
Is the Optimism In
Optimistic Concurrency

Warranted?

D o n a l d E . P o r t e r ,
O w e n S . H o f m a n n ,

a n d E m m e t t W i t c h e l

D e p a r t m e n t o f C o m p u t e r S c i e n c e s
U n i v e r s i t y o f T e x a s A t A u s t i n

Optimism About
Optimistic Concurrency

Industry shift to multicore chips

Renewed importance of parallel programming

Optimistic concurrency can find more
parallelism

How much can it improve my system?

Quantifying Potential of
Optimistic Concurrency

Build an optimistic system and measure

Current best option

Specific

Methodology for assessing potential benefit and
tuning opportunities

Key Questions

How can optimistic concurrency help
performance?

How much does it help in practice?

Will it help my existing lock-based system?

Methodology

Case Study

Linked List Example
Counter

lock(list.lock);
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
unlock(list.lock);

Modifier

lock(list.lock);
if(head.value == “A”){
head.value = “Z”;

}
unlock(list.lock);

next
A B

head

Reads Writes
Reads Writes

Linked List Example
Counter

lock(list.lock);
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
unlock(list.lock);

Modifier

lock(list.lock);
if(head.value == “A”){
head.value = “Z”;

}
unlock(list.lock);

next
A B

head

Reads Writes
Reads Writes

Modifier

lock(list.lock);
if(head.value == “A”){
head.value = “Z”;

}
unlock(list.lock);

Counter

lock(list.lock);
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
unlock(list.lock);

cur

Busy Wait
Lock Acquire

Linked List Example

next
A B

head

Reads Writes
head cur

Reads Writes

cur

Linked List Example
Modifier

lock(list.lock);
if(head.value == “A”){
head.value = “Z”;

}
unlock(list.lock);

Counter

lock(list.lock);
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
unlock(list.lock);

Busy Wait

next
A B

head

Reads Writes
head cur cur

node1.next

Reads Writes

Linked List Example
Modifier

lock(list.lock);
if(head.value == “A”){
head.value = “Z”;

}
unlock(list.lock);

Counter

lock(list.lock);
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
unlock(list.lock);

Busy Wait

cur

next
A B

head

Reads Writes
head cur cur

node1.next count count

Reads Writes

cur

Linked List Example
Modifier

lock(list.lock);
if(head.value == “A”){
head.value = “Z”;

}
unlock(list.lock);

Counter

lock(list.lock);
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
unlock(list.lock);

Busy Wait

next
A B

head

Reads Writes
head cur cur

node1.next count count

Reads Writes

Linked List Example
Modifier

lock(list.lock);
if(head.value == “A”){
head.value = “Z”;

}
unlock(list.lock);

Counter

lock(list.lock);
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
unlock(list.lock);

Busy Wait

cur

next
A B

head

Reads Writes
head cur cur

node1.next count count
node2.next

Reads Writes

Linked List Example
Modifier

lock(list.lock);
if(head.value == “A”){
head.value = “Z”;

}
unlock(list.lock);

Counter

lock(list.lock);
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
unlock(list.lock);

Busy Wait

cur

next
A B

head

Reads Writes
head cur cur

node1.next count count
node2.next

Reads Writes

Lock Acquire

Linked List Example
Modifier

lock(list.lock);
if(head.value == “A”){
head.value = “Z”;

}
unlock(list.lock);

Counter

lock(list.lock);
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
unlock(list.lock);

cur

next
A B

head

Reads Writes
head cur cur

node1.next count count
node2.next

Reads Writes
head

node1.value

Linked List Example
Modifier

lock(list.lock);
if(head.value == “A”){
head.value = “Z”;

}
unlock(list.lock);

Counter

lock(list.lock);
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
unlock(list.lock);

cur

next
Z B

head

Reads Writes
head cur cur

node1.next count count
node2.next

Reads Writes
head node1.value

node1.value

Linked List Example
Modifier

lock(list.lock);
if(head.value == “A”){
head.value = “Z”;

}
unlock(list.lock);

Counter

lock(list.lock);
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
unlock(list.lock);

cur

next
Z B

head

Reads Writes
head cur cur

node1.next count count
node2.next

Reads Writes
head node1.value

node1.value

Locks are
Conservative

Modifier could have
safely executed
concurrently with
Counter

Verified by comparing
the memory locations
accessed

Reads Writes
head cur cur

node1.next count count
node2.next

Reads Writes
head node1.value

node1.value

Counter

Modifier

Optimistic
Concurrency

Can eliminate unnecessary serialization

Optimistically modify shared data

Detect unsafe accesses

Rollback and retry on conflict

Optimistic Linked List

next
A B

head

Reads Writes
Reads Writes

Modifier

if(head.value == “A”){
head.value = “Z”;

}

Counter

cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}

lock(list.lock); lock(list.lock);

unlock(list.lock);

unlock(list.lock);

Optimistic Linked List

next
A B

head

Reads Writes
Reads Writes

Modifier

if(head.value == “A”){
head.value = “Z”;

