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Abstract
Server applications must process requests as quickly as pos-
sible. Because some requests depend on earlier requests,
there is often a tension between increasing throughput and
maintaining the proper semantics for dependent requests.
Operating system transactions make it easier to write reli-
able, high-throughput server applications because they allow
the application to execute non-interfering requests in paral-
lel, even if the requests operate on OS state, such as file data.

By changing less than 200 lines of application code, we
improve performance of a replicated Byzantine Fault Toler-
ant (BFT) system by up to 88% using server-side specula-
tion, and we improve concurrent performance up to 80% for
an IMAP email server by changing only 40 lines. Achiev-
ing these results requires substantial enhancements to system
transactions, including the ability to pause and resume trans-
actions, and an API to commit transactions in a pre-defined
order.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.4.7 [Operating
Systems]: Organization and Design

General Terms Design, Performance, Security

Keywords System Transactions

1. Introduction
Server applications must process requests as quickly as pos-
sible. Because some requests depend on earlier requests,
there is often a tension between increasing throughput and
maintaining the proper semantics for dependent requests.
For example, if a user is modifying messages in his mailbox,
the email server might delay the delivery of a new message;
this strategy reduces throughput to avoid race conditions that
could result in lost user modifications.

Server applications often use operating system (OS) ser-
vices, such as the file system and inter-process communi-
cation (IPC). But once application data migrates to the OS,
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the application loses the ability to balance tradeoffs between
semantics and concurrent throughput. The POSIX API pro-
vides few options for managing concurrency.

Operating system transactions [34], or system transac-
tions, make it easier to write reliable, high-throughput server
applications because applications can transactionally exe-
cute non-interfering operations in parallel, even if the oper-
ations include OS state like file data. Transactions are useful
because they detect interfering requests dynamically, based
on the actual data access patterns of a request. For most re-
alistic servers, the request dependencies are highly data de-
pendent and can only be determined at runtime.

OS transactions are also valuable to distributed systems
because they provide a convenient path to deterministic par-
allel execution. Some distributed systems, like Byzantine
Fault Tolerant (BFT) replication systems, rely on determin-
istic execution for correctness, and thus must sacrifice per-
formance and simplicity to ensure determinism. By execut-
ing requests in transactions with a specified commit order,
developers of these replicated servers can easily implement
deterministic parallel request execution.

This paper demonstrates that operating system transac-
tions can improve server applications with few modifications
to those applications. To demonstrate this principle, we mod-
ify the UpRight BFT library [12] and the Dovecot IMAP
server [2], changing less than 200 lines of code to adopt sys-
tem transactions. The applications require few changes be-
cause transactions are easy to use. We increase throughput
for UpRight by up to 88%, and improve Dovecot throughput
by up to 80% while eliminating mail delivery anomalies.

During the execution phase of a BFT system, multiple or-
dered requests induce state changes on the replicated data.
Parallelizing this execution phase has been a long-standing
challenge for BFT systems. This challenge arises because of
the complexity of detecting dependencies between requests
and rolling back server state on misspeculation (see Sec-
tion 3 for more discussion of previous systems). Most BFT
systems execute requests serially to ensure consistent repli-
cation. Serial execution throttles performance on increas-
ingly common multi-core systems by preventing parallel ex-
ecution of independent requests. Even if an application de-
veloper understands the application-level semantics enough
to manually parallelize the code, reasoning about state that
leaks into the OS via system calls (e.g., files, IPC) is in-
tractable without better OS support.



The Internet Message Access Protocol (IMAP) is a
widely used protocol for accessing email messages [13].
IMAP is supposed to support concurrent clients accessing
an inbox, such as a user accessing email on her phone and
laptop at the same time. Unfortunately, OS API limitations
cause disturbing artifacts in many IMAP implementations,
such as temporarily lost messages during concurrent use.
IMAP stores the definitive versions of email messages in
folders on a server, and an email client acts as a cache of
these emails. The maildir server storage format for IMAP
is designed to be lock-free [6]. Unfortunately, the POSIX
API is insufficient for an IMAP server to guarantee repeat-
able reads of a maildir inbox, so IMAP implementations,
such as Dovecot, have reintroduced locks on back-end stor-
age [1]. When server threads terminate unexpectedly without
releasing locks, for instance due to a bad client interaction,
users experience unpredictable email behavior; email may
be lost or messages may not be able to be marked as read.
System transactions can guarantee repeatable reads without
locks, providing strong semantics, more reliable behavior,
and higher performance for concurrent clients.

This paper describes the largest workloads for a trans-
actional OS reported to date. Supporting applications of
this magnitude requires substantial enhancements to the re-
cent TxOS design [34], including more careful interfaces for
composition of synchronization primitives, separation of ap-
plication transactions from internal JVM or libc state, and
a number of design and implementation refinements. Fortu-
nately, the transactional interface remains simple and easy to
use for the application-level programmer, and system-level
software (such as libc) requires only a small number of
simple modifications, which are encapsulated from the ap-
plication programmer.

