
Sangman Kim, Michael Z. Lee, Alan M. Dunn,
Owen S. Hofmann, Xuan Wang,

Emmett Witchel, Donald E. Porter

1

2

P
ar

al
le

lis
m

Maintainability

Fine-grained locking
 - Bug-prone, hard to maintain
 - OS provides poor support

Coarse-grained locking
 - Reduced resource utilization

3

P
ar

al
le

lis
m

Server Applications
working with OS API

System
Transaction

Server Applications
working with OS API

Maintainability

Linux TxOS

 TxOS provides operating system transaction
[Porter et al., SOSP 2009]

 Transaction for OS objects (e.g., files, pipes)

4

System transaction in TxOS

TxOS

Application

JVM

Middleware state sharing with multithreading

TxOS system calls

Middleware state sharing

TxOS

 TxOS provides operating system transaction
[Porter et al., SOSP 2009]

 Transaction for OS objects (e.g., files , pipes)

5

Synchronization in legacy code

Application

JVM

TxOS system calls

Synchronization primitives

Middleware state sharing

TxOS

 TxOS provides operating system transaction
[Porter et al., SOSP 2009]

 Transaction for OS objects (e.g., files, pipes)

 TxOS+: Improved system transactions

6

Application

JVM

TxOS system calls

TxOS+
TxOS+: pause/resume,
commit ordering, and more

Up to 88% throughput improvement
At most 40 application line changes

Synchronization primitives

Middleware state sharing

 Background: system transaction

 System transactions in action

 Challenges for rewriting applications

 Implementation and evaluation

7

 Transaction Interface and semantics
 System calls: xbegin(), xend(), xabort()

 ACID semantics

▪ Atomic – all or nothing
▪ Consistent – one consistent state to another
▪ Isolated – updates as if only one concurrent transaction
▪ Durable – committed transactions on disk

 Optimistic concurrency control

 Fix synchronization issues with OS APIs

8

 Lazy versioning: speculative copy for data

 TxOS requires no special hardware

9

xbegin();

write(f, buf);

xend(); Commit Abort

Conflict!

inode header

inode i
inum

lock

…

inode data
size

mode

…

Copy of
inode data

 Background: system transaction

 System transactions in action

 Challenges for rewriting applications

 Implementation and evaluation

10

 Parallelizing applications that synchronize
on OS state

 Example 1: State-machine replication

 Constraint: Deterministic state update

 Example 2: IMAP Email Server

 Constraint: Consistent file system operations

11

 Core component of fault tolerant services

 e.g., Chubby, Zookeeper, Autopilot

 Replicas execute the same sequence of operations

 Often single-threaded to avoid non-determinism

 Ordered transaction

 Makes parallel OS state updates deterministic

 Applications determine commit order of transactions

12

 Everyone has concurrent email clients

 Desktop, laptop, tablets, phones,

 Need concurrent access to stored emails

 Brief history of email storage formats

 mbox: single file, file locking

 Lockless Maildir

 Dovecot Maildir: return of file locking

13

 mbox

 Single file mailbox of email messages

 Synchronization with file-locking

▪ One of fcntl(), flock(), lock file (.mbox.lock)

▪ Very coarse-grained locking

~/.mbox

14

From MAILER-DAEMON Wed Apr 11 09:32:28 2012
From: Sangman Kim <sangmank@cs.utexas.edu>
To: EuroSys 2012 audience
Subject: mbox needs file lock. Maildir hides message.
…..
From MAILER-DAEMON Wed Apr 11 09:34:51 2012
From: Sangman Kim <sangmank@cs.utexas.edu>
To: EuroSys 2012 audience
Subject: System transactions good, file locks bad!
….

 Maildir: Lockless alternative to mbox

 Directories of message files

 Each file contains a message

 Directory access with no synchronization (originally)

 Message filenames contain flags

Maildir/cur

00000000.00201.host:2,T

00001000.00305.host:2,R

00002000.02619.host:2,T

00010000.08919.host:2,S

00015000.10019.host:2,S

Trashed

Replied

Trashed

Seen

Seen 15

PROCESS 2 (MARKING)

if (access(“043:2,S”)):

 rename(“043:2,S”, “043:2,R”)

PROCESS 1 (LISTING)

while (f = readdir(“Maildir/cur”)):

 print f.name

16

018:2,S 021:2,S 052:2,S 061:2,S

Seen

“Maildir/cur” directory

Seen

043:2,S

Seen Seen Seen

043:2,R

Replied

PROCESS 2 (MARKING)

if (access(“043:2,S”)):

 rename(“043:2,S”, “043:2,R”)

PROCESS 1 (LISTING)

while (f = readdir(“Maildir/cur”)):

 print f.name

17

018:2,S 021:2,S 052:2,S 061:2,S

Seen

“Maildir/cur” directory

Seen

043:2,S

Seen Seen Seen

Process 1 Result

018:2,S
021:2,S
052:2,S
061:2,S

Message missing!

