a hash of the data contained with the page, as well as inf
mation about which resource the page describes, in the féan o
(OID, offset) pair. An object identifies a set of pages that share
a single OID, and may refer to a file on disk or a private memory
region created dynamically by an application (e.g., an gmaus
mmap).

The InkTag hypervisor encrypfspages to ensure privacy, and
hashes them to ensure integrity. Whewma® accesses afrpage for
which it has read permission, the InkTag hypervisor trarespsy
decrypts the page, allowing theap access to cleartext. If an
S-page is accessed by the operating system, a regular gpplica
or aHAP without read permission, the InkTag hypervisor detects
the access and re-encrypts the page. Even if a malicioustimgr
system can read the data within &rpage, InkTag guarantees
privacy because the OS can read only encrypted data.

Similarly, only the hypervisor can update the hash assediat
with an S-page. When aiap updates ars-page for which it has
write permission, the InkTag hypervisor updates the hdshelOS
modifies the data in th&-page, the InkTag hypervisor will detect
the modification, because hashing the modified data will redtim
the recorded hash.

The untrusted OS view&-pages as standard data pages, and re-
mains responsible for placiripages in memory and on disk. The
additional metadata attachedSepages is transparent to the guest
OS: the InkTag hypervisor updates and traSkgsage metadata as
the operating system or application moves or transformsléte

such as by mapping a file in memory or by writing a page to the
virtual disk.

EachHAP must provide a description of its address space to
the InkTag hypervisor, in the form of a list of memory mapging
[(address_range, OID, offset), ...], each of which defines a se-
qguence ofS-pages. With a description of the address space, the hy-
pervisor may then validate individual page table updatgeested
by the untrusted OS. For example, suppose the OS attemptto m
virtual addresd’ to physical frameP in aHAP’s page tables. The
hypervisor examines theAapr’'s memory map for a range that in-
cludesV. If one exists, the hypervisor then verifies that thep
has access to the specified OID. Finally, the hypervisorlchetat
frame P actually contains the correStpage, by checking’’s hash
against the stored metadata. If all of these checks sucttez=dy-
pervisor now consider$ to be a physical frame containing an
S-page, and theiAp has a valid mapping of addregsto P. Thus,
when theHAP attempts to access tl¥epage, InkTag will decrypt
its contents and provide theap with cleartext access.

3.2 Nested paging

The InkTag hypervisor is designed to run on modern processor
that support hardware assistance for virtualization. Suobessors
are designed to simplify the task of writing hypervisor s@fte by
automatically creating a self-contained environment far guest
OS, without requiring manual intervention by hypervisaitware.
One of the primary tasks of any hypervisor (including InkJlag
is virtualizing memory management. The hypervisor mustuens
that the guest operating system has access only to those phge
memory that represent its virtualized physical addressesp@aor
early x86 hypervisors, this required intercepting pagdetalp-
dates made by the guest OS, transforngngst-physical addresses
(physical addresses from the point of the virtualized guisb
host-physical addresséactual physical addresses of the frames of
memory that constitute the guest’s virtualized physicahmosy),
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management of individual OS page table updates. Rathersan
a single EPT for all of guest execution, the InkTag hypenvisges
two separate EPT trees. Ttrasted EPTis installed during isolated
HAP execution, while thaintrusted EPTis used during execution
of the operating system and other applications (Fi@ur&he con-
tents of both EPTs are entirely managed by the hypervisdrass
therefore trustworthy. The trusted/untrusted label seferthe con-
tents of the physical frames they map. The trusted EPT pilynar
maps physical frames that contain clear&gages, while the un-
trusted EPT maps all other frames, including encryfquages,
data belonging to the OS, and untrusted applications.

Using separate EPTSs for trusted and untrusted contextssallo
InkTag to coarsely control access to secure pages. Physacads
holding cleartextS-pages are not mapped in the untrusted EPT
If the OS or an untrusted application accesses a cledbtpege
frame, the access causes a fault that is handled by the hyperv
InkTag hashes the contents of the frame, encrypts the feacoa-
tents, maps it in the untrusted EPT, and unmaps it from tretetdu
EPT. If the trustedHAP accesses the frame again, the hypervisor
decrypts the frame, verifies the contents against the hazps i
in the trusted EPT, and unmaps it from the untrusted EPT.

In addition to the coarse access control provided by EPTSs,
InkTag must subdivide access to physical frames among &rgcu
HAPS. When executing in trusted mode, everp can potentially
access any physical frame holding a cleart&iage. However,
not every HAP should have access to dtpages. The InkTag
hypervisor restricts access for an individusdP to a subset of
physical frames by managing OS page table updates for Alre
address space. Importantly, the InkTag hypervisor is cedyired

Figure 2. Address space protection using both EPT and management of to manageHAP page tables, and only for the part of the address

HAP page tables. The InkTag hypervisor uses two EPTs to dividessc
between physical frames containing cleart&yages, and those containing
untrusted data or encryptédpages. Then, it manages\P page tables to
restrict access within the set of secure frames.

and installing modified page tables for the guest OS thatatont
the transformed mappings.

Hardware MMU virtualization As might be expected, virtual-
izing memory in this manner adversely affects both hypervis
complexity and hypervisor performance. In response, mecent
x86 processors have supportedsted pagingWith nested pag-
ing, guest memory accesses are translated through twoasepar
page tables. First, guest-virtual addresses are tradstateguest-
physical addresses by traditional page tables manageelgriy
the guest OS. Then, guest-physical addresses are trahgitde
host-physical addresses by thetended page tablgEPT). The

space accessible in user mode (the lower half of the addpese s
in the x86-64 architecture). All other page tables (inahgdihe
kernel address space fenpPs) can be managed by the OS without
hypervisor intervention.

By combining the access control for physical frames pravide
by EPT with management of guest page tables only when nec-
essary, InkTag isolategsaps from an untrusted operating system
while still taking advantage of modern virtualization haede.

4. Paraverification

The task of managin§-pages requires that the InkTag hypervi-
sor have deep visibility into low-level OS operations, sashup-
dating page tables. This kind of detailed introspectionotitices
complexity into the hypervisor that can impede efforts tasan
about its correctness. In addition, interposing on lovelepera-

EPT is managed by the hypervisor, but does not need to be up-tjons harms performance with needless traps into the higeerv

dated in response to changes to guest page tables, as it apy m
between guest-physical and host-physical address splsless-
while, the guest OS is free to perform arbitrary modificasiaa
its own page tables, as all accesses will be restricted bysE®T
memory explicitly approved by the hypervisor.

