
OPERATING SYSTEMS SHOULD
PROVIDE TRANSACTIONS

Donald E. Porter and Emmett Witchel

The University of Texas at Austin

Example: browser plug-in upgrade
2

write new plug-in binary
start browser, old config,

 old plug-in arguments
 corrupt data files
exec post-install script
 (updates browser config)

  API can’t ensure consistent updates to OS resources
  Concurrency and crashes cause subtle inconsistencies

System Transactions

  Express consistency requirements to OS
  Transaction wraps group of system calls

 Results isolated until commit
  Interfering operations automatically serialized

  Long-overdue OS feature
 Natural abstraction
 Solves important problems
 Practical implementation

3

Transactional Software Install

sys_xbegin();

apt-get upgrade

sys_xend();

  A failed install is automatically rolled back
 Concurrent operations are not

  System crash: reboot to entire upgrade or none
  Concurrent apps see consistent state

4

System Transactions
5

  Operating systems should provide them
  Operating systems can provide them

The POSIX API is broken
6

  System resources have long-standing race conditions
 Time-of-check-to-time-of-use (TOCTTOU)
 Temporary file creation
 Signal handling

  Correct, concurrent apps need system-level isolation
  Multi-core chips raise importance of concurrency

System-level races

if(access(“foo”)) {

 fd = open(“foo”);
 …
}

(root)

7

foo == secret

Complex work-arounds

  TOCTTOU: users write their own directory traversal
 openat(), fstatat(), etc.
 User re-implements filename translation

  Race between open/fcntl
 Add CLOSE_ON_EXEC flags to 15 system calls

  Temporary file creation libraries
 mkstemp,tmpfile, etc.

8

Work-arounds don’t work
9

  Complex APIs do not yield secure programs
  Experts can’t even agree

 mkstemp man page:
 “Don’t use this function, use tmpfile(3) instead.”

 www.securecoding.cert.org - VOID FI039-C:
“It is thus recommended that…mkstemp() be used
 [instead of tmpfile()]”

  Transactions can fix the problem

TOCTTOU redux

sys_xbegin();
if(access(“foo”)) {
 fd = open(“foo”);
 read(fd,…);
 …
}
sys_xend();

(root)

10

Transactions solve important problems
11

  Applications
 Replace databases for simple synchronization
 Support system calls in transactional memory apps
 Tolerate faults in untrusted software modules
 Atomically update file contents and access control list

  Easier to write OS extensions
 System Tx + Journal = Tx Filesystem

Hasn’t this already been done?

donporter@wesley:~$ man transaction

No manual entry for transaction

12

Related Systems
13

  Similar interface, different implementation
 QuickSilver [SOSP ‘91], TABS [SOSP ‘85]

 Weaker guarantees

 TxF, Valor [FAST ‘09]
 Only file system transactions

  Different interface, similar implementation
 Speculator [SOSP ’05, OSDI ‘06]

  Terms “transaction” and “OS” appear in paper title
 TxLinux [SOSP ’07, ASPLOS ‘09]

Can OSes provide transactions?

  TxOS: Extends Linux 2.6.22 to support transactions
 Runs on commodity hardware

  Rest of talk:
 Approach
 Validation

14

Version Management
15

  How to keep old and new data?
 Need old data to roll back

  TxOS approach:
 Transactions operate on private copies of data
 Replace old data structures at commit

  Example: kernel data structures

TxOS Version Management

Transaction

sys_xbegin();
if(access(“foo”)){
 fd = open(“foo”);
 write(fd, “Hi”);
}
sys_xend();

File “foo”

16

Hi

Object versioning in TxOS

  Deadlock-free
 Transactions do not hold kernel locks across syscalls
 Follows existing locking discipline

  Previous work used 2-phase locking, undo log
 Prone to deadlock

  Efficient – a pointer swap per committed object
 Copy-on-write optimizations

17

Serializing Tx with No-Tx
18

  Important property for intuitive semantics
 Supports incremental adoption

  Serialize TOCTTOU attacker
 Attacker will not use transactions

  Hard to support in software systems
 Not provided by historical OSes, many STMs

Validation
19

  Is implementation tractable?
  Is performance acceptable?

Tractable, challenging implementation

  Transactions:
 Add 8,600 LOC to Linux
 Minor modifications to 14,000 LOC

  Simple API, not a simple implementation
 Hard to write concurrent programs
 Developers need good abstractions

  Transactions are worth the effort

20

Acceptable Performance
21

-300

-200

-100

0

100

200

300

400

500

Seq Write Seq Read Rand Write Rand Read

  Speedup compared to unmodified Linux
LFS Large File Phase

%
Sl

ow
do

w
n

%
 S

pe
ed

up

  40% overhead for dpkg install

OSes can support transactions
22

  Tractable Implementation
  Acceptable Performance

OSes should provide transactions

  Solve long-standing problems
 Replace ad hoc solutions

  Broad range of applications
  Acceptable cost

http://www.cs.utexas.edu/~porterde/txos
porterde@cs.utexas.edu

23