The contributions of this paper follow.
1. The design and implementation of operating system

transactions sufficient to support large, distributed appli-
cations written in managed languages like Java (§5). This
work requires substantial extensions and improvements
over the recently published TxOS design [34].

2. The design and implementation of Byzantine fault toler-
ant replication that allows the server to speculate on the
order of requests (§3).

3. The design and implementation of a Dovecot IMAP
server that features true lockless operation without be-
havioral anomalies and high performance for write-
intensive workloads. (§4).

4. A careful study of how to compose transactions with
other application synchronization primitives, including
futex-based locks (§6).

2. Operating system transactions
This section reviews operating system transactions, describ-
ing the properties most relevant to supporting distributed
systems. We refer the reader to previous work for a more

complete description of system transactions [33, 34]. Our
implementation is derived from the publicly available TxOS
code version 1.011. We call our modified system TxOS+.

System transactions group accesses to OS resources via
system calls into logical units that execute with atomicity,
consistency, isolation, and durability (ACID). System trans-
actions are easy to use: programmers enclose code regions
within the sys xbegin() and sys xend() system calls
to express consistency constraints to the OS. The user
can abort an in-progress transaction with sys xabort().
Placing system calls within a transaction alters the semantics
of when and how their results are published to the rest of the
system. Outside of a transaction, actions on system resources
are visible as soon as the relevant internal kernel locks are
released. Within a transaction, all accesses are isolated until
the transaction commits, when changes are atomically pub-
lished to the rest of the system. System transactions provide
a simple and powerful way for applications to express con-
sistency requirements for concurrent operations to the OS.

System transactions provide ACID semantics for updates
to OS resources, such as files, pipes, and signals. System
transactions are serializable and recoverable. Only commit-
ted data are read, and reads are repeatable; this corresponds
to the highest database isolation level (level 3 [19]). We call a
kernel thread executing a system transaction a transactional
thread. A transactional system call is a system call made by
a transactional thread.

Conflicts. To ensure isolation, a kernel object may only
have one writer at a time, excepting containers, which allow
multiple writers to disjoint entries. Two concurrent system
transactions conflict if both access the same kernel object
and at least one of them is a write. The kernel detects and
arbitrates conflicts. The arbitration logic might abort one of
the conflicting transactions or it might put one of the trans-
actions to sleep until the other commits. The latter policy is
often called stall-on-conflict, and resembles condition syn-
chronization. where the condition is a transaction commit.

Transactions and non-transactional system calls serial-
ized. TxOS ensures serializable execution among transac-
tions and between transactions and non-transactional system
calls (sometimes called strong isolation [7]). Isolating trans-
actions from non-transactional system calls simplifies the
programming model. The programmer can think of each
individual system call as its own mini-transaction. For ex-
ample, if one thread is enumerating a directory’s contents
in a system transaction while another thread does a rename
in that directory, the contents listing will contain only the
old or the new name, never both. Note that in Linux, the
concurrency guarantees for system calls vary: rename is
atomic, whereas concurrent read and write calls can re-
turn partially interleaved results. When transactions are not

1 http://code.csres.utexas.edu/projects/txos



involved, TxOS provides the same concurrency guarantees
as Linux.

Managing user memory. System transactions primarily
provide ACID semantics for system state; the application
programmer has several options for managing state in the ap-
plication’s address space. For single-threaded applications,
an option to sys xbegin() will make the address space
copy-on-write, which allows the OS to revert the applica-
tion’s memory state if the transaction aborts. However, for
multi-threaded programs, the OS cannot and does not man-
age user state. For multi-threaded Java code, pages mapped
in response to a transactional allocation request stay mapped
on an abort, but any allocated objects are garbage collected
by the JVM.

System vs. memory transactions. System transactions are
a transactional model for operating system objects. Transac-
tional memory [21, 41] is a transactional model for updating
memory objects. Database transactions [19] are a transac-
tional model for a data store. All of these systems are in-
dependent realizations of a simple interface for the same
ideas: version management and conflict detection. In partic-
ular, system transactions do not require transactional mem-
ory (though system transactions and transactional memory
can interact symbiotically [34]). System transactions are im-
plemented on current, commodity hardware.

Incremental adoption. Concurrency problems are often
localized to particular sections of code, and system transac-
tions can be applied to those sections without large-scale re-
design. Table 2 shows the magnitude of source code changes
(less than 200 lines) to add system transactions to substantial
code bases.

3. Replication and Byzantine Fault Tolerance
Distributed systems often replicate services in order to toler-
ate faults. If one replica behaves incorrectly, others can mask
the incorrect behavior until the replica is corrected.

The canonical approach to replicating a service is to de-
sign the server as a replicated state machine [38]. The key
principle behind replicated state machines is that if the same
set of inputs are presented to each replica in the same or-
der, each deterministic replica will produce the same outputs
and have the same internal state—yielding identical repli-
cas. Note that inputs in this model include inputs both from
a client connected over the network and from the OS, such
as a file’s contents or the output of a random number genera-
tor. However, the OS API is insufficient even to prevent race
conditions, including in the file system [10] and signal han-
dlers [49]; concurrent, deterministic execution of arbitrary
system calls is impossible.