Nested paging is a significant step forward for hypervisors.
However, as discussed in sectidr, the InkTag hypervisor’s pri-
mary means of enforcing privacy, integrity, and accessrobiig
through detailed management of OS page table updates. Adety g
for designing the InkTag hypervisor is to retain the necgssan-
trol over guest OS page table updates, while still being ebler-
ness the performance benefits of modern virtualizationvirarel

Nested isolation InkTag takes advantage of hardware MMU vir-
tualization by using a combination of hardware EPT suppod a

1EPT is the terminology used for nested paging on Intel psmmas Al-
though InkTag was designed for Intel processors, we betiewalesign to
be equally applicable to AMD processors.

Previous systems have attempted to remove trust from the op-
erating system in a way that is largely transparentdth the ap-
plication and operating systenthis section highlights the signif-
icant challenges to application security and system pedioce
presented by this approach.

4.1 \Verification challenges

InkTag creates a secure address spacel4@s by managing only
the user mode portions &fAP page tables, as described in Sec-
tion 3.2 Here we explain all the steps necessary for the InkTag
hypervisor to detect and interpret a page table update almkiust
intercept low-level page table updatéSét page table entry at ad-
dressA to x.”), determine their high-level effectsMap physical
frame P at virtual addressV/.” ), and compare those effects against
the address space specified by an applicatfding application
wants to map thé&-page .S at addressV/, do the contents of the
physical frame have the same hashs&s).



Kernel A
Process 1
page table

Kernel B

Process 2 Process 1 Process 2
page table page table| page table

Guest physical memory Guest physical memory

- Heap Stack I:lNew OS allocation

0x0000. . .

77

ox7fff...

HAP address space

Figure 4. An lago attack. An application relying on the OS to allocage i
address space may be subverted by a malicious OS, if the O&ials
memory regions that are not disjoint.

Figure 3. Two kernels mapping the address space of process that share a

file. Both are non-malicious, but kernel B confounds effitieerification
efforts by sharing page tables between processes.

Interpreting low-level updates Consider the task of placing a
memory mapping into an application’s page tables. The Igkia
pervisor can protect page table memory so the OS faults rgo t
hypervisor when it attempts to write the page table. Howeiver
order to determine the OS'’s intent, the hypervisor must thgamo-
tect page table memory, wait for the OS to update the page,tabl
and then retroactively determine what state changed by iexagm

a significant amount of context information, such as savetilyzs

of previous page table state and the role of the modified pathei
application’s page tables.

To efficiently interpret low-level page table updates, lagT
maintains state that allows it to determine high-level@gsvithout
reconstructing the entire address space on each updatex&or
ple, InkTag remembers which physical frames are used ini-appl
cation page tables, their position in the page table hibyarand
the range of virtual addresses that they might map. Thennwhe
kernel sets a single entry at the leaf of the page table tnk@ab
can determine which virtual address is affected withoutitigaithe
page table from its root.

Maintaining state to efficiently verify page table updates r
quires InkTag to make basic assumptions about the structfure
page tables. Recording the address mapped by each pagegs a pa
table requires that page tables are arranged in trees, ahddp-
arate page tables do not share any pages. A significant aballe
for InkTag is that it is possible for an operating system tolate
these assumptions, while still correctly managing an apptin’s
address space.

Figure 3 shows two applications that both map the same 2MB
region of the same file, with both mappings aligned on a 2MB
boundary (2MB is the range of virtual addresses mapped bygéesi
leaf of a page table in the x86-64 architecture, which mags 51
4KB pages). An operating system could share a page between th
page tables of both applications, while still correctly ipiayg each
application’s address space.

Even with an operating system that is both non-malicious and
respects assumptions about page table structure, it ishjfm$sr
the order in which the hypervisor receives updates to crésge
appearance of malicious or non-standard behavior. Thenigoh
of trapping writes to page tables, allowing the OS to makeatgs]
then later examining the (potentially multiple) modifiedtrées
means that the hypervisor may not perceive updates in the sam

erating system is consistent with the application’s openaton its
address space. The application itself records its addpess Op-
erations by making a hypercalls for all such operationsh sscthe
nmap() system call. The hypervisor must communicate with the
application to synchronize this information, and shouldsdawith
low overhead. Page faults can be a performance-criticabtipe,
and mechanisms exist in the Linux kernel to quickly queryde-
tents of the address space on a page fault, including baldrees
and caches of recently faulted areas. InkTag should haadlésf
without significant additional overhead, and also withautsy
duplicating these performance-oriented structures ih tio¢ hy-
pervisor and application.

Protecting applications from OS duplicity Although InkTag can
isolate aHAP from the operating system, the application must still
interact with the OS in order to use essential services, sisch
opening files and mapping its address space. Traditiorhfigugh
system calls such asmap(), applications allow the operating
system to determine where in their address space to mapecesou
Althoughmmap() allows an application to specify a fixed address
for a mapping, this feature is seldom used by applicatiorecod
Applications’ reliance on OS allocation of the address spgiens
the door tdago attackd8], a class of attacks against systems with
untrusted operating systems.

lago attacks exploit the fact that existing applicationsd &n
braries, most importantly the standard C library, do noteexma
malicious operating system. They do not verify that a virag:
dress returned by the OS in responsertmp() corresponds to
an existing mapping in the application address space. Fongle,
an application expects to run with its heap and stack in idisje-
gions of its virtual address space. If the application retgia new
memory mapping, the operating system could return an asltiras
overlaps the application’s stack. Writes to the new mappiily
overwrite portions of the stack, introducing a vector toaglitional
return-to-libc or return-oriented programming attadB|[

4.2 Paraverification

We introduce a new technique callpdraverification to simplify
the hypervisor by requiring the untrusted operating sydtepar-
ticipate in verifying its own behavior. Paraverificationlge Ink-
Tag efficiently address the challenges of verifying addsgssce
integrity, drawing inspiration from commonly-usedravirtualiza-
tion techniques$], which improve performance when an OSis run
in a virtual machine. Both paraverification and paraviritzation
work by having the OS communicate a high-level descriptibitso

order as they were performed by the guest OS. Suppose the Ogntent directly to the hypervisor. Indeed, our paravertfma im-

deallocates a page of file data, and then reuses that pageage a p
table for a different process. In this order, these updatag be
benign. In the other order, it appears that the OS is allowsing
application access to another’s page tables, a likely tigoiaof
address space integrity.

Determining application intent Once a low-level page table up-
date has been interpreted as an operationtonres virtual address
space, InkTag must determine if the mapping installed byofie

plementation uses the Linux kernel’s paravirtualizatioteiface.
Before modifying a process’s page tables in the examplealtbe
OS must first make a hypercall to correlate the page tabletepda
with a high-level application request. The kernel's pantanliza-
tion interface includes a natural hook for this hypercall.

