.

 SCIENCES

T EMe A S S ARE A (S5 T N

4

DEPARTMENT OF
UNIVERSITY OF

A

¢ Industry shift to multicore chips

¢ Renewed importance of parallel programming

A

¢ Optimistic concurrency can find more
parallelism

Al

¢ How much can it improve my system?

QUANTIFYING POTENTIAL OF
OPTIMISTIC CONCURRENCY

2¢ Build an optimistic system and measure
st Current best option

st Specific

¢ Methodology for assessing potential benefit and

tuning opportunities

—> 3¢ How can optimistic concurrency help

performance?

¢ How much does 1t help in practice?

\I

2 Will 1t help my existing lock-based system?

2t Methodology
2t Case Study

LINKED LIST EXAMPLE

Counter Modifier

lock(list.lock); lock(list.lock);

cur = head; if (head.value == “A"){

while(cur.next != NULL) { head.value = “Z2";
count++; }

cur = cur.next; unlock(list.lock);

}
unlock(list.lock);

A

Writes

LINKED LIST EXAMPLE

Counter Modifier

TockGlist . lock); lock(Listsloek):;

cur = head; if (head.value == “A"){

while(cur.next != NULL) { head.value = “Z2";
count++; }

cur = cur.next; unlock(list.lock);

}
unlock(list.lock);

A

Writes

LINKED LIST EXAMPLE

Counter Modifier

lock(1list.lock); lock(list.lock);é——Ihhgzvvaﬁ

Efur—headse—— [oclk Acquire -~ 1f(head.valuek==""niy
while(cur.next != NULL) { head.value = “Z72";
count++; }

cur = cur.next; unlock(list.lock);

}
unlock(list.lock);

cur

head

A

Writes

LINKED LIST EXAMPLE

Counter Modifier

lock(list.lock); lOCk(liSt.lOCk);(——Ihhgfvvaﬁ
cur = head; if (head.value == “A"){
while(cur.next != NULL) { head.value = “72";

count++; }

cur = cur.next; unlock(list.lock);

}
unlock(list.lock);

cur

head

A

Reads

Writes

head

nodel.next

LINKED LIST EXAMPLE

Counter Modifier

lock(list.lock); lOCk(liSt.lOCk);(——Ihhgfvvaﬁ
cur = head; if (head.value == “A"){
while(cur.next != NULL) { head.value = “Z2";

CoMtrttat» }

cur = cur.next; unlock(list.lock);

}
unlock(list.lock);

cur

head

A

Reads

head cur

Writes

nodel.next count

LINKED LIST EXAMPLE

Counter Modifier

lock(list.lock); lOCk(liSt.lOCk);(——Ihhgfvvaﬁ
cur = head; if (head.value == “A"){
while(cur.next != NULL) { head.value = “Z2";

count++; }

Bt curaniexts unlock(list.lock);

}
unlock(list.lock);

== A

Reads

head cur

Writes

nodel.next count

LINKED LIST EXAMPLE

Counter Modifier

lock(list.lock); lOCk(liSt.lOCk);(——Ihhgfvvaﬁ
cur = head; if (head.value == “A"){
while(cur.next != NULL) { head.value = “72";

count++; }

cur = cur.next; unlock(list.lock);

}
unlock(list.lock);

== A

Reads

head cur

Writes

nodel.next count

node2.next

LINKED LIST EXAMPLE

Counter Modifier

lock(list.lock); lOCk(liSt.lOCk);(——Ihhgfvvaﬁ
cur = head; if (head.value == “A"){
while(cur.next != NULL) { head.value = “Z2";

count++; }

cur = cur.next; unlock(list.lock);

}
unlock(list.lock);

== A

Reads

head cur

Writes

nodel.next count

node2.next

LINKED LIST EXAMPLE

Counter Modifier

lock(list.lock); - lock(list.lock);