 Maildir synchronization

 Lockless

 File locks

▪ Per-directory coarse-grained locking

▪ Complexity of Maildir, performance of mbox

 System transactions

“certain anomalous situations may result”
 – Courier IMAP manpage

18

PROCESS 1 (MARKING)

xbegin()

if (access(“XXX:2,S”)):

 rename(“XXX:2,S”,

“XXX:2,R”)xend()

PROCESS 2 (MESSAGE LISTING)

xbegin()

while (f = readdir(“Maildir/cur”)):

 print f.name

xend()

xbegin()

xend()

xbegin()

xend()

Consistent directory accesses
with better parallelism

19

 Background: system transaction

 System transactions in action

 Challenges for rewriting applications

 Implementation and evaluation

20

1. Middleware state sharing

2. Deterministic parallel update for system state

3. Composing with other synchronization primitives

21

 Problem with memory management

 Multiple threads share the same heap

Thread 1 Thread 2
In Transaction

xbegin();

p1 = malloc();

xabort();

p2 = malloc();

*p2 = 1;

22

Middleware (libc)

Kernel mmap()

Heap

Transactional object for heap

p1

 Problem with memory management

 Multiple threads share the same heap

Thread 1 Thread 2
In Transaction

xbegin();

p1 = malloc();

xabort();

p2 = malloc();

*p2 = 1;

23

Middleware (libc)

Kernel

Transactional object for heap

Heap

FAULT!
Certain middleware actions should not roll back

p1 p2 unmapped

USER-INITIATED ACTION

 User changes system state
 Most file accesses

 Most synchronization

MIDDLEWARE-INITIATED

 System state changed as
side effect of user action

 malloc() memory mapping

 Java garbage collection

 Dynamic linking

 Middleware state shared
among user threads
 Can’t just roll back!

24

 Transaction pause/resume

 Expose state changes by middleware-initiated
actions to other threads

 Additional system calls

▪ xpause(), xresume()

 Limited complexity increase

▪ We used pause/resume 8 times in glibc, 4 times in JVM

▪ Only used in application for debugging
25

SysTransaction.begin();

files = dir.list();

SysTransaction.end();

Java code

xpause()

xresume()

xbegin();

files = dir.list();

VM operations
(garbage collection)

xend();

 JVM Execution

26

 17,000 lines of kernel changes
 Transactionalizing file descriptor table

 Handling page lock for disk I/O

 Memory protection

 Optimization with directory caching

 Reorganizing data structure

 and more

 Details in the paper

27

 Background: system transaction

 System transactions in action

 Challenges for rewriting applications

 Implementation and evaluation

28

 Implemented in UpRight BFT library

 Fault tolerant routing backend

 Graph stored in a file

 Compute shortest path

 Edge add/remove

 Ordered transactions for deterministic update

29

Component Total LOC Changed LOC

Routing
application

1,006 18 (1.8%)

Upright Library 22,767 174 (0.7%)

JVM 496,305 384 (0.0008%)

glibc 1,027,399 826 (0.0008%)

30

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 100

TxOS, dense

Linux,dense

TxOS,sparse

Linux,sparse

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Dense graph:
88% tput 

Sparse graph:
11% tput 

Work to add/delete edges small
compared to scheduling overhead

31

Write ratio (%) BFT graph server

 Dovecot mail server
 Uses directory lock files for maildir accesses

 Locking is replaced with system transactions
 Changed LoC: 40 out of 138,723

 Benchmark: Parallel IMAP clients
 Each client executes operations on a random message

▪ Read: message read

▪ Write: message creation/deletion

▪ 1500 messages total

32

 Dovecot benchmark with 4 clients

0

10

20

30

40

50

60

70

80

90

0 10 25 50 100
Write ratio (%)

T
p

u
t

Im
p

ro
ve

m
e

n
t

(%
)

Better block scheduling
enhances write performance

33

 System transactions parallelize tricky server
applications

 Parallel Dovecot maildir operations

 Parallel BFT state update

 System transaction improves throughput with

few application changes

 Up to 88% throughput improvement

 At most 40 changed lines of application code

 34

