OPERATING SYSTEMS SHOULD
PROVIDE TRANSACTIONS

Donald E. Porter and Emmett Witchel

- The University of Texas at Austin

Example: browser plug-in upgrade

E::> write new plug-in binary
start browser, old config,
old plug-in arguments
corrupt data files
exec post-install script
(updates browser confiqg)

APl can’t ensure consistent updates to OS resources

Concurrency and crashes cause subtle inconsistencies

System Transactions

Express consistency requirements to O3S

Transaction wraps group of system calls
Results isolated until commit

Interfering operations automatically serialized
Long-overdue OS feature

Natural abstraction

Solves important problems

Practical implementation

Transactional Software Install

sys xbegin () ;
apt—-get upgrade

sys xend() ;

A failed install is automatically rolled back

Concurrent operations are not
System crash: reboot to entire upgrade or none

Concurrent apps see consistent state

System Transactions
I

0 Operating systems should provide them

1 Operating systems can provide them

The POSIX API is broken

System resources have long-standing race conditions
Time-of-check-to-time-of-use (TOCTTOU)
Temporary file creation

Signal handling
Correct, concurrent apps need system-level isolation

Multi-core chips raise importance of concurrency

System-level races

A
W
L Wt

K‘glll‘ (root)

1f (access (“"foo”))

foo == secret

fd = open (“foo”);

Complex work-arounds

TOCTTOU: users write their own directory traversal
openat (), fstatat (), etc
User re-implements filename translation
Race between open/fentl
Add CLOSE ON EXEC flags to 15 system calls
Temporary file creation libraries

mkstemp, tmpfile, etc.

Work-arounds don’t work

Complex APIs do not yield secure programs

Experts can’t even agree
mkstemp man page:
“Don’t use this function, use tmpfile (3) instead.”
www.securecoding.cert.org - VOID FIO39-C:
“It is thus recommended that...mkstemp () be used
[instead of tmpfile ()]”

Transactions can fix the problem

TOCTTOU redux

(root)

sys_xbegin() ;

1f (access (“"foo”)) {
fd = open(“foo”);
read (f£d, ..) ;

J

sys_xend() ;

Transactions solve important problems

Applications
Replace databases for simple synchronization
Support system calls in transactional memory apps
Tolerate faults in untrusted software modules

Atomically update file contents and access control list

Easier to write OS extensions

System Tx + Journal = Tx Filesystem

Hasn't this already been done?

I
donporter@wesley:~$ man transaction

No manual entry for transaction

Related Systems

Similar interface, different implementation
QuickSilver [SOSP ‘91], TABS [SOSP ‘85]

Weaker guarantees

TxF, Valor [FAST ‘09]

Only file system transactions
Different interface, similar implementation
Speculator [SOSP '05, OSDI ‘06]

Terms “transaction” and “OS” appear in paper title
TxLinux [SOSP 07, ASPLOS ‘09]

Can OSes provide transactions?

TxOS: Extends Linux 2.6.22 to support transactions
Runs on commodity hardware

Rest of talk:
Approach

Validation

Version Management

How to keep old and new data?
Need old data to roll back

TxOS approach:
Transactions operate on private copies of data

Replace old data structures at commit

Example: kernel data structures

TxOS Version Management

sys xbegin () ; %
1f (access (“"foo”)) {
fd = open(“foo”); File “foo”
write (fd, “Hi”);
}

sys xend() ;

Transaction

Obiject versioning in TxOS

Deadlock-free
Transactions do not hold kernel locks across syscalls

Follows existing locking discipline
Previous work used 2-phase locking, undo log
Prone to deadlock

Efficient — a pointer swap per committed object

Copy-on-write optimizations

Serializing Tx with No-Tx

Important property for intuitive semantics
Supports incremental adoption

Serialize TOCTTOU attacker
Attacker will not use transactions

Hard to support in software systems
Not provided by historical OSes, many STMs

Validation

Is implementation tractable?

Is performance acceptable?

Tractable, challenging implementation

Transactions:
Add 8,600 LOC to Linux
Minor modifications to 14,000 LOC
Simple API, not a simple implementation
Hard to write concurrent programs

Developers need good abstractions

Transactions are worth the effort

Acceptable Performance

EN
1 40% overhead for dpkg install
o 500
2
© 400 -
S
() 300 -
N 200 -
100 -
S5 o
(o]
£ oo . B
(o]
,73 -200
S 300

Seq Write Seq Read Rand Write Rand Read
LFS Large File Phase

1 Speedup compared to unmodified Linux

OSes can support transactions
L, [

o Tractable Implementation

71 Acceptable Performance

OSes should provide transactions
N

-1 Solve long-standing problems

Replace ad hoc solutions
-1 Broad range of applications

-1 Acceptable cost

http: / /www.cs.utexas.edu/~porterde /txos

porterde@cs.utexas.edu