We examine a Byzantine fault tolerant system, in which
a faulty replica can exhibit arbitrary and possibly malicious
behavior [26]. The role system transactions play is applica-

ble to any failure model in replicated systems, and is not
specific to BFT.

3.1 BFT summary
Byzantine Fault Tolerance (BFT) is a replicated systems
framework, which can handle a wide range of faults, includ-
ing crashes and deliberate misbehavior of a bounded num-
ber of faulty servers. When the total number of agreement
replicas is n, a typical BFT system based on replicated state
machine can tolerate up to (n−1)/3 faults, more commonly
written as 3f + 1, where f is the number of faults [8, 25].
Note that this bound is for agreement replicas, and the bound
for execution replicas can be as low as 2f +1, depending on
the protocol [48].

Replicated state machine-based BFT protocols generally
process requests in a pipeline consisting of authentication,
ordering, and execution phases [12, 48]. When a request ar-
rives from a client, it is first authenticated to ensure that it
came from a legitimate client and is well-formed. The or-
dering phase then imposes a global order on each accepted
request. Replicas can execute requests after ordering com-
pletes, or speculatively before the ordering [23]. Their re-
sponses are generally checked by the client; responses that
diverge indicate existence of a faulty node or misspecula-
tion. Each of these phases must be performed by a quorum
of replicas (the precise minimum varies by implementation).

3.2 Parallelizing BFT execution with transactions
A key drawback of many BFT systems is their inability to
execute requests in parallel. Because multi-threading intro-
duces non-determinism, BFT servers generally cannot lever-
age the increasingly abundant parallelism of commodity
multi-core hardware in the execution phase of the system.
This decreases throughput and increases request processing
latency. System transactions can provide deterministic, opti-
mistic concurrency to speed up the execution phase. Speed-
ing up execution also speeds up recovery, where one replica
must catch up with its peers.

Optimistic parallel request execution for BFT systems
has seen limited use because of the complexity of de-
tecting dependencies between requests and rolling back
server state on misspeculation. Replicated databases like
HRDB [45] or Byzantium [18] rely on transaction support
from off-the-shelf database systems to tolerate Byzantine
faults inside databases. However, this approach cannot be
extended to most other applications, as they do not have a
built-in transaction facility. If such applications need BFT,
parallelization of replica execution requires very intimate
application-specific knowledge about requests and their ex-
ecution [24], which is infeasible for complex systems. Any
attempt to parallelize execution without system-wide con-
currency isolation will likely introduce divergence due to
non-determinism, which can degrade throughput signifi-
cantly [42].



Recent research OSes allow deterministic parallel execu-
tion [4, 5], but their overheads are substantial. BFT does not
actually require a deterministic OS; consistent states on each
replica are sufficient, which can be efficiently provided by
transactions serialized according to the same schedule.

Parallel execution in replication-based fault tolerant sys-
tems also accelerates their recovery. When a failed replica
is replaced with a new correct node (or the same node re-
paired), the new replica’s state must be brought up to date
with the other replicas. The typical strategy for recovery
is for replicas to take periodic checkpoints of their state
and to keep a log of subsequent requests. The new replica
fetches the most recent checkpoint and replays the log until it
catches up. During recovery, requests are processed sequen-
tially, and new requests are buffered. Assuming that some
requests can execute safely and concurrently (which is com-
mon), optimistic execution can accelerate recovery.

4. IMAP email server
The Internet Message Access Protocol (IMAP) is a widely
used protocol for accessing email messages [13]. IMAP
stores the definitive versions of email messages in folders
on a server, and an email client acts as a cache of these
emails. IMAP provides features missing from the previous
Post Office Protocol [29], including seamless offline email
operations, which are later synchronized with the server, and
concurrent email clients (e.g., a laptop, desktop, and smart-
phone can simultaneously connect to an inbox).

A key feature advertised by IMAP is concurrent access
by multiple clients, yet the protocol specifies very little about
how the server should behave in the presence of concurrency.
There is no protocol-level guarantee about what happens if
two clients simultaneously modify a message or folder. If
something goes wrong while moving a message to a sub-
folder, the outcome depends on the client and server imple-
mentations: the message can be lost or duplicated.

Allowing a wide range of IMAP client and server imple-
mentations to dictate ad hoc concurrency semantics leads to
practical challenges. For instance, if a user leaves a mail
client running at home that aggressively checks for new
email messages, the implementation-specific locking behav-
ior on the server may deny the user’s client at work the abil-
ity to delete, move, or mark new messages as read. This de-
nial of service can result from either aggressive polling by
the client (i.e., lock fairness), or “orphaned” file locks from
an improper error handling of a client request. This erratic
behavior stems from the limitations of the underlying OS
API with respect to concurrency and durability.

