
OPERATING SYSTEMS SHOULD
PROVIDE TRANSACTIONS

Donald E. Porter and Emmett Witchel

The University of Texas at Austin

Example: browser plug-in upgrade
2

write new plug-in binary
start browser, old config,

 old plug-in arguments
 corrupt data files
exec post-install script
 (updates browser config)

  API can’t ensure consistent updates to OS resources
  Concurrency and crashes cause subtle inconsistencies

System Transactions

  Express consistency requirements to OS
  Transaction wraps group of system calls

 Results isolated until commit
  Interfering operations automatically serialized

  Long-overdue OS feature
 Natural abstraction
 Solves important problems
 Practical implementation

3

Transactional Software Install

sys_xbegin();

apt-get upgrade

sys_xend();

  A failed install is automatically rolled back
 Concurrent operations are not

  System crash: reboot to entire upgrade or none
  Concurrent apps see consistent state

4

System Transactions
5

  Operating systems should provide them
  Operating systems can provide them

The POSIX API is broken
6

  System resources have long-standing race conditions
 Time-of-check-to-time-of-use (TOCTTOU)
 Temporary file creation
 Signal handling

  Correct, concurrent apps need system-level isolation
  Multi-core chips raise importance of concurrency

System-level races

if(access(“foo”)) {

 fd = open(“foo”);
 …
}

(root)

7

foo == secret

Complex work-arounds

  TOCTTOU: users write their own directory traversal
 openat(), fstatat(), etc.
 User re-implements filename translation

  Race between open/fcntl
 Add CLOSE_ON_EXEC flags to 15 system calls

  Temporary file creation libraries
 mkstemp,tmpfile, etc.

8

Work-arounds don’t work
9

  Complex APIs do not yield secure programs
  Experts can’t even agree

 mkstemp man page:
 “Don’t use this function, use tmpfile(3) instead.”

 www.securecoding.cert.org - VOID FI039-C:
“It is thus recommended that…mkstemp() be used
 [instead of tmpfile()]”

  Transactions can fix the problem

TOCTTOU redux

sys_xbegin();
if(access(“foo”)) {
 fd = open(“foo”);
 read(fd,…);
 …
}
sys_xend();

(root)

10

Transactions solve important problems
11

  Applications
 Replace databases for simple synchronization
 Support system calls in transactional memory apps
 Tolerate faults in untrusted software modules
 Atomically update file contents and access control list

  Easier to write OS extensions
 System Tx + Journal = Tx Filesystem

Hasn’t this already been done?

donporter@wesley:~$ man transaction

No manual entry for transaction

12

Related Systems
13

  Similar interface, different implementation
 QuickSilver [SOSP ‘91], TABS [SOSP ‘85]

 Weaker guarantees

 TxF, Valor [FAST ‘09]
 Only file system transactions

  Different interface, similar implementation
 Speculator [SOSP ’05, OSDI ‘06]

  Terms “transaction” and “OS” appear in paper title
 TxLinux [SOSP ’07, ASPLOS ‘09]

Can OSes provide transactions?

  TxOS: Extends Linux 2.6.22 to support transactions
 Runs on commodity hardware

  Rest of talk:
 Approach
 Validation

14

Version Management
15

  How to keep old and new data?
 Need old data to roll back

  TxOS approach:
 Transactions operate on private copies of data
 Replace old data structures at commit

  Example: kernel data structures

TxOS Version Management

Transaction

sys_xbegin();
if(access(“foo”)){
 fd = open(“foo”);
 write(fd, “Hi”);
}
sys_xend();

File “foo”

16

Hi

Object versioning in TxOS

  Deadlock-free
 Transactions do not hold kernel locks across syscalls
 Follows existing locking discipline

  Previous work used 2-phase locking, undo log
 Prone to deadlock

  Efficient – a pointer swap per committed object
 Copy-on-write optimizations

17

Serializing Tx with No-Tx
18

  Important property for intuitive semantics
 Supports incremental adoption

  Serialize TOCTTOU attacker
 Attacker will not use transactions

  Hard to support in software systems
 Not provided by historical OSes, many STMs

Validation
19

  Is implementation tractable?
  Is performance acceptable?

Tractable, challenging implementation

  Transactions:
 Add 8,600 LOC to Linux
 Minor modifications to 14,000 LOC

  Simple API, not a simple implementation
 Hard to write concurrent programs
 Developers need good abstractions

  Transactions are worth the effort

20

Acceptable Performance
21

-300

-200

-100

0

100

200

300

400

500

Seq Write Seq Read Rand Write Rand Read

  Speedup compared to unmodified Linux
LFS Large File Phase

%
Sl

ow
do

w
n

%
 S

pe
ed

up

  40% overhead for dpkg install

OSes can support transactions
22

  Tractable Implementation
  Acceptable Performance

OSes should provide transactions

  Solve long-standing problems
 Replace ad hoc solutions

  Broad range of applications
  Acceptable cost

http://www.cs.utexas.edu/~porterde/txos
porterde@cs.utexas.edu

23