Although the guest operating system participates in verific
tion, it safely remains untrusted because the hypervisotepts
resources that it does not trust the OS to modify. Rather pian
tecting application page tables, detecting faults fromuthigusted
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Figure 5. Paraverified isolation. AAAP maintains a list of memory map-
pings in its secure address space, providing the untrusidddices into the
list. The untrusted OS must pass the same index to the Inkyffzgryisor in
order to handle page faults.

0OS, and trying to re-verify address space integrity, thélagkhy-
pervisor protects application page tables and then corssialey
access to be malicious. The OS cannot update the tabledlylifec
must use the paravirtual interface, and the hypervisorredipond
to unexpected accesses by taking corrective action (sukitiing
the OS).

4.3 Paraverified isolation

InkTag isolates &AP’s address space using paraverified operations
on secure pages. As described in sectidip InkTag must validate
OS page table updates to ensure thap virtual addresses map
the correct, unmodifie@-page. To do so, the untrusted operating
system must pair each page table update with data provinghda
update reflects the application’s intent.

When aHAP maps a region of memory to a file, it provides
the untrusted OS kernel a sectio&enthat describes the mapping.
The token is an unforgeable statement from the application t
the hypervisor that fully describes the requested mappdme
possibility for a token would be an HMAC on a description of th
desired mapping, using a secret key shared betweerAheand
the hypervisor. InkTag does not use an HMAC, but a simpl@ete
which we now explain.

Because InkTag isolatesteap from the operating system and
must manageiAP page tables, it can optimize the communication
of tokens from application to the untrusted OS to the hymenvi
All InkTag HAPs maintain a list of the mappings that make up their
address space, in the form of a list with nodes allocated faom
single array at a known virtual address in the applicatiaddress
space. The untrusted OS cannot forge or modify entries iarttag,
as it does not have access to ther's address space. Because
the hypervisor intercepts all page table updates forHhe, it
can trivially keep a small translation lookaside buffer fast the
virtual addresses that map the array of nodes. In InkTagentto
describe a memory mapping consists of a simple integer imdex
its list of maps.

On initialization, aHAP invokes a hypercall to inform the hy-
pervisor about the base and limit of its mapping list. Wher+thp
creates a new memory mapping, it allocates a new entry frem it
array of nodes, initializes it with information about the ppang:
the address range, OID and offset thepr intends to map, as well
as a marker to indicate that this entry is now valid. H»e then
sends the index of the entry to the untrusted OS as a tokennWhe
the OS incurs a page fault, it uses its existing structuremfiex-
ing memory mappings (already in service to handle the pags fa
to locate the token and sends it to the hypervisor along \uitre-
maining information describing the page table update: turess
of the page table entry, the updated page table value, anafthe
fected virtual address.

Upon receiving the page table update and token, the hypervis
ensures the token describes a valid index in #ia@’s array. If
S0, it uses its lookaside buffer to translate the virtualresisl and
retrieves the mapping information. If the described adsirasge

matches the fault, the hypervisor uses the provided objebbtiset
information to verify the contents of the newly mapped pbagbi
frame. If the address range does not match the fault, thexiisde
not contained within thelAP’s array, or the index does not specify
a valid entry, the hypervisor will not install the new mapgpirin
the rare event that the virtual address corresponding t@miey

is not mapped, the hypervisor does not install the mappiry an
injects a page fault into the application when it is next siched.
The page fault, if correctly handled by the untrusted OS,cailise
the hypervisor to refill its lookaside buffer, the applicatiretries
the original access and faults again, and the hypervisor moay
access the entry for the token.

Paraverification foHAP address spaces significantly reduces
the complexity of the InkTag hypervisor. Significant OS casle
dedicated to efficiently looking up memory ranges during mgm
management. Without paraverification, InkTag must dufgithis
code so that it may efficiently respond to changes irHhe's page
tables. Instead, InkTag leverages the existing OS indextsires
by requiring that the OS look up the relevant token for a new

mapping.

4.4 Verification of address space invariants

An lago attack subverts application security by violatingariants
that the application assumes are true about its addrese:dpat
mappings returned by the operating system do not overlap- Ho
ever, an untrusted OS may violate this invariant at any time.
response, &AP could take on the responsibility of allocating re-
gions of its address space, only requesting new mappingseat fi
addresses, and not accepting any variation from the uatiu3s.
However, we wish to avoid importing significant OS functibna
ity into either the hypervisor or application. Alternately HAP
may verify that each mapping allocated on its behalf by the OS
respects necessary invariants. We take this approach mkifag,
while shifting the burden of proving that mappings respaeaii-
ants from the4AP to the untrusted operating system.

InkTag HAPS use an array of descriptors to enumerate the con-
tents of their address space. They maintain a linked lishtfes,
sorted in address order, with integer indices serving asque and
next pointers. When aAP requests a new mapping from the OS, in
addition to returning the newly allocated address, the G8 ralust
return a token to the application: the index of the applar@s entry
in its list of maps that is immediately previous to the newradd
allocated by the untrusted OS. As a result, ther can trivially
both validate that the new map does not overlap any existagsm
and insert it into the list in the proper location, withouedag to
maintain its own sorting structures.

As with page table updates, paraverification for addressespa
invariants allows applications to defend against a duplis oper-
ating system, while relying on existing indexing structuvethin
the untrusted OS to perform most verification tasks.

5. Access control

Isolation and address space integrity provide the buildilogks
for secureHAP execution under an untrusted operating system.
However, real systems require usable mechanisms for dgcure
sharing data. InkTag is the first system to provide accestalon
under an untrusted OS.

Access control mechanisms in InkTag should meet the follow-
ing criteria:

o Efficiency. Ultimately, the hypervisor will be responsible for
enforcing access control, and must do so on performance-
critical events, such as updating page tables. In additian,
wish to avoid bloating the trusted computing base by reqgiri
the hypervisor to evaluate complex policy decisions. A good



access control mechanism will have a simple and efficient hy-
pervisor implementation.

Familiarity. A wide spectrum of access control mechanisms

exist, both in the literature and in practice. However, most
systems still rely on, and are well served by, users and group

InkTag's access control mechanism should map easily onto

these familiar primitives.

Flexibility. Although users and groups will ease adoption, we
also believe that the security-critical applications tin&fTag is
designed to support will benefit from the ability to creatscu
tom, descriptive access control policies. A shared, ontaifio
user such as the Unix “root” creates similar security protde
to a shared operating system, so users of InkTag should be abl
to create policies for their data without the blessing of stesy
administrator.