4.1 Backend storage formats and concurrency
Although the specific storage formats can vary across IMAP
server implementations, there are two widely-used storage
formats: mbox and maildir. The storage format dictates

much of the concurrent behavior of the server; servers that
support both backends will behave differently with each.

mbox. The mbox format stores an entire email folder as a
single file. Most mbox implementations also have a single
file lock, which serializes all accesses to a particular mail
folder. If a server thread fails to release a file lock on a
user’s inbox, perhaps because it received a malformed client
message, all clients can be locked out of the mailbox until
the lock is manually cleaned up by an administrator.

maildir. The maildir format [6] was created to alleviate the
issues with stale locks in mbox. Maildir is designed to be
lock-free. Maildir represents a mail folder as a directory on
a file system, and each message as a file. Mail flags and other
metadata are encoded in the file name.

Although maildir is lock-free, the design does not provide
repeatable reads for a user’s inbox. Reading a user’s inbox
is typically implemented by a series of readdir system
calls, which get the names of each file in the inbox, and a
series of stat or open/read system calls, which extract
other metadata about the message. If another client is con-
currently marking a message as read (by rename-ing the
file to change its flags), the first client cannot distinguish the
change in flags from a deletion, leading to disturbing arti-
facts such as lost messages. The lack of repeatable reads in
maildir led a major IMAP implementation, Dovecot, to rein-
troduce file locking for its maildir backend [1].

File locking in both storage formats introduces substan-
tial portability issues, as Unix systems have multiple, mutu-
ally incompatible file locking regimes, including flock and
fcntl locks. The system administrator must understand the
low-level details of the OS and file system in configuring the
mail server. Moreover, this proliferation of locking mech-
anisms diffuses bug fixing effort in the kernel, increasing
the likelihood of bugs in specific locking mechanisms. For
instance, a Dovecot bug report indicates that using flock
on Linux triggered a race condition that was eliminated by
switching to fcntl locks; no bug in the Dovecot source was
identified to explain the problem [15].

Because Dovecot’s locking scheme is non-standard, a
mail client that accesses the backend storage directly, such
as pine, could still introduce similar anomalies even if locks
are enabled. This is because lock files are a cooperative
primitive—if any application doesn’t cooperate, the OS can-
not prevent these race conditions.

4.2 Opportunities for system transactions
System transactions should provide a range of benefits to
IMAP implementations: eliminating anomalous behavior
like freezes and non-repeatable reads, simplifying adminis-
tration by eliminating lock files, and increasing performance
under contention. System transactions give IMAP develop-
ers a better interface for managing system-level concurrency.

At a high level, TxOS+ and lock files give the same safety
guarantees for Dovecot—the appearance of serial execution.



Dovecot on TxOS+ gives these guarantees with generally
higher concurrent performance, as it can execute safe re-
quests concurrently. In contrast, locking always executes re-
quests serially, whether they need to be or not. Strictly speak-
ing, TxOS+ actually gives slightly stronger guarantees than
locking: even if a client that does not cooperate in the di-
rectory locking protocol tries to access these back-end files
non-transactionally, the OS will ensure that Dovecot has re-
peatable mailbox reads.

Stale lock files left by a server thread that terminates
abruptly can prevent other clients from updating their view
of a mail folder. System transactions obviate the need for
lock files. System transactions allow a consistent read of a
directory, even if files in that directory are being added or
renamed. System transactions also provide repeatable reads,
as the transactions are serializable2. Repeatable reads elim-
inate the disturbing artifacts where messages disappear or
spontaneously change state. Finally, because there is no need
to lock the mail folder, updates and reads may proceed con-
currently, increasing throughput under load.

5. Improving system transactions
This section explains the shortcomings present in the initial
TxOS system transaction model and how we addressed them
to support large, server applications in TxOS+. The guiding
principle for TxOS+ is to keep the application programming
interface for transactions as simple as possible.

Many of the challenges that motivated these changes
arose from composing transactions with large bodies of mid-
dleware code, such as the Java Virtual Machine (JVM) and
libc. For instance, the JVM issues system calls on behalf
of the application, as well as those for its own internal book-
keeping; automatically rolling back part of the JVM’s inter-
nal state on an application-level transaction abort can cor-
rupt the JVM. Similarly, we faced challenges in composing
application-level transactions with synchronization mecha-
nisms encapsulated in middleware code. We extend TxOS+
to address these and other challenges, and demonstrate that
the vast majority of this complexity can be sequestered in
expert-written, middleware code at a small number of lo-
cations, maintaining simplicity at the application-level in-
terface. We emphasize that this complexity arises not from
programming with transactions per se, but from adapting a
large body of already complex code, written with no concept
of transactions, to use transactions.

5.1 Managing middleware state
We initially expected user-initiated system transactions to
naturally isolate middleware state. For example, if a Java
program starts a transaction, then reads from an object bound
to a file, it is the JVM that actually issues the read system
call, which should be isolated as part of the transaction.

2 Serializability is also known as degree 3 isolation [20], which guarantees
repeatable reads.

JVM

Java (JIT/Interpreter)

VM ops
Native
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TxOS+ kernel

Figure 1. Block diagram of the Hotspot JVM on TxOS+.
Shaded regions are where system transactions are paused,
including JVM-internal operations and when malloc adds
pages to a heap.

