
Chris Rossbach, Microsoft Research

Jon Currey, Microsoft Research

Emmett Witchel, University of Texas at Austin

HotOS 2011

Lots of GPUs

Must they be so hard to use?

We need dataflow…

Lots of GPUs

Must they be so hard to use?

We need dataflow…

 …support in the OS

 There are lots of GPUs!
◦ ~ more powerful than CPUs

◦ Great for Halo <X> and HPC, but little else

◦ Underutilized

 GPUs are difficult to program
◦ SIMD execution model

◦ Cannot access main memory

◦ Treated as I/O device by OS

 There are lots of GPUs!
◦ ~ more powerful than CPUs

◦ Great for Halo <X> and HPC, but little else

◦ Underutilized

 GPUs are difficult to program
◦ SIMD execution model

◦ Cannot access main memory

◦ Treated as I/O device by OS

A. These two things are related
B. We need OS abstractions
 (dataflow)

programmer-

visible interface

OS-level

abstractions

Hardware

interface

programmer-

visible interface

1 OS-level

abstraction!

The programmer gets to work with great abstractions…

 Why is this a problem?

 We expect traditional OS guarantees:
◦ Fairness

◦ Isolation

No user-space runtime can provide these!

 No kernel-facing interface
◦ The OS cannot use the GPU

◦ OS cannot manage the GPU

 Lost optimization opportunities
◦ Suboptimal data movement

◦ Poor composability

• Windows 7 x64 8GB RAM

• Intel Core 2 Quad 2.66GHz

• nVidia GeForce GT230

Higher is

better

0

200

400

600

800

1000

1200

no CPU load high CPU load

CUDA benchmark throughput

CPU scheduler and GPU scheduler
not integrated!

• Windows 7 x64 8GB RAM

• Intel Core 2 Quad 2.66GHz

• nVidia GeForce GT230

Flatter lines

Are better

Pipes between filter and detect

move data to and from GPU even

when it’s already there

capture

detect

filter

Point cloud

“Hand”

events

Raw images

HID
InputOS

#> capture | filter | detect | hidinput &

• Data crossing u/k boundary

• Double-buffering between camera drivers and GPU drivers

 Process API analogues

 IPC API analogues

 Scheduler hint analogues

 Abstractions that enable:
◦ Composition

◦ Data movement optimization

◦ Easier programming

 ptask (parallel task)
◦ Have priority for fairness

◦ Analogous to a process for GPU execution

◦ List of input/output resources (e.g. stdin, stdout…)

 ports
◦ Can be mapped to ptask input/outputs

◦ A data source or sink (e.g. buffer in GPU memory)

 channels
◦ Similar to pipes

◦ Connect arbitrary ports

◦ Specialize to eliminate double-buffering

ptask:
detect

process:
hidinput

process:
capture

usbsrc

hid_in hands

Computation expressed as a graph

• Synthesis [Masselin 89] (streams, pumps)

• Dryad [Isard 07]

• SteamIt [Thies 02]

• Offcodes [Weinsberg 08]

• others…

ptask:
filter

cloud

rawimg

det_inp

= process

= ptask

= port

= channel

ptask:
detect

process:
hidinput

process:
capture

usbsrc

hid_in hands ptask:
filter

cloud

rawimg

det_inp

= process

= ptask

= port

= channel

USBGPU mem

GPU mem GPU mem

• Eliminate unnecessary communication…

ptask:
detect

process:
hidinput

process:
capture

usbsrc

hid_in hands ptask:
filter

cloud

rawimg

det_inp

= process

= ptask

= port

= channel

• Eliminates unnecessary communication

• Eliminates u/k crossings, computation

New data triggers

new computation

 OS must get involved in GPU support

 Current approaches:
◦ Require wasteful data movement

◦ Inhibit modularity/reuse

◦ Cannot guarantee fairness, isolation

 OS-level abstractions are required

Questions?