Unlike traditional access control systems that define jpais
(such as users in Unix), InkTag allows new principals, orneve
new types of principals, to be defined in a decentralized way.
example, an InkTag system might implement decentralizedyzg,

5.2 Decentralized access control

An important goal for InkTag’s attribute systendscentralization

An InkTag user should be able to define new principals and poli
cies to control access to her files. Decentralized accedsotai
lows high-assurance, multi-user services to define their avcess
control policies, enforced by the hypervisor, without irefyon a
system administrator.

InkTag decentralizes attributes wittierarchically named at-
tributes Attributes are named hierarchically, as a list of compo-
nents separated with a ‘.’ character. IHaP has attributeX, then
the HAP may create new attributes nam&dY” for any Y. For ex-
ample, ifuseal i ce is represented using the attributger. alice,
she might create the attributeser.alice.photos for her photo-
sharing program. This attribute could be used both to m@gihoto
access to specific authorized programs, as well as to erfzaire t
photo-sharing program does not access unrelated files,nojyni
it with only the attribute.user.alice.photos, and not the parent
attribute. user.alice.

in which any set of users can create a new group and agree to a

group administrator. Similarly, an InkTag system can imptat
decentralized user login: each user must only trust her @somal
login program, not a special system binag$.Q).

5.1 Attributes for access control

Access control in InkTag is based attributes An attribute is a
string, such asuser.alice or .group.prof. EachHAP in InkTag
carries a list of attributes that is inherited across eventh as
fork() andexec(), similar to the way in which Unix processes
have an effective user or group id. Each OID has an accesstont
list that specifies the attributes that must be carried Ieyag for
thatHAP to access the object. OID access control lists are divided
into three access modes: read, write, and modify. Each siccede
specifies amattribute formula a logical formula that must evaluate
to true for aHAP to access the object.

5.3 Login and decentralized login

User login provides an instructive case study for accessraon
First, consider a system that wants to have a single truswid |
program. The system must provide a trusted path from thairypin
to a shell that runs with a user’s attribute (e.gser.alice).

The InkTag hypervisor starts evenap with a special attribute
.bin.(oid), where(oid) is the string representation of the file’s OID.
The system administrator defines thgps.login attribute with an
add access modé = .bin.(login oid) where(login oid) identifies
the login binary. When the login binary starts, it makes adngpll
to obtain the apps.login attribute. Theuser.alice attribute has an
add access modd = .apps.login, allowing the login program
to add the.user.alice attribute when presented with the proper
credential (such as a password). Users trust the login pnogo

The read and write access modes of an OID specify formulas drop the.apps.login attribute, so once Alice has control, thap

that must evaluate to true for a principal to read or writedbgect.
For example, /W = .user.alice is a simple formula that evalu-
ates to true (allowing write access) ifraP has the.user.alice
attribute. R = (.user.alice) V (.group.prof) is a formula that
evaluates to true (allowing read access) ifHaP has either the
.user.alice or the.group.prof attribute. The modify access mode
allows aHAP to modify the attribute formula for any of the access
modes in an OID’s access control list.

In addition to access control lists on OIDs, attributes theles
also specify access control lists, albeit with only two nmsdedd
and modify. The add access mode allows4p that satisfies the
associated attribute formula to add the attribute to its bstnAc-
cess control lists on attributes are the mechanism by whiabs
in InkTag can take on the role of different principals, agalas to
aset ui d binary in Unix that allows a user to access resources
owned by another principal. For example, thger.alice attribute
might have the access mode = .apps.login, which means that
anyHAP that has theapps.login attribute can add theuser.alice
attribute. AHAP can drop an attribute it owns at any time via a
hypercall. As with files, the modify access mode for an atteb
allows aHAP to change an attribute’s access control list. Modifying
attributes is how InkTagiAPs manage their access control creden-
tials.

All attribute formulas are expressed in disjunctive norifoamn
(DNF) without any negations. This makes attribute formdins-
ple to evaluate in the hypervisor, and also easy for peoplader-
stand. Checking attribute formulas requires only 207 liofesode
in the InkTag hypervisor.

can no longer change users. The login program &escs Alice’s
shell, which runs with theuser.alice attribute.

With centralized login, all users trust the login binary dats
administrator). With decentralized login, a user need dnhgst
her own login binary, though she still must obtain permisdior
her user name from an administrator (after all, it is therqgio-
cess being decentralized, not the add user operation). $ée u
administrator (whoever can run programs that have.tker at-
tribute) establishes theuser.alice attribute with an add access
mode A = .apps.login.alice. Alice compiles her login program,
informs the login administrator (who can run programs theateh
the.apps.login attribute), to create theipps.login.alice attribute
with add access modé = .bin.(alice login oid).

To log in, Alice executes her login program, which is givea th
attribute .bin.(alice login oid) by the hypervisor. The login pro-
gram obtains theapps.login.alice attribute, dropping the attribute
.bin.(alice login oid). It then checks Alice’s credential (e.g., pass-
word), and if valid, obtains theuser.alice attribute, dropping the
attribute. apps.login.alice, and starting a shell.

With decentralized login, a user can completely control how
they log in, using whatever credentials and process theiyedes
There is no single login binary that serves as a target foi-mal
cious attacks. A compromised decentralized login binavegihe
attacker credentials only for the compromised user. Intf@csys-
tems would likely provide a default login binary for usersontio
not want to create their own.

As part of future work, we plan on investigating the security
implications of InkTag’s attribute-based access control.



5.4 Naming and integrity

InkTag does not currently support sets of OIDS (i.e., dogest).
However, the hierarchical layout of traditional file systedpes
convey an important property that is essential for appboase-
curity: file integrity. Consider the standard Uniet c directory.
Applications rely on the property that only trusted systedman-
istrators can create or modify files iret ¢, because those config-
uration files can dramatically change application behawidTag
must provide some mechanism to convey similar securitgred
information.

InkTag provides integrity guarantees for files with spezé
attributes callechamespacesNamespaces are strings created hi-
erarchically, as attributes, and have access controlthisiisallow
a HAP to add the namespace to its list of attributes. Although we
consider attributes for access control and namespaces ¢orbe
ceptually distinct, they are functionally identical.

Namespaces convey integrity information by acting as gate-
keepers to file creation. When an application creates a newiti
InkTag hypervisor must assign the file an OID. Each OID is gen-
erated from two components: a namespace and an arbitrarg,str
similarly to the way in which a file is created within a diregto
with a given file name. To generate an OID, the applicationtmus
carry the desired namespace in its list of attributes. Thehysor

hashes the two components, and uses the result as the new OID
Any HAP that later accesses the file knows that it was created by a

HAP that carried the associated namespace.