Some middleware state, however, should not be isolated
by a user-initiated system transaction. For instance, if the
JVM happens to add pages to a memory allocator while
running a transactional thread, portions of this page can
be safely allocated to other threads without compromising
transactional isolation. Moreover, if the transaction fails,
simply unmapping this page is the wrong undo action, as
it will cause memory faults in threads uninvolved with the
failed transaction. To address this issue, we extended the
original TxOS nesting model.

5.2 Nesting model
The nesting model for a transaction system defines the se-
mantics of what happens if a transaction executes inside of
another. If function A begins a transaction and calls func-
tion B, which also begins a transaction, the two transac-
tions must interact in some clearly defined way. The orig-
inal TxOS nesting model is simple flat nesting. Any inner
transaction (e.g., the one started by B) becomes a part of the
enclosing transaction (e.g., the one started by A). The inner
transaction can see all in-progress updates, and even after
it commits, the inner transaction’s state (B) is not visible to
other threads until the enclosing transaction commits (A).
Flat nesting is sufficient to compose many transactions, and
its behavior closely matches the naive programmer’s intu-
ition.

We extended the nesting model in TxOS+ to allow the
JVM to differentiate user-initiated action and middleware-
initiated action. System calls issued directly for application
operations become part of a system transaction, whereas the
JVM or libc can pause the transaction before issuing sys-
tem for internal operations. Figure 1 shows a block diagram
for a JVM running on TxOS+. A thread can be executing
user code, (the Java box), native support code called directly
from the Java code, (the Native box), glibc code, (glibc
box), or kernel code in response to a system call (TxOS+
kernel box). In addition, the JVM sometimes needs to per-
form operations on behalf of all threads (the VM ops box).



Java

source code

SysTransaction.begin();

r = graphAddEdge(v1, v2);

SysTransaction.end();

Java

execution

(1) without VM ops

sys xbegin()

graphAddEdge() native

Java Interpreter/JIT

sys xend()

(2) with VM ops

sys xbegin()

graphAddEdge() native

tx = sys xpause()

VM operations

sys xresume(tx)

Java Interpreter/JIT

sys xend()

Figure 2. A system transactions code example depicting Java
source code, and execution inside the JVM. Any active system
transaction is paused during VM operations.

5.3 Designing pause/resume for TxOS+
TxOS+ effectively solves this middleware state problem
by providing a transactional pause and resume primitive.
When a transaction is paused, the OS treats the thread as
if it were running non-transactionally: any system calls the
thread issues will be visible to other threads immediately,
the thread can conflict with the parent transaction, and the
thread can start a new, independent transaction.

We modified the JVM and glibc to pause the running
transaction before performing internal bookkeeping, such
as adding or removing pages to the heap or updating VM
bookkeeping, and to resume the transaction afterwards. We
discuss the uses of transactional pause in Section 7.1.

The sys xpause system call returns a unique identi-
fier for a transaction, which is passed as an argument to
sys xresume. The kernel tracks the association of a trans-
action with the participating task(s) for security and garbage
collection. A thread may only resume a transaction it previ-
ously participated in. When the last task with a reference to
a paused, uncommitted transaction exits, the transaction is
aborted, rolled back, and freed. Pause and resume are only
intended for use in system software, they are not intended
for use in applications.

Figure 2 shows an example of how Java source code that
creates a system transaction is executed. The JVM adds the
system calls to start the transaction, but it also pauses the
transaction if necessary to perform internal VM bookkeep-
ing. Many JVMs already save time and space by “borrow-
ing” an already existing thread for JVM bookkeeping, rather
than creating a dedicated internal thread; the pause and re-
sume primitives make this safe.

It is a reasonable concern that a more complex nesting
model erodes the simplicity benefits of system transactions.
Novice programmers may struggle to reason about the inter-
actions of paused and transactional system calls. Our experi-
ence is that pause and resume are only required for the JVM
and libc, which are maintained by experts. All refactored
application code, even the 138,000 line IMAP server, only
uses the simple transaction calls and flat nesting.

5.4 Ordered transactions
Historically, BFT replicas have serially executed requests
that issue system calls. Replicas must be deterministic;
in sowing system-level concurrency, one often reaps non-
determinism. Using ordered transactions, TxOS can ex-
ecute requests in parallel, but commit them using a pre-
defined order. For low-contention workloads, ordered trans-
actions should provide performance from parallelism while
preserving safety for BFT replicas.

In the original TxOS implementation, OS transactions
were serialized according to some schedule. The schedule
is a result of a configurable, kernel-wide policy that imple-
ments performance or fairness heuristics, such as the oldest
or highest priority transaction wins a conflict.

We augment these kernel-wide policies with the ability
for applications to prescribe the serialized order of their
transactions with integer sequence numbers. Transaction or-
dering is enforced at the granularity of a process group:
multi-threaded or multi-process applications can use this
feature, but unrelated applications cannot use this mecha-
nism to interfere with each other.

We add an optional sequence number argument and
two flags to sys xbegin—one which specifies that the
transaction is in an ordered sequence, and one which resets
the sequence counter (for loading application checkpoints).
The ability to reset the sequence numbers means that se-
quence numbers are purely a cooperative primitive, they will
not constrain arbitrary or malicious code (other work [22]
uses system transactions to sandbox potentially malicious
code). The sequence counter for a process group is always
initialized to zero. Applications that use ordered transactions
may need to detach from the current process group to prevent
interference from another application using ordered transac-
tions.