Lock Acquire
cur = head; —> 1f (head.value == “A"){
while(cur.next != NULL) { head.value = “Z72";

count++; }
cur = cur.next; unlock(list.lock);

}
unlock(list.lock);

[
head

Reads Reads Writes

head cur head

nodel.next count

nodel.value

node2.next

LINKED LIST EXAMPLE

Counter Modifier

lock(list.lock); lock(list.lock);

cur = head; if (head.value == “A"){

while(cur.next != NULL) { head.value = “72";
count++; }

cur = cur.next; unlock(list.lock);

}
unlock(list.lock);

Reads

head cur

Reads Writes

head nodel.value

nodel.next count

nodel.value

node2.next

LINKED LIST EXAMPLE

Counter Modifier

lock(list.lock); lock(list.lock);

cur = head; if (head.value == “A"){

while(cur.next != NULL) { head.value = “Z2";
count++; }

cur = cur.next; uhlocki lTast lock)s

}
unlock(list.lock);

Reads

head cur

Reads Writes

head nodel.value

nodel.next count

nodel.value

node2.next

LOCKS ARE
CONSERVATIVE

Counter
Reads

head cur

Modifier could have

Safely executed nodel.next count
concurrently with node2.next
Counter

Modifier
¢ Verified by comparing Reads
the memory locations head

Writes

nodel.value

accessed nodel.value

OPTIMISTIC
CONCURRENCY

Can eliminate unnecessary serialization
¢ Optimistically modify shared data
% Detect unsafe accesses

2t Rollback and retry on conflict

OPTIMISTIC LINKED LIST

Counter Modifier

lock(1list.lock); lock(list.lock);

cur = head; if (head.value == “A"){

while(cur.next != NULL) { head.value = “Z2";
count++; }

cur = cur.next; unlock(list.lock);

}
unlock(list.lock);

A

Writes

OPTIMISTIC LINKED LIST

Counter Modifier

begin critical section; begin critical:section”
cur = head; if (head.value == “A"){
while(cur.next != NULL) { head.value = “Z2";
count++; }
cur = cur.next; end critical section;

}

end critical section;

A

Writes

OPTIMISTIC LINKED LIST

Counter Modifier

begin critical section; begin critical section;

cur = head; if (head.value == “A"){

while(cur.next != NULL) { head.value = “Z2";
count++; }

cur = cur.next; end critical section;

}

end critical section;

cur

A
head

Reads Writes
head

nodel.value

OPTIMISTIC LINKED LIST

Counter Modifier

begin critical section; begin critical section;

cur = head; if (head.value == “A"){

while(cur.next != NULL) { head.value = “72";
count++; }

cur = cur.next; end critical section;

}

end critical section;

cur

head

Reads

Reads Writes

head nodel.value

head

nodel.next

nodel.value

OPTIMISTIC LINKED LIST

Counter Modifier

begin critical section; begin critical section;

cur = head; if (head.value == “A"){

while(cur.next != NULL) { head.value = “Z2";
CoMtrttat» }

cur = cur.next; end critical section;

}

end critical section;

cur

head

Reads

Reads Writes

head nodel.value

head cur

nodel.next count

nodel.value

OPTIMISTIC LINKED LIST

Counter Modifier

begin critical section; begin critical section;

cur = head; if (head.value == “A"){

while(cur.next != NULL) { head.value = “Z2";
count++; }

cur = cur.next; end critical section;

}

end critical section;

Reads

head cur

Reads Writes

head nodel.value

nodel.next count

nodel.value

node2.next

OPTIMISTIC LINKED LIST

Counter Modifier

begin critical section; begin critical section;

cur = head; if (head.value == “A"){

while(cur.next != NULL) { head.value = “72";
count++; }

cur = cur.next; end critical section;

}

end critical section;

Reads

head cur

Reads Writes

head nodel.value

nodel.next count

nodel.value

node2.next

OPTIMISTIC LINKED LIST

Counter Modifier

begin critical section; begin critical section;

cur = head; if (head.value == “A"){

while(cur.next != NULL) { head.value = “Z2";
count++; }

cur = cur.next; end critical section;

}

end critical section;

Reads

head cur

Reads Writes

head nodel.value

nodel.next count

nodel.value

node2.next

OPTIMISTIC
CONCURRENCY

A

¢ Transactional Memory

¢ Modern Proposals: LogTM, TCC, VTM

s¢ Lock-free data structures

% Obstruction-free data structures

A

¢ How can optimistic concurrency help
performance?

