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Maintainability 

Fine-grained locking 
  - Bug-prone, hard to maintain 
  - OS provides poor support 

Coarse-grained locking 
  - Reduced resource utilization 



3 

P
ar

al
le

lis
m

 

Server Applications 
working with OS API 

System  
Transaction 

 

Server Applications 
working with OS API 

Maintainability 



Linux TxOS 

 TxOS provides operating system transaction  
[Porter et al., SOSP 2009] 

 Transaction for OS objects (e.g., files, pipes) 
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System transaction in TxOS 

TxOS 

Application 

JVM 

Middleware state sharing with multithreading 

TxOS system calls 

Middleware state sharing 



TxOS 

 TxOS provides operating system transaction  
[Porter et al., SOSP 2009] 

 Transaction for OS objects (e.g., files , pipes) 
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Synchronization in legacy code 

Application 

JVM 

TxOS system calls 

Synchronization primitives 

Middleware state sharing 



TxOS 

 TxOS provides operating system transaction  
[Porter et al., SOSP 2009] 

 Transaction for OS objects (e.g., files, pipes) 

 TxOS+: Improved system transactions 
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Application 

JVM 

TxOS system calls 

TxOS+ 
TxOS+: pause/resume, 
commit ordering, and more 

Up to 88% throughput improvement  
At most 40 application line changes 

Synchronization primitives 

Middleware state sharing 



  Background: system transaction 
 
  System transactions in action 
 
  Challenges for rewriting applications 
 
  Implementation and evaluation 
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 Transaction Interface and semantics 
 System calls: xbegin(), xend(), xabort() 

 
 ACID semantics  

▪ Atomic – all or nothing 
▪ Consistent – one consistent state to another 
▪ Isolated – updates as if only one concurrent transaction 
▪ Durable – committed transactions on disk 

 

 Optimistic concurrency control 
 

 Fix synchronization issues with OS APIs 
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 Lazy versioning: speculative copy for data 
 
 
 
 
 
 
 

 TxOS requires no special hardware 
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xbegin(); 

write(f, buf); 

xend(); Commit Abort 

Conflict! 

inode header 

inode i 
inum 

lock 

… 

inode data 
size 

mode 

… 

Copy of  
inode data 



  Background: system transaction 
 
  System transactions in action 
 
  Challenges for rewriting applications 
 
  Implementation and evaluation 
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 Parallelizing applications that synchronize 
on OS state 
 

 Example 1: State-machine replication 

 Constraint: Deterministic state update 

 
 Example 2: IMAP Email Server 

 Constraint: Consistent file system operations 
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 Core component of fault tolerant services 

 e.g., Chubby, Zookeeper, Autopilot  

 

 Replicas execute the same sequence of operations 

 Often single-threaded to avoid non-determinism 

 
 Ordered transaction 

 Makes parallel OS state updates deterministic 

 Applications determine commit order of transactions 
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 Everyone has concurrent email clients 

 Desktop, laptop, tablets, phones, .... 

 Need concurrent access to stored emails 

 
 Brief history of email storage formats 

 mbox: single file, file locking 

 Lockless Maildir 

 Dovecot Maildir: return of file locking 
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 mbox 

 Single file mailbox of email messages 

 

 

 

 

 Synchronization with file-locking 

▪ One of fcntl(), flock(), lock file (.mbox.lock) 

▪ Very coarse-grained locking 

 

~/.mbox 
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From MAILER-DAEMON Wed Apr 11 09:32:28 2012  
From: Sangman Kim <sangmank@cs.utexas.edu>  
To: EuroSys 2012 audience 
Subject: mbox needs file lock. Maildir hides message. 
….. 
From MAILER-DAEMON Wed Apr 11 09:34:51 2012 
From: Sangman Kim <sangmank@cs.utexas.edu>  
To: EuroSys 2012 audience 
Subject: System transactions good, file locks bad! 
…. 



 Maildir: Lockless alternative to mbox 

 Directories of message files 

 Each file contains a message 

 Directory access with no synchronization (originally) 

 
 Message filenames contain flags 

 

 
Maildir/cur 

00000000.00201.host:2,T 

00001000.00305.host:2,R 

00002000.02619.host:2,T 

00010000.08919.host:2,S 

00015000.10019.host:2,S 

Trashed 

Replied 

Trashed 

Seen 

Seen 15 



PROCESS 2  (MARKING) 

if (access(“043:2,S”)): 

      rename(“043:2,S”, “043:2,R”) 

PROCESS 1 (LISTING) 

while (f = readdir(“Maildir/cur”)): 

     print f.name 
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018:2,S 021:2,S 052:2,S 061:2,S 

Seen 

“Maildir/cur” directory 

Seen 

043:2,S 

Seen Seen Seen 



043:2,R 

Replied 

PROCESS 2  (MARKING) 

if (access(“043:2,S”)): 

      rename(“043:2,S”, “043:2,R”) 

PROCESS 1 (LISTING) 

while (f = readdir(“Maildir/cur”)): 

     print f.name 
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018:2,S 021:2,S 052:2,S 061:2,S 

Seen 

“Maildir/cur” directory 

Seen 

043:2,S 

Seen Seen Seen 

Process  1 Result 

018:2,S 
021:2,S 
052:2,S 
061:2,S 

Message missing! 