Ordered commit is an interface change for transactions.
The programmer must decide if any commit order is suffi-
cient, or if a specific one is necessary. The nature of the pro-
gramming problem should make it clear which is needed, for
example, deterministic re-execution requires ordered com-
mit, while processing independent requests does not.

6. Composing synchronization mechanisms
Composing synchronization primitives, even of the same
type, is a historically fraught problem. In the Linux kernel,
for instance, acquiring a blocking lock (e.g., a semaphore or
mutex) while holding a spinlock can deadlock the entire sys-
tem. Transactions are an easy to use synchronization primi-
tive because they guarantee serial behavior and because they
compose easily with each other. However, when transactions
interact with other synchronization primitives they can in-
herit the other primitives’ complexity.

As we add system transactions to larger code bases, the
transactions interact with the application’s existing synchro-
nization. Although some mechanisms can be subsumed by



transactions, some serve an independent purpose and must
compose with transactions, such as locks on state in libc.
After puzzling over different interactions, we decided to in-
vestigate how to compose all existing kernel-visible Linux
synchronization primitives with system transactions.

We identify a set of “best principles” that prevent un-
intended synchronization errors in conscientiously written
applications. These principles are derived from both experi-
ence with larger application development on TxOS+, as well
as a set of small, carefully-written test cases, summarized in
Table 1. In writing these test cases, we set out with the goal
of both capturing behavior we had seen in practice, and ex-
ploring other common design patterns.

6.1 Futexes
First we describe how system transactions interact with the
Linux fast userspace mutex, or futex [16]. The futex
system call provides a wait queue in the kernel, which can
be used by blocking application-level primitives, such as a
mutex or semaphore. Consider a mutex that is implemented
using atomic instructions on a lock variable in the applica-
tion’s address space. Rather than spin and waste CPU cycles,
threads that fail to acquire the lock will call futex to wait
for the lock to be released. When a thread releases the lock,
it must also call futex with different arguments to wake up
one or more of the blocked threads.

In futex-based locks, waiting threads are blocked on
a kernel-visible queue, but the kernel cannot infer which
thread actually has the user-level lock. The state of the user-
level lock is completely contained within the application’s
address space. When a thread is blocked on a futex, the ker-
nel knows that it does not hold the corresponding user-level
lock. That is all the kernel knows for sure. To avoid dead-
lock, TxOS puts transactional threads that block on a futex in
“deferential mode” until they wake up. In deferential mode,
a transaction takes the lowest possible priority in all con-
flict arbitration. Therefore, the waiting thread will lose any
transactional conflict with the thread that holds the user-level
lock, assuring system progress.

Moreover, upon entering deferential mode, the transac-
tion wakes up any threads that were waiting on it to com-
mit. As explained in Section 2, when a transaction (or non-
transactional system call) loses a conflict, it generally waits
on the winning transaction to commit before retrying (or
restarting). When a transaction is blocked on a futex, it
wakes up any waiting transactions and allows them to retry
early—just in case one of them has the user-level lock.

6.2 Principles for composing transactions with other
synchronization

Avoid circular wait. A number of OS primitives, includ-
ing pipes, sockets, and futexes, can block waiting on an ac-
tion taken by a different process. Similarly, lower-priority
transactions can stall on a conflict (§2), thus blocking while
a higher-priority, conflicting transaction completes. These

blocking primitives can deadlock each other. For instance,
transaction A can block on pipe input after stalling process
B on an unrelated conflict (e.g., a write to another file), yet B
is the process responsible for providing the pipe input. The
pipe test in the table represents this case; the goodfutex
test exhibits a similar pattern.

TxOS+ avoids deadlocks where the deadlocking primi-
tives are all OS-visible abstractions. Instead of doing costly
cycle-detection, the OS simply prevents any tasks from wait-
ing on a transaction to commit if that transaction is itself
waiting. This policy prevents circular wait, a necessary pre-
condition for deadlock.

Well-formed nesting and non-blocking transactions. To
successfully mix application-level locks and transactions,
the lock must be both acquired and released either outside
a system transaction, or within it, but not both. Synchro-
nization succeeds when one primitive is consistently nested
in the other. If nested outside of a transaction, the appli-
cation lock simply provides mutual exclusion to the trans-
action; if nested inside, even a failed transaction will still
release the lock. Acquiring a lock and holding it while be-
ginning a transaction requires a special non-blocking flag
to sys xbegin to prevent the transaction from blocking
while holding a lock.

Moreover, the nesting hierarchy must be strict—one
thread should not acquire and release a lock inside of a
transaction and another thread nest a transaction inside of
a lock acquire and release. If thread A cannot commit its
transaction until it acquires a lock, and thread B cannot
release the lock until thread A commits, the threads can
deadlock. “Deferential” futexes cannot prevent this prob-
lem in all cases, and only convert it from a deadlock to a
livelock. In the example above, deferential mode will abort
thread A’s transaction if it conflicts with B while waiting on
a futex; however, deferential futexes cannot prevent thread
A from restarting its transaction and repeatedly conflicting
with thread B on other data. This cycle of repeated conflicts
between A and B can prevent thread B from ever committing
and releasing the lock. In this case the lack of a well-formed
nesting discipline in the presence of conflicting transactions
creates a race condition that can livelock. The badfutex
test experiences this livelock.