Note that namespaces do not restrict file accesstaamay
open a file created within a namespace regardless of whetear i
ries that namespace in its list. Consider a configuratioectry
similar to/ et c. In InkTag, there would exist aus. etc namespace,
with the add access modé = .group.sysadmin. A HAP run by
a system administrator (member of the sysadmin group, taus c
rying the .group.sysadmin attribute) may create a file by adding
the.ns.etc attribute, specifying a name (e.g. “passwd”), and pass-
ing both components to the hypervisor, which permits the '©ID
creation.

A HAP opening the file generates the OID by hashing. etc
and “passwd,” though it is not required to carry the.ctc names-
pace, only to know of its existence. ThRaP can trust that the con-
tents of the file were generated by a system administratoguse
only a member of of the sysadmin group could create the file ini
tially (as checked by the hypervisor), and it trusts suchgipals
to correctly manage access control for files they create.

6. Storage and consistency

InkTag stores secure page metadata in memory for any seages p
whose data segments also reside in memory. The untrustealt-ope
ing system is responsible for placing the data segmentscofree
pages on the virtual disk. For secure pages to be durabl@ag¢nk
must also store secure metadata: the OID and offset comdspo
ing to each block of data, its hash, and the encryption iligttion
vector (V) necessary to decrypt the data. This section exddis
a number of practical challenges in persistently and tramesyly
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Figure 6. InkTag disk layout. Data and metadata are interleaved to opt
mize disk scheduling.

data storage to the untrusted OS as a contiguous virtuahdiisut

the sectors employed to store secure metadata. The sizee of th
media, as seen by the untrusted OS, is smaller than the sthe of
physical drive or backing file. When reading or writing a secu
page, the secure InkTag metadata will always reside in teest
metadata storage block, causing limited performance eagih

Synchronizing storage of secure data and metadatmkTag em-
ploys paraverification techniques to properly synchromszgage

of secure data and metadata. Before the untrusted OS may writ
out a page via the virtual disk, it must notify the InkTag hype

sor. If the physical frame being written contains data foSgrage,
inkTag ensures that the page is encrypted, and passes eékarnel
metadata to the backend driver for the virtual disk. The badk
consumes this metadata while writing pages to the physisél d
placing each piece of secure metadata in the metadata bussst

to disk block containing the data for ti§epage.

Providing guarantees on data availability Although InkTag is
unable to provide availability guarantees in many cases hih
pervisor can enforce OS deadlines for writing out dirty d&ar
example, if a reasonable upper bound for dirty data resitirige

OS is 30 seconds, InkTag may suspect OS malfeasance if ibhas n
detected a write of a particular secure page after 45 secdéids
though the hypervisor may not be able to retriBveages in mem-
ory that the OS has simply erased, it can prevent applicafiam
proceeding under the incorrect assumption frpages are safely
on disk. Similarly, aHAP may notify the InkTag hypervisor when

it explicitly requests that dirty pages be written out (sashwhen
invoking thensync system call), and receive confirmation when
the writeback actually occurs, or a warning that the OS has no
complied.

Preventing deletion or loss of high-assurance datd8ecause
filesystem indexing structures vary widely between file ey,
it is difficult to verify their correctness at hypervisor &vAs a re-
sult, a malicious OS could appear to comply with InkTag pobg

writing out file data blocks but not updating filesystem matad
leaving file data blocks inaccessible.

InkTag provides a secufesck mechanism foconservation of
high-assurance datm the face of this threat. Secure page metadata
includes file and offset information, allowing InkTag to oestruct
secure files independently of OS indexing structures. Intiadql

storingS-page metadata, including addressing consistency betweeninkTag may prevent the OS from overwriting a secure pagessnl

OS and InkTag storage.

Data layout InkTag must synchronize updates $epages and
metadata, and should store secure metadata efficientlyn\tee
OS issues aread request for secure page data, the hypetvisbd
not require significant additional lookup work in order tsafead
in secure page metadata. Also, storing secure metadathl siaiu

the OS is replacing the page with a newer version of the same
secure page, or if a newer version of the page has previoesly b
written elsewhere on disk.

Consistency for secure pages in the face of crashdakTag is the
first system to address consistency requirements for anisiatt
operating system. Without proper filesystem consistenieydfita

confound OS disk scheduling by adding disk seeks to store or may become unavailable, file updates may be lost, and access

retrieve secure metadata.
InkTag addresses these goals by interspersing storagewese
page data and metadata on the physical disk, then presehéng

control changes may not be honored.
When the OS writes a#-page to disk on behalf of mAP, both
the newS-page and its hash must be stored. If the system crashes



after only writing theS-page contents or the hash, valid data could
become unavailable, because InkTag would be unable toyitsif
authenticity. InkTag keeps two versions of e&:page’s hash: the
version for the page on disk before the update, and aftenrBef
a data write, InkTag will store the updated hash on disk. Beea
disk drives write blocks atomically, a hash matching theadaill
always be on disk, and high-assurance data on the backing sto
will always be available.

In our current prototype, per-file metadata (such as aca@ss ¢
trol information and the file's length) is stored separafetyn the
guest filesystem, in storage private to the hypervisor. \&feddo
future work enforcing consistency between per-file and gzeye
metadata.

7. Implementation

This section describes our prototype implementation ofTégk
InkTag consists of three major components: the InkTag hyper,
extensions to the untrusted guest OS to support paravéodfica
and tools to compile user-level applications to rumass.

7.1 InkTag hypervisor

The InkTag hypervisor is built as an extension to the KVM (Ker
nel Virtual Machine) hypervisor, a standard module inctligethe
Linux kernel. We extend the Linux 2.6.36 kernel and KVM imple
mentation. InkTag is built to support Intel's VMX hardware-v
tualization support, although we believe its design to beadlg
applicable to hardware virtualization support in AMD presers.
During execution of the untrusted guest operating systeth an
non-InkTag applications, the hypervisor behaves almesttidally
to a hypervisor without InkTag support, with most virtualion
tasks handled by hardware virtualization extensions ptasehe
processor. The untrusted EP¥3(2) is used to translate guest-
physical addresses during untrusted execution, and mgst jga
ble operations (except for those orHaP’s address space) occur
without hypervisor intervention.