}

Counter

cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}

begin critical section; begin critical section;

end critical section;

end critical section;

Modifier

begin critical section;
if(head.value == “A”){
head.value = “Z”;

}
end critical section;

Counter

begin critical section;
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
end critical section;

Optimistic Linked List

cur

next
A B

head

Reads Writes
head cur

Reads Writes
head

node1.value

Modifier

begin critical section;
if(head.value == “A”){
head.value = “Z”;

}
end critical section;

Counter

begin critical section;
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
end critical section;

Optimistic Linked List

next
Z B

head

cur

Reads Writes
head cur cur

node1.next

Reads Writes
head node1.value

node1.value

Optimistic Linked List
Modifier

begin critical section;
if(head.value == “A”){
head.value = “Z”;

}
end critical section;

Counter

begin critical section;
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
end critical section;

next
Z B

head

cur

Reads Writes
head cur cur

node1.next count count

Reads Writes
head node1.value

node1.value

Optimistic Linked List
Modifier

begin critical section;
if(head.value == “A”){
head.value = “Z”;

}
end critical section;

Counter

begin critical section;
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
end critical section;

cur

next
Z B

head

Reads Writes
head cur cur

node1.next count count
node2.next

Reads Writes
head node1.value

node1.value

Optimistic Linked List
Modifier

begin critical section;
if(head.value == “A”){
head.value = “Z”;

}
end critical section;

Counter

begin critical section;
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
end critical section;

cur

next
Z B

head

Reads Writes
head cur cur

node1.next count count
node2.next

Reads Writes
head node1.value

node1.value

Optimistic Linked List
Modifier

begin critical section;
if(head.value == “A”){
head.value = “Z”;

}
end critical section;

Counter

begin critical section;
cur = head;
while(cur.next != NULL){
count++;
cur = cur.next;

}
end critical section;

cur

next
Z B

head

Reads Writes
head cur cur

node1.next count count
node2.next

Reads Writes
head node1.value

node1.value

Optimistic
Concurrency

Transactional Memory

Modern Proposals: LogTM, TCC, VTM

Lock-free data structures

Obstruction-free data structures

Key Questions

How can optimistic concurrency help
performance?

Eliminates unnecessary serialization

How much does it help in practice?

Will it help my existing lock-based system?

Methodology

Case Study

Time lost to synchronization

Time spent acquiring locks

Time lost to restarted optimistic critical sections

Performance
Comparison

Locking Time

Suppose Insertion 1 acquires lock
Insertion 2 waits

next
A

head
B

0 1 2 3 4

Lock

Opt.

Locking Time

next
A

head
B

0 1 2 3 4

Lock

Opt.

Locking Time

Suppose Insertion 1 acquires lock
Locking version of Insertion 2 waits

next
A

head
B

0 1 2 3 4

Lock

Opt.

nextnext
C

Locking Time

Insertion 1 releases lock
 Insertion 2 acquires lock and completes

next
A

head
B

0 1 2 3 4

Lock

Opt.

nextnext
C

Optimistic Retry Time

Suppose Insertion 1 always wins in a conflict
Insertion 2 speculatively executes

next
A

head
B

0 1 2 3 4

Lock

Opt.

Optimistic Retry Time

next
A

head
B

0 1 2 3 4

Lock

Opt.

E

 Insertion 2 rolls back and retries

next
A

head
B

0 1 2 3 4

Lock

Opt.

nextnext
C

Optimistic Retry Time

next
A

head
B

0 1 2 3 4

Lock

Opt.

nextnext
C

Optimistic Retry Time

E

 Insertion 1 has committed

Compare Linux to TxLinux (ISCA 2007)

TxLinux converts some critical sections protected by
spinlocks to hardware transactions

Leaves other spinlocks undisturbed

Exercised by parallel make benchmark

Compile 27 source files from libFLAC 1.1.2

Simulated 15 CPU machine

Spinlocks Vs.
Transactional Memory

Spinlocks Vs.
Transactional Memory

8% reduction in time
wasted synchronizing

32% reduction in lock
acquires

Opens up new tuning
opportunities

0

0.01

0.02

0.03

Linux TxLinux

0.014

0.013

0.030

Spins Restarts

se
co

nd
s

Time Wasted in Synchronization
for Pmake Workload

Key Questions
How can optimistic concurrency help
performance?

Eliminates unnecessary serialization

How much does it help in practice?

Marginal improvement for Linux running pmake

Will it help my existing lock-based system?