Explicit ordering for well-structured, deterministic syn-
chronization. When using well-structured or deterministic
synchronization paradigms, such as an internal producer/-
consumer, explicit transaction ordering communicates the
programmer’s intention to the OS, which helps the OS make
better scheduling decisions. The ordered-p/c test simu-
lates such an application-level producer/consumer paradigm,
using ordered transactions combined with a local semaphore
to ensure that consumers follow producers for variables
stored in a local array.

In general, one should not mix deterministic and non-
deterministic primitives, as a non-deterministic primitive



Test Description Comments
goodfutex Use a raw futex call to simulate blocking on one

futex inside of a transaction and a second outside
of a transaction.

Works with transactions, as it follows a well-formed
nesting discipline.

badfutex Combine a futex call with conflicting transac-
tions to simulate acquiring the same lock inside of
a transaction and outside of a transaction.

Livelocks because it violates a well-formed nesting
discipline.

orderedfutex Combine a futex call with ordered transactions
to simulate mixing non-deterministic and deter-
ministic synchronization primitives.

Hangs because of a fundamental determinism mis-
match.

mutex Use a pthread mutex lock inside and outside of
a transaction, similar to goodfutex.

Works with transactions, as it follows a well-formed
nesting discipline.

ordered-p/c Use ordered transactions and pthread
semaphores to coordinate access to a local
array; consumers write outputs to a file in order.

Transaction ordering is sufficient to coordinate the pro-
ducers and consumers.

pipe-p/c Use ordered transactions and an OS-level pipe
to implement a producer/consumer pattern; con-
sumers write outputs to an file in order.

Transaction ordering is sufficient to coordinate the pro-
ducers and consumers.

lockfile Wait on a lockfile to be created inside of a transac-
tion inside of a polling loop.

Can deadlock with file creator; use scheduling priority
to defer to the file creator.

pipe A pipe reader conflicts with the pipe writer on a file
access.

Deadlock is prevented by lowering the reader’s priority
while waiting and waking up any transactions blocked
on the reader.

Table 1. Summary of test cases for composing transactions and other synchronization primitives.

permits many schedules that the deterministic primitive will
not. The orderedfutex test hangs because it mixes de-
terministic and non-deterministic synchronization.

Scheduling priority for unstructured synchronization.
When using ad hoc synchronization, application developers
may not be able to specify an ordering. For example, the
lockfile test waits inside of a transactional polling loop
for a new file to be created by another task that does not
cooperatively order transactions. If the waiting transaction
has enumerated the directory contents, degree 3 isolation
should prevent it from seeing newly created entries, which
TxOS enforces with read isolation on the directory’s child
list. When the other task attempts to create the file, it will
cause a conflict; if the OS arbitrates in favor of the waiter
and blocks the file creator, the application will deadlock.

We address this issue with OS scheduling priorities.
The default contention management policy in TxOS uses
scheduling priorities to arbitrate conflicts. Before entering
a polling loop, the transaction should use nice or set-
priority to defer to the process it is waiting on. In each
iteration of the loop, the polling transaction can incremen-
tally lower its priority until it defers to the creating trans-
action. Similarly, the file creator can set the non-blocking
flag and incrementally raise its priority until the transaction
completes.

7. Implementation
This section both describes our improvements to system
transactions and discusses some non-obvious interactions
of the system implementation with system transactions. To
create TxOS+, we forked TxOS 1.0.1, which is based on
the Linux 2.6.22.6 kernel. Our distribution was Ubuntu 8.10,
including glibc 2.8.90, OpenJDK Icedtea6 1.9.7.

7.1 Using pause/resume in TxOS+
Pausing and resuming application-initiated transactions is
vital to insulate state in the JVM or in libc. We review how
pause/resume is used in TxOS+ starting with examples that
have been suggested by other researchers, like bookkeeping
state and debugging, then moving on to more subtle cases
like dynamic linking and mprotect calls.

Bookkeeping state. Pause and resume are useful for man-
aging JVM bookkeeping state (an activity we refer to as VM
operations). Bookkeeping state does not need to be rolled
back on a failed transaction, because the JVM does not rely
on it being completely correct. For example, the JVM main-
tains file-backed shared memory (perfdata) containing
the total thread count, JIT compiled methods, and the last JIT
compilation failure. Updates to this data by different trans-
actions cause spurious conflicts that would throttle transac-
tional throughput. By pausing any active system transaction
before VM operations, the code no longer causes spurious
transactional conflicts.