Scheduling Upon scheduling aAP, InkTag must ensure that the
untrusted OS cannot execute any code in a high-assurantaxton
To protect the1AP from the OS, it disallows automatic vectoring of
interrupts and exceptions by the virtualization hardwHrekTag
allowed the hardware to vector interrupts automaticalignt the
operating system would gain control while still executingihigh-
assurance context, with cleartext access to secure pagelspio-
cessors allow for fine-grained control over enabled viinagion
features via bits in the virtual machine control structiWw#CS),
the hardware descriptor used to control virtualizations@bedule
aHAP, InkTag clears many of the feature bits in the VMCS, installs
the trusted EPT, and then transfers control torthe.

When an interrupt or exception occurs duringP execution,
InkTag saves and then clears thep’s register file. The untrusted
OS must be prevented from reading or writingP registers. Ink-
Tag directs the instruction pointer to a smafitrusted trampoline
in a part of theHAP's address space unprotected by InkTag. This
trampoline is responsible for interactions betweentthe and the
guest OS (such as invoking system calls), and also for resthe
ing theHAP when theHAP’s process context is rescheduled by the
operating system. TheAP receives system call results from the
trampoline, but does not trust it — all information is valield as if
it came from the untrusted OS.

Page tables EachHAP has two page tables, and shares the system-
wide trusted and untrusted EPTs. One page table is writtentti
by the untrusted kernel, which we refer to as @8 page table
It is written directly by the OS (even when using the parasdt
ized interface, Linux also updates the page table directlydl its

contents are not trusted. The other page table is writtentpnthe
InkTag hypervisor in response to calls by the untrusted @Sate
successfully verified, which we refer to as thgpervisor page ta-
ble. The hypervisor page table is trusted. For a non-malicio8s O
its page table should be a superset of the hypervisor patge tab

When aHAP runs in untrusted mode (e.g., just before making
a system call)cr 3 points to the OS page table, and wherp
runs in trusted mode, the hypervisor points3 to the hypervisor
page table. In trusted mode, there is a single untrusted imgdpr
the pages used to marshal and unmarshal system call argument
InkTag must guarantee that the OS has not overlapped theimgapp
of this area with any trusted mapping. In untrusted mode, the
process can map affypage, but access to that page will be detected
by the permission bits in the untrusted EPT, and the hypervidl
encrypt and hash the page before giving the untrusted camssc
to the page.

Although the untrusted OS cannot access the hypervisor page
tables, it is responsible for their allocation. On each ptaige
allocation on behalf of aiAP, the guest OS must also allocate a
hypervisor page table page and send both to the InkTag higperv
in order to successfully add to the page table tree. The kigoer
protects the hypervisor page table page from the guest Qi$hait
part of the page table tree is deallocated, at which poingthest
regains access.

7.2 Untrusted OS extensions

We extend the untrusted guest kernel to support paraveidfica
Information about updates teaP page tables form the majority
of paraverification events, and take advantage of existargyir-
tualization callbacks present in the Linux kernel. We itigta un-
trusted module into the guest kernel to handle these cibdade
kernel module is responsible for receiving tokens fraaps re-
guesting memory mappings, and passing these tokens tokhegn
hypervisor on page faults.

Although untrusted, the guest kernel module is cooperative
when uncompromised, and attempts to minimize the amount of
communication with the InkTag hypervisor. Any hypercallises a
VM-exit (a context switch from guest to hypervisor), thusanes-
sary communication should be avoided to maximize perfooman
The untrusted kernel module tracks which processes contsis,
and communicates page table information only for thosequ®es.

In addition, the kernel module performs extensive batcbigage
table updates. While the Linux paravirtualization integaupports
some batching of address space updates (such as a seriggeof pa
table updates occurring before a TLB flush), our kernel madul
extends this buffering significantly, because the InkTagehyi-

sor can safely wait to process most updates until directfgrbe
scheduling a1AP. This allows communication of paraverification
information without any additional VM-exits, as schedgliaHAp
already requires passing control to the InkTag hypervisor.

7.3 Building HAPs

In our current prototype, InkTagAPs must be compiled from C
source code. C applications are builtrasPs primarily by replac-
ing the standard C library and startup files with InkTag-#jieeer-
sions. We modify standard C startup files to initialize therent
process as aAP before passing control to the C library. On ini-
tialization, theHAP sends the OID of its executable to the InkTag
hypervisor, which initializes aAp context, and adds théin.(oid)
attribute. Note that any process may invoke initializatitaiming

to be any executable OID. However, after initialization th&-
Tag hypervisor will ensure integrity for the process adsligsace.
Thus to continue executing asiaPr, the process must construct an
address space that is byte-for-byte identical, and thustifumally
equivalent, to the originally claimed binary.
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null 0.04 223 | 55.80x 80
openiciose|  0.87 6.90 7.05% 703% —*—inktag
ctxsw 2p/0k 0.71 1.01 1.41x 60 - - & - inktag-nohash
File create 5.46 12.92 2.36x 50.% s 4= linux
File delete 3.40 7.56 2.23x @ 401 g
mmap | 4059.20 | 40360.00|  9.94x 2 4 R S~
pagefault 0.89 6.68 7.50% £ 5 9 NS
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Table 2. LMbench latency microbenchmark results (in microsecgnds. 4K 16K 64K 256K 1024K

Window size

Random msync

We automateHAP interaction with the InkTag hypervisor by 250 I~
interposing on system calls in the standard C library. Fangxe, 200 . g
when an application callsnap() , the system call is intercepted \ - @ - inktag-nohash
by our trusted InkTag library. The library performs the gystcall, 1507 2o ea LT
validates the result to ensure that the untrusted OS doesatate %100_“, :
invariants for the address spadg.d), and passes a token to the £ . ’\
untrusted OS for handling page faults in the newly mappeibneg T 50 AR
(54.9. R -
InkTag does not expose information about hashes and encryp- g . R
tion keys forS-pages to applications. ThusPs must interact with 4K 16K 64K 256K 1024K
secure files by mapping them into their address space. Weimpl Window size
mentmrap( ) -based versions of standaréad() andwr it e() - )
system calls to support applications that rely on thoses datifile Figure 7. InkTag storage backend per_formance as measured by seduenti
1/o. or random msync()s on a memory-resident file.

7.4 Block Driver

To implement transparent loading 8fpage metadata, we add a
new block driver implementation to the QEMU (the userspace
portion of KVM) block driver interface. The new block driver
transparently translates read and write requests fromainare
emulation layer. Doing the translation at this level putsaushe
lowest layer before the actual hardware allowing us to batigist
and handle the block requests.