Methodology

Case Study

Address Set of critical section A: the memory
addresses read (RA) and written (WA) during
A’s execution

Critical section A conflicts with B if:

Address Sets and
Conflicts

WA ∩ (RB ∪ WB) #= ∅

RA ∪ WA

Data Independence

Data independent critical sections can’t conflict

Conservative: ignores “lucky” schedules

Essential to optimistic performance

Measuring Data
Independence

Thread 1
CPU 1

Thread 2
CPU 2

Thread 3
CPU 3

Measuring Data
Independence

Thread 1
CPU 1

Thread 2
CPU 2

Thread 3
CPU 3

R W
A B

Measuring Data
Independence

Thread 1
CPU 1

Thread 2
CPU 2

Thread 3
CPU 3

R W
A BR W

A C
D

Measuring Data
Independence

Thread 1
CPU 1

Thread 2
CPU 2

Thread 3
CPU 3

R W
A BR W

A C
D

Data independence: 100%

Measuring Data
Independence

Thread 1
CPU 1

Thread 2
CPU 2

Thread 3
CPU 3

R W
A BR W

A C
D

R W
D D

Data independence: 100%

Measuring Data
Independence

Thread 1
CPU 1

Thread 2
CPU 2

Thread 3
CPU 3

R W
A BR W

A C
D

R W
D D

Data independence: 66%

Measuring Data
Independence

For each execution of a critical section:

Track loads and stores

Compare to prior address sets for same lock

Keep a running percentage of conflicts

Key Questions
How can optimistic concurrency help
performance?

Eliminates unnecessary serialization

How much does it help in practice?

Marginal improvement for Linux running pmake

Will it help my existing lock-based system?

Methodology: Measure data independence

Case Study

Case Study:
The Linux Kernel

Workload: Linux 2.6.16.1

Exercised by parallel make benchmark

Simics 3.0.17

Full-system, execution-driven simulator

15 CPU machine

Synchronization
Characterization

(Syncchar)

Tracks kernel synchronization inside simulator

Lock acquires and releases

Loads and stores performed while a lock is held

Time lock is held

Time waiting for a lock

Negligible impact on simulated system

Kernel Spinlock Average

zone.lru_lock

seqlock_t.lock

rcu_ctrlblk.lock

dcache_lock

Mean

0 25 50 75 100

76

95

9

34

Mean of all kernel
spinlocks

Weighted by time lock
held

Small scalability % Data Independence

•

0

Dcache Lock

zone.lru_lock

seqlock_t.lock

rcu_ctrlblk.lock

dcache_lock

Mean

0 25 50 75 100

95

76

9

34

Coarse-grained lock

Protects cache of file
names

Large scalability % Data Independence

•

0

RCU Control Block Lock

zone.lru_lock

seqlock_t.lock

rcu_ctrlblk.lock

dcache_lock

Mean

0 25 50 75 100

9

76

95

34

Fine-grained lock

Protects a small, global
control structure

Short, simple critical
sections

Negligible Scalability

Little room for optimistic
improvement

% Data Independence

•
0

Sequence Locks

Linux kernel synchronization primitive

Optimistic readers

Read sequence number before and after reads

Sequential writers

Write seq. number before and after writes

Sequence number protected by a spinlock

Sequence Lock
Internal Spinlock

zone.lru_lock

seqlock_t.lock

rcu_ctrlblk.lock

dcache_lock

Mean

0 25 50 75 100

76

95

9

34

0% Data
independence for
internal lock that
serializes writers

Doesn’t account for
optimistic readers

% Data Independence

• 0

Levels of
Abstraction

Current work only looks at spinlocks

Spinlocks used in some higher-level primitives

Extend model in future work

Zone LRU Lock

zone.lru_lock

seqlock_t.lock

rcu_ctrlblk.lock

dcache_lock

Mean

0 25 50 75 100

34

76

95

9Protects two linked lists

Common kernel data
structure

Negligible Scalability % Data Independence

0

•

Linked List
Pathology

next
A

nexthead
B C

Linked List
Pathology

Insertion 1

next
A

nexthead
B C

Linked List
Pathology

next
A

nexthead
B C

Insertion 1

Linked List
Pathology

next
A

nexthead
B C

Insertion 1

Linked List
Pathology

next
A

nexthead
B C

Insertion 1

Linked List
Pathology

next
A

next nexthead
B C D

Insertion 1

Insertion 2

Linked List
Pathology

next
A

next nexthead
B C D

Linked List
Pathology

next
A

next nexthead
B C D

Insertion 2

Linked List
Pathology

next

E next

A
next nexthead

B C D

Insertion 2

Linked List
Pathology

next

E next

A
next nexthead

B C D

Conflict!

Linked List
Pathology

next

E next

A
next nexthead

B C D

Conflict!

No two insertions or deletions are data independent

Linked List
Pathology

Some common data structures are ill-suited to
optimistic concurrency

Conflict avoidance becomes first order concern

Reorganization necessary for more concurrency

Key Questions

How can optimistic concurrency help
performance?

Eliminates unnecessary serialization

How much does it help in practice?

Marginal improvement for Linux running pmake

Will it help my existing lock-based system?

If it has high data independence

Is The Optimism
Warranted?

It depends...

Syncchar can answer this for your system!

For the Linux kernel running pmake:

76% data independence

Data structure reorganization can uncover more
parallelism

Questions?