“¢ Eliminates unnecessary serialization

—> 3¢ How much does 1t help in practice?

« Will 1t help my existing lock-based system?

2t Methodology

PERFORMANCE
COMPARISON

Al

2¢ Time lost to synchronization

5t Time spent acquiring locks

Iz

2¢ Time lost to restarted optimistic critical sections

LOCKING TIME

Suppose Insertion 1 acquires lock
Insertion 2 waits

LOCKING TIME

Lock
Opt.

LOCKING TIME

Lock
Opt.

Suppose Insertion 1 acquires lock
Locking version of Insertion 2 waits

LOCKING TIME

Lock
Opt.

Insertion 1 releases lock
Insertion 2 acquires lock and completes

OPTIMISTIC RETRY TIME

Lock
Opt.

Suppose Insertion 1 always wins in a conflict

Insertion 2 speculatively executes

OPTIMISTIC RETRY TIME
Lock |

OPTIMISTIC RETRY TIME
Lock |

Insertion 2 rolls back and retries

OPTIMISTIC RETRY TIME
Lock |

B

al

Insertion 1 has committed

¢ Compare Linux to TxLinux (ISCA 2007)

/2

2t TxLLinux converts some critical sections protected by
spinlocks to hardware transactions

2 Leaves other spinlocks undisturbed

A

¢ Exercised by parallel make benchmark

2t Compile 27 source files from IibFLAC 1.1.2

Simulated 15 CPU machine

SPINLOCKS VS.
TRANSACTIONAL MEMORY

B Spins B Restarts

0.03
0.030

KA

2 8% reduction 1n time
wasted synchronizing

32% reduction 1n lock

acquires

¢ Opens up new tuning Linux TxLinux

opportunities Time Wasted in Synchronization

for Pmake Workload

A

¢ How can optimistic concurrency help
performance?

Al

“¢ Eliminates unnecessary serialization

Al

¢ How much does 1t help in practice?

A
7

« Will 1t help my existing lock-based system?

2t Methodology
2 Case Study

¢ Address Set of critical section A: the memory

addresses read (Ra) and written (Wa) during

: .
A’'s execution

RoUWy

¢ Critical section A conflicts with B if:

WAH(RBUWB)#@

DATA INDEPENDENCE

2t Data independent critical sections can’t conflict

5t Conservative: ignores “lucky” schedules

2t Essential to optimistic performance

MEASURING DATA
INDEPENDENCE

S

-

Thread 1 Thread 2 Thread 3
CRE] CPU 2 CPU 3

MEASURING DATA
INDEPENDENCE

—

S

-

Thread 1 Thread 2 Thread 3
CRE] CPU 2 CPU 3

MEASURING DATA
INDEPENDENCE

S

-

Thread 1 Thread 2 Thread 3
CRE] CPU 2 CPU 3

MEASURING DATA
INDEPENDENCE

<<

Thread 1 Thread 2 Thread 3
CRE] CPU 2 CPU 3

Data independence: 100%

MEASURING DATA
INDEPENDENCE

S

-

Thread 1 Thread 2 Thread 3
CRE] CPU 2 CPU 3

Data independence: 100%

MEASURING DATA
INDEPENDENCE

E

-

Thread 1 Thread 2 Thread 3
CRE] CPU 2 CPU 3

Data independence: 66%

MEASURING DATA
INDEPENDENCE

Al

3¢ For each execution of a critical section:

% Track loads and stores

¢ Compare to prior address sets for same lock

S Keep a running percentage of conflicts

¢ How can optimistic concurrency help

performance?

