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 There are lots of GPUs! 
◦ ~ more powerful than CPUs 

◦ Great for Halo <X> and HPC, but little else 

◦ Underutilized 

 GPUs are difficult to program 
◦ SIMD execution model 

◦ Cannot access main memory 

◦ Treated as I/O device by OS 
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A. These two things are related 
B. We need OS abstractions 
       (dataflow) 
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1 OS-level  

abstraction! 

The programmer gets to work with great abstractions… 

  Why is this a problem? 



 We expect traditional OS guarantees: 
◦ Fairness 

◦ Isolation 

No user-space runtime can provide these! 

 No kernel-facing interface 
◦ The OS cannot use the GPU 

◦ OS cannot manage the GPU 

 Lost optimization opportunities 
◦ Suboptimal data movement 

◦ Poor composability 



• Windows 7 x64 8GB RAM 

• Intel Core 2 Quad 2.66GHz 

• nVidia GeForce GT230 
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CPU scheduler and GPU scheduler 
not integrated! 
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Pipes between filter and detect 

move data to and from GPU even 

when it’s already there 
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#> capture | filter | detect | hidinput & 

• Data crossing u/k boundary 

• Double-buffering between camera drivers and GPU drivers 



 Process API analogues 

 IPC API analogues 

 Scheduler hint analogues 

 Abstractions that enable: 
◦ Composition 

◦ Data movement optimization 

◦ Easier programming 



 ptask (parallel task)  
◦ Have priority  for fairness 

◦ Analogous to a process for GPU execution 

◦ List of input/output resources (e.g. stdin, stdout…) 

 ports 
◦ Can be mapped to ptask input/outputs 

◦ A data source or sink (e.g. buffer in GPU memory) 

 channels 
◦ Similar to pipes 

◦ Connect arbitrary ports 

◦ Specialize to eliminate double-buffering 

 

 

 

 



ptask: 
detect 

process: 
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process: 
capture 
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Computation expressed as a graph 

• Synthesis [Masselin 89] (streams, pumps) 

• Dryad [Isard 07] 

• SteamIt [Thies 02] 

• Offcodes [Weinsberg 08] 

• others… 
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GPU mem GPU mem 

• Eliminate unnecessary communication… 
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• Eliminates unnecessary communication 

• Eliminates u/k crossings, computation  

New data triggers 

new computation 



 OS must get involved in GPU support 

 Current approaches: 
◦ Require wasteful data movement 

◦ Inhibit modularity/reuse 

◦ Cannot guarantee fairness, isolation 

 OS-level abstractions are required 

 

 

 

 
Questions? 