 Maildir synchronization 

 Lockless 

 

 

 File locks 

▪ Per-directory coarse-grained locking 

▪ Complexity of Maildir, performance of mbox 

 

 System transactions 

“certain anomalous situations may result”  
                                                          – Courier IMAP manpage 
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PROCESS 1  (MARKING) 

xbegin() 

if (access(“XXX:2,S”)): 

      rename(“XXX:2,S”, 

“XXX:2,R”)xend() 

PROCESS 2 (MESSAGE LISTING) 

xbegin() 

while (f = readdir(“Maildir/cur”)): 

     print f.name 

xend() 

xbegin() 

 

 

 

 

 

xend() 

xbegin() 

 

 

 

xend() 

Consistent directory accesses  
with better parallelism 
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  Background: system transaction 
 
  System transactions in action 
 
  Challenges for rewriting applications 
 
  Implementation and evaluation 
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1. Middleware state sharing 

 

2. Deterministic parallel update for system state 

 

3. Composing with other synchronization primitives 
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 Problem with memory management 

 Multiple threads share the same heap 

Thread 1 Thread 2 
In Transaction 

xbegin(); 

p1 = malloc(); 

   

 

xabort(); 

 

 

 

p2 = malloc(); 

 

*p2 = 1; 
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Middleware (libc) 

Kernel mmap() 

Heap 

Transactional object for heap 

p1 



 Problem with memory management 

 Multiple threads share the same heap 

Thread 1 Thread 2 
In Transaction 

xbegin(); 

p1 = malloc(); 

   

 

xabort(); 

 

 

 

p2 = malloc(); 

 

*p2 = 1; 
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Middleware (libc) 

Kernel 

Transactional object for heap 

Heap 

FAULT! 
Certain middleware actions should not roll back 

p1 p2 unmapped 



USER-INITIATED ACTION 

 User changes system state 
 Most file accesses 

 Most synchronization 

 
 

MIDDLEWARE-INITIATED 

 System state changed as 
side effect of user action 

 malloc()  memory mapping 

 Java garbage collection 

 Dynamic linking 

 

 Middleware state shared 
among user threads 
 Can’t just roll back!  
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 Transaction pause/resume  

 Expose state changes by middleware-initiated 
actions to other threads 

 

 Additional system calls  

▪ xpause(),  xresume() 

 

 Limited complexity increase 

▪ We used pause/resume  8 times in glibc, 4 times in JVM 

▪ Only used in application for debugging 
25 



 
SysTransaction.begin(); 

 

files = dir.list(); 

 

SysTransaction.end(); 

Java code 

xpause() 

xresume() 

xbegin(); 

 

files = dir.list(); 

 

VM operations 
(garbage collection) 

 

xend(); 

 JVM Execution 
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 17,000 lines of kernel changes 
 Transactionalizing file descriptor table 

 Handling page lock for disk I/O 

 Memory protection 

 Optimization with directory caching 

 Reorganizing data structure 

 and more 
 

 Details in the paper 
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  Background: system transaction 
 
  System transactions in action 
 
  Challenges for rewriting applications 
 
  Implementation and evaluation 
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 Implemented in UpRight BFT library 

 

 Fault tolerant routing backend 

 Graph stored in a file 

 Compute shortest path 

 Edge add/remove 

 

 Ordered transactions for deterministic update 
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Component Total LOC Changed LOC  

Routing 
application 

1,006 18     (1.8%) 

Upright Library 22,767 174   (0.7%) 

JVM 496,305 384  (0.0008%) 

glibc 1,027,399 826  (0.0008%) 
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Dense  graph: 
88% tput  

Sparse graph: 
11% tput  

Work to add/delete edges small 
compared to scheduling overhead 
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Write ratio (%) BFT graph server 



 Dovecot mail server 
 Uses directory lock files for maildir accesses 

 
 Locking is replaced with system transactions 
 Changed LoC: 40 out of 138,723 

 
 Benchmark: Parallel IMAP clients 
 Each client executes operations on a random message 

▪ Read: message read 

▪ Write: message creation/deletion 

▪ 1500 messages total 
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 Dovecot benchmark with 4 clients 

0

10

20

30

40

50

60

70

80

90

0         10          25        50        100 
Write ratio (%) 

T
p

u
t 

Im
p

ro
ve

m
e

n
t 

(%
) 

Better block scheduling 
enhances write  performance 
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 System transactions parallelize tricky server 
applications 

 Parallel Dovecot maildir operations 

 Parallel BFT state update 

 
 System transaction improves throughput with 

few application changes 

 Up to 88%  throughput  improvement  

 At most 40 changed lines of application code 
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