Al

“¢ Eliminates unnecessary serialization

¢ How much does 1t help in practice?

A
7

2 Will 1t help my existing lock-based system?

¢ Methodology: Measure data independence
2 Case Study

CASE STUDY:
THE LINUX KERNEL

' Workload: Linux 2.6.16.1

2t Exercised by parallel make benchmark
% Simics 3.0.17

2¢ Full-system, execution-driven simulator

26 15 CPU machine

2 Tracks kernel synchronization inside simulator

2t Lock acquires and releases

2 Looads and stores performed while a lock 1s held
¢ Time lock 1s held

2¢ Time waiting for a lock

KERNEL SPINLOCK AVERAGE

® Mean

2 dcache lock
3¢ Mean of all kernel et

spinlocks reu_ctrlblk.lock

seqlock_t.lock
¢ Weighted by time lock
held

zone.lru_lock

2t Small scalability

4

25 50 75

% Data Independence

100

DCACHE LOCK

Mean

® dcache lock

A

2 Coarse-grained lock

rcu_ctrlblk.lock

2 Protects cache of file sedlocls Lot

names zone.lru_lock 4

25 50 76 100
Larg (& Scalablllt‘}f % Data Independence

RCU CONTROL BLOCK LOCK

Al

% Fine-grained lock
Mean

Al

% Protects a small, global dcache_lock
control structure &t L

seqlock_t.lock

Al

st Short, simple critical
sections zone.lru_lock

improvement

4

25 50 75

% Data Independence

100

A

2 Linux kernel synchronization primitive

A

¢ Optimistic readers

VA

K Read sequence number before and after reads

S

2t Sequential writers

¢ Write seq. number before and after writes

SEQUENCE LOCK
INTERNAL SPINLOCK

Mean

22 09% Data dcache_lock

independence for e e

internal lock that S T

serializes writers

zone.lru_lock 4

25 50

A

)
2¢ Doesn’t account for
% Data Independence

optimistic readers

LEVELS OF
ABSTRACTION

2t Current work only looks at spinlocks
2t Spinlocks used 1n some higher-level primitives

3¢ Extend model 1in future work

ZONE LRU LoOCK

Mean

dcache_lock
* Protects two linked lists || . ibiciock

seqlock_t.lock

R

5 Common kernel data
structure ® zone.lru lock 4

5 = 95 50 75 100
2t Negligible Scalability

% Data Independence

LINKED LIST
PATHOLOGY

LINKED LIST
PATHOLOGY

Insertion 1

LINKED LIST
PATHOLOGY

Insertion 1

LINKED LIST
PATHOLOGY

Insertion 1

LINKED LIST
PATHOLOGY

Insertion 1

LINKED LIST
PATHOLOGY

Insertion 1

LINKED LIST
PATHOLOGY

Insertion 2

LINKED LIST
PATHOLOGY

Insertion 2

LINKED LIST
PATHOLOGY

Insertion 2

LINKED LIST
PATHOLOGY

Contflict!

LINKED LIST
PATHOLOGY

Conflict!

No two insertions or deletions are data independent

/

¢ Some common data structures are 1ll-suited to

optimistic concurrency

3¢ Conflict avoidance becomes first order concern

A

‘¢ Reorganization necessary for more concurrency

A

¢ How can optimistic concurrency help

performance?

“¢ Eliminates unnecessary serialization

A

¢ How much does 1t help in practice?

¢ Marginal improvement for Linux running pmake

A

¢ Will 1t help my existing lock-based system?

A

2 If 1t has high data independence

Is THE OPTIMISM
WARRANTED?

It depends...
 Syncchar can answer this for your system!
¢ For the Linux kernel running pmake:

2t 76% data independence

¢ Data structure reorganization can uncover more
parallelism

QUESTIONS?