Our secure metadata consists of two 32-byte hashes, an OID,
and an offset. We place secure page metadata once every 82 pag
of normal data. We track which disk sectors contain valipages
using a bitmap. This bitmap is mapped and updated s exe-
cute, and is written to disk only upon shutdown. This polegafe
even in the event of a crash: there will be enough data on dibk t
able to recover the bitmap.

enough to turn its components intapPs: 68 lines of modifications
to the build system and 5 lines of configuration changes.

The null syscall benchmark primarily measures the latericy o
switching between an application and the OS, and represeats
worst case for InkTag. AMAP must context switch from user con-
text, to the virtual machine, then into the operating systand
then return along the opposite path. The high latency fotchivig
between application and OS directly impacts the performanfc
nearly all of the LMBench microbenchmarks, as they measwre i
teractions between an application and the operating sy#tdui-
tionally, operations that involve any kind of page tableafgd such
asmmap, f or k, andf or k+exec, are also affected due to the Ink-
Tag hypervisor validating each page table update. Thesbexds
appear large in isolation; however, most applications agrifs
cantly less sensitive to system call latency than microberacks.

. Most of the LMBench benchmarks show a difference in latency
8. Evaluation that is 10s of microseconds or less.

In this section we evaluate the performance overhead indpbge

our InkTag prototype built in the KVM hypervisor. We evaledt 8.2 Storage

InkTag's performance using two different machines: we edaricy We evaluate InkTag's storage backend with a benchmark yimat s
and SPEC CPU benchmarks on an i7 860 running at 2.80GHz, andchronizes regions varying in size from a 256MB secure filéedc
InkTag block storage and application benchmarks on an liitel  ijn memory to the virtual disk. We disable host OS caching far o
870 at 2.93GHz. Both machines have quad-core processoBs, 8G virtual disk, to best simulate the effect of actual disk stthimg on

of memory, and run Ubuntu 10.04.4. I/0 throughput. Figur& shows the performance of syncing vary-

We modify the 2.6.36 Linux kernel and QEMU 0.12.5 for Ink-  ing window sizes, from 4KB to 1MB, either sequentially thgbu
Tag, and run unmodified versions for the baseline. VM guests r  the file or in random order. In addition, we show humbers foe v
with a single virtual CPU, 2GB of memory, and the same kerael a  sjon of InkTag in which we have disabled encryption and haghi
the host. In the InkTag guest, all benchmark binaries runARs in order to isolate the effect of disk scheduling on perfanoea
The encryption and hashing occur when the OS tou€hpages

8.1 Microbenchmarks to sync them to disk. Our InkTag prototype interleaSgsage data

Table 2 shows results from the LMBencl8(] suite of OS mi- and metadata at an interval of 32 pages (128KB). For windpessi

crobenchmarks. LMBench is a series of portable microbeacksn above 128KB, InkTag approaches the performance of a stdndar
focused on measuring individual OS operations in isolatidle block device, as the InkTag block driver can combine a page of
restrict our evaluation to focus on file operations, memoanip- metadata with 32 data pages in a single write to the backing de

ulation, and process creation, as these are the areas théitewi  vice. Beneath that threshold, InkTag’s performance ssiffespe-
affected by running as an InkTagap. We modify LMBench only cially for sequential writes. This is due to InkTag’s metzdky-
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Figure 8. SPEC CPU2006 benchmark performance. “Geomean” indicates
the geometric mean of relative performance.

Linux InkTag
Apache latency 195 ms 220 ms (1.1%X)
Apache throughput | 462.42 req/s| 453.93 req/s (1.02)
Dokuwiki throughput 13.6 reqg/s 8.83 req/s (1.5%)

Table 3. InkTag performance for large applications.

Apache DokuWiki
Linux InkTag Linux InkTag
Check hash - 209 - 2,911,649
Check zero hash - 57 - 2,893,517
Update hash - 82 - 1,029
EPT fault 689 1,131 | 10,668 78,055
VM-exit 171,145 1,217,042 | 138,801 | 11,216,363

Table 4. Counts of performance-critical events during benchmascex
tion. We count the number of times InkTag must hash a data (i&eck
hash”), hash a data page that should be zero-initializetidt& zero hash”),
encrypt a page and update its hash (“Update hash”), faultresged page
table (“EPT fault”), and context-switch out of the guest vexit”).

out. For example, sequential writes to each of the 4KB pages i
single cluster of data pages represents a good case forthisks-
ing. InkTag, however, must write the metadata page follolsethe
data page for each of these writes, causing the disk to se&kaa
forth instead of writing sectors in sequential order.

8.3 Application benchmarks

We measure the overhead imposed by InkTag with three differe
types of applications: CPU-bound SPEC benchmarks, thelfgpac
web server, and DokuWiki, a complete wiki application catwe

to use InkTag attributes for authentication.

SPEC Withlittle OS interaction, CPU-bound applications exhibi
little performance overhead when running-asrs. Figure8 shows
results for selected benchmarks from the SPEC 20@® quite
(InkTag does not support Fortran). Out of twelve benchmarke
benchmarks run within a 3% performance overhead of unmaddifie
KVM, and gcc benchmark has the largest overhead of 14%.

Apache Table 3 shows results for our evaluation of the perfor-
mance of the Apache webserver when compiled asm We run
the standaréib benchmarking tool included with Apache on the
machine hosting the virtualized guest, providing nearlinited
bandwidth from the web server to client. We execute 10,000 re
quests from client to server, at a concurrency level of 10te T

tency, and a 2% overhead in throughput relative to normal-vir
alized execution. Apache represents a relatively good foadpek-
Tag: with several long-lived processes, Apache rarely bgsay
the increased costs imposed by InkTag for applicatiorailiition
and teardown.

DokuWiki In order to demonstrate the ability of InkTag to pro-
vide security for realistic workloads, we modified the Dokili&/
wiki server to take advantage of InkTag secure files and acms
trol. DokuWiki is a wiki written in PHP that stores wiki pages
files in the server filesystem. We recompiled the PHP CGl itar
work with InkTag and ran DokuWiki as a CGl script. We added an
InkTag authentication module to DokuWiki to allow a userdg |

in with their system credentials (similar to the decenzedi login
process described §5.3) and to restrict access to wiki content via
InkTag access control.

To test the effect of InkTag on a representative set of modifi-
cations to a representative DokuWiki installation, we dmaded
a set of 6,430 revisions of 765 pages from the DokuWiki websit
(which is itself run using DokuWiki) to simulate wiki actiyi We
evaluate DokuWiki with a 90% read workload, which we believe
a reasonable characterization of a wiki workload. Eachennd-
places a page with the subsequent revision of a page in the-dow
loaded DokuWiki corpus. We measured the total wallclocletfor
10 clients to perform a collective 1,000 requests on the.v@kir
wiki client makes use of an XML RPC interface that DokuWiki
provides to avoid the need for programmatically interfgcivith
DokuWiki forms.

As a HAP with InkTag authentication, DokuWiki runs with a
1.54x overhead over a baseline virtualized execution. As a PHP
application, DokuWiki maps a large number of scripts (with i
tegrity assured by the InkTag hypervisor) into memory aner-ex
cises a significant amount of anonymous temporary memory. As
with OS users, InkTag’s authentication aligns along pretesind-
aries. Thus, we must run DokuWiki as an inefficient CGI applic
tion, not as an Apache module. CGl is a performance worstfoase
InkTag: each request initializes and destroys an entiréicaion
address space.

Virtualization metrics Table 4 shows counts for a number of
performance-critical events during the execution of ougéaap-
plication benchmarks. Specific to InkTag execution are thaler
of times physical frames are hashed, as well the number @stim
the hash of the associatB8ebage is updated (this event also counts
the number of times af-page must be encrypted). With a few
long-lived processes, most of the address space for theh&paeb
server remains mapped in the trusted EPT, requiring relgtiew
hash updates. DokuWiki, which constructs and destroys dread
space for each request, has a large number of hash operations
Of particular note are the number of times InkTag is requktste
verify the hash for a page consisting entirely of zeroesatt, fthe
vast majority of hash operations are invoked to determiaepfge
is initialized to zero (2.8 out of 2.9 million hash operasdir the
DokuWiki benchmark). InkTag optimizes this case: when dske
verify the hash of a physical frame, InkTag compares the halsie
with the hash of a zero page. If the page should contain omby, ze
InkTag simply verifies that property, rather than computintyll
digest. As a result, computation of hashes is not a signifieator
in InkTag’s performance overhead. Similarly, while endigp is
necessary for privacy, it does not significantly affect ingrtime:
the majority of pages that would otherwise be encrypted due t
access by the operating system are in fact anonymous memory
regions that have been unmapped by an application. Thesentir

Apache web server serves requests with a 13% overhead in la-2ht t p: / / www. dokuwi ki . or g
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memory region is being destroyed, so it needs only be erased,
encrypted for privacy and hashed for integrity.

A major factor for InkTag performance is the number of times
the processor must switch context between the virtual macind
the host. In the DokuWiki benchmark, for example, InkTag tmus
exit the virtual machine nearly two orders of magnitude nmajten
than a standard execution. We hope to investigate ways teeed
the cost of such context switches as part of future work.

9. Related work

Untrusted operating systemsinkTag, XOMOS p6], SP® [47],
and Overshadowl[l, 35] share the goal of minimizing the ability
of an untrustworthy system component to tamper with a seasit
application. Previous work focused on isolating high-gssce ap-
plications from the system, while InkTag focuses on allayihe
application touseuntrusted system services, providing access con-
trol and crash recovery for persistent storage. For exgmyiée
Overshadow guarantees that user processes are isolatedhfeo
operating system, it does not implement access controlefoure
data: once an application that has created a secure filen@iesi
there is no meaningful way for processes to share accesattiiléh
Just as InkTag allows a trusted process and hypervisor o sto
trusting the OS, CloudVisor4B] allows a trusted process, OS,
and nested hypervisor to stop trusting the hypervisor ahérot
cloud management software. Another approach, exemplified i
Proxos 4], essentially reimplements portions of the OS in the
application; this approach does not address shared afistigbe-
tween mutually untrusting programs.

Virtual machines The use of virtual machine monitors to help
protect operating system and application execution is nogwa
concept; there have been systems ranging from providinigated
virtual hardware per secure applicatid8] to enforcing kernel en-
try and exit points to provide system integri. By allowing ap-
plications to make use of extensive operating system fissifor
sharing data, while still verifying its behavior, InkTagopides a
much more flexible solution than heavyweight per-applaratiir-
tualization. At the other end of the spectrum, simple codegirity

is not sufficient to ensure operating system saf2fy.[

Trusted computing Recent systems, including Flickeq], TrustVi-
sor [28], and Memoir B3] leverage the TPM to completely isolate
sensitive computations, such as encryption and random eumb
generation, from the OS. These systems can protect an applic
tion’s random number generator’s internals from being delato
the OS, but they cannot protect larger code that requiresu@&S f
tionality, such as file access.

Benign OS integrity Another related branch of research attempts
to prevent malicious inputs from compromising a non-malisi
OS, including HookSafedp], KernelGuard 89|, and several oth-
ers R, 10, 27, 40]. These systems often prevent specific classes of
security problems and are not designed for the strong aalvals
model InkTag can defend against.

VM introspection Several systems attempt to enforce security
properties on a non-malicious guest OS by interpreting lkeve!
events based on expert informatio®4| 34, 38, 46|, automatic
source code extractiorly, 20, 23], or inferred from observing
program executions4] 14]. This interpretation is fragile (called
the semantic gap9]) and, broadly speaking, work in this area
assumes a weak adversarial model. InkTag’s paraverificatioids
the semantic gap and provides fundamentally stronger gtess.

Sandboxing This work is concerned with assuring the integrity of
necessary OS functionality; yet this is easily conflatedhthie goal
of isolating untrusted applications, or sandboxing. Savercent

sandboxing architectures have explored techniques tmitt @S
access 15, 36, 48], or monitor system calls3, 6, 16, 22, 37] to
protect the OS’s sharing abstractions from a maliciousiegiibn.

Hierarchically Named Access Control In recent years, work in
the area of hierarchical naming and attribute based acaass c
trol has landed mostly in the area of distributed systemsgaittl
computing [, 12]. ABAC [41] and XACML [32] are both projects
aimed at bringing attribute based access control to themige
world. InkTag differs in scope, whereas these projectsamyefine
attributes on employees, InkTag tries to implement flex#ddeess
control at the level of individual processes.

UserFS p5] allows principals to hierarchically manage creation
and deletion of sub-principals. The system uses traditidias as
a namespace for managing access control of files and resource
UserFS achieves the goals of efficiency and familiarity bas h
difficultly easily expressing group semantics and even rfiexéble
access control policy since processes can have only one UID o
effective UID at a time. InkTag does not depend on the corafsit
code in the guest operating system, and can achieve morbl@exi
policies through attributes.

10. Conclusion

InkTag represents a significant step forward in verifying blehav-

ior of untrusted operating systems. By removing the burdeat-o
tempting to verify a completely unmodified operating systear-
averification enables a simple, high-performance hyperimsple-
mentation. InkTag is the first such system to enable accegsoto
for secure data, as well as address essential system isstieas
crash consistency between OS-managed data and securataetad
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