Debugging. Another useful application of pause/resume
is debugging messages. While developing an application
on TxOS, program writers may want to use consoles or
log files for debugging purposes. Since these channels are
treated as files in many operating systems, changes to them
are not written out until the transaction is committed. This
kind of behavior may not be desired by program writers,
especially when they want to look at user state changes in
multi-threaded applications regardless of transaction commit
or abort. Log messages written while a transaction is paused
will be written out without delay.

Dynamic linking. C and Java link and load dynamic li-
braries lazily, deferring the memory mapping overheads un-
til the library is actually used by the application. The appli-
cation is not aware of when linking and loading happens, and
it might occur during a transaction. When a library is loaded
the linker modifies the application and library to reflect the
library’s placement in the application’s address space.

TxOS+ should not undo any dynamic linking that occurs
during a system transaction, since that would simply be
wasted work. Therefore, we pause the current transaction
before the dynamic linking done by libc or by the JVM.

mprotect. The JVM and libc use mprotect aggressively.
malloc within glibc internally uses mprotect for mi-
nor changes in heap space size with multiple threads, mak-
ing calls to mprotect on behalf of malloc more frequent
than calls to mmap.

The JVM uses mprotect to implement safepoints
where the JVM will stop threads for garbage collection and
other purposes like locking bias adjustment [35], and im-
plementing light-weight memory barriers [14]. It is possible
to eliminate some uses of mprotect. For example, the
JVM can use CPU memory barrier instructions instead of
mprotect with the -XX:+UseMemBar option. When our
JVM can avoid using mprotect it does, but completely
eliminating the use of mprotect in the JVM would be
too invasive a change. To avoid spurious conflicts on these
frequent mprotect calls, we modify libc and the JVM to
suspend the current transaction before the call.

brk. The sys brk system call is a relic from the era of
segmented virtual memory. It extends the heap portion of the
data segment towards the stack. While Linux and other mod-
ern systems don’t use segmentation any longer, they retain
this abstraction. Many memory allocators, including the de-
fault glibc allocator, still use brk to allocate heap space,
even though mmap could easily serve the same purpose.

Because brk-based allocators expect the initial heap re-
gion to be contiguous, and the address of the heap end is
stored in the kernel, TxOS+ only allows one transaction to
modify the process heap boundary at a time. Although ex-
tensions of the heap commute, rolling back one modification
could leave holes, which would break contiguity.

One minor problem with brk is that glibc caches the cur-
rent brk value, and this cache can get out of sync with the
kernel’s brk value. If glibc has an outdated brk value, then
a subsequent sys brk call could result in a non-contiguous
heap. Initially, we attempted to reload the cached brk value
after a transaction abort; we ultimately found it simpler to
pause the current transaction around a sys brk.

7.2 Page locking and transaction abort
If, in the course of servicing a transactional system call, the
transaction cannot safely make progress, the TxOS strat-
egy is to use a longjmp-like mechanism to immediately
exit the system call. This mechanism was adopted because
safely unwinding the stack on a transaction abort would re-
quire a massive amount of new error-handling code. The
longjmp approach requires undo logging of certain opera-
tions, such as lock acquisition or temporary memory alloca-
tion. Although this approach works in general, we found it
did not interact well with disk I/O.

Synchronization for pages locked for disk I/O is compli-
cated. These pages are protected by a per-page lock, but each
page also has an “up-to-date” flag that must be set once a
disk read completes. Some kernel code paths may detect that
this flag is not set, and spin until the disk read completes—
without ever acquiring the page lock.

These two independent synchronization mechanisms in-
teract negatively when a transaction aborts holding a page
lock for I/O. In the original TxOS prototype, a transaction
could begin an I/O on a page, then lose a conflict and jump
out of the stack without properly handling the I/O comple-
tion. Subsequent requests for the page would hang waiting
for this I/O completion, ultimately hanging the system.

We addressed this problem by preventing the transaction
from jumping up the stack until it correctly releases all
page locks and handles any I/O completions. We also added
a debugging mode that asserted that the longjmp code is
never executed with a page lock held. This debugging mode
allowed us to quickly pinpoint a small number of code paths
that needed explicit abort error handling code.

7.3 File descriptor table
The file descriptor table is a complex, contended kernel data
structure that we redesigned for TxOS+. The file descriptor
table translates file descriptors to opened file objects. The
table provides an efficient means for accessing a file without
doing repetitive security checks once a file is opened.

In the Linux kernel, the file descriptor table is imple-
mented as a single array that is expanded when entries are
filled. One trivial way to manage the file descriptor table in
transactions is to consider the whole table as an object. This
coarse-grained approach (taken in TxOS) simplifies imple-
mentation, but any open or close from two transactions cre-
ate unnecessary conflicts.

We added a file descriptor object to TxOS+, and restruc-
tured the table to be a linked list of segments. The file de-



scriptor objects supports transactional semantics, and can be
committed or rolled back individually. To avoid synchroniz-
ing a file descriptor table that has changed location (because
it changed size), TxOS+ expands the table by linking in a
new segment and leaving the old table in place. Accessing
an entry can require additional indirections, but each seg-
ment allocated is twice the length of the previous segment
and the system defines a limit on per-process file descrip-
tors bounding the number of indirections needed to a small
number (less than 2 indirections for all of our experiments
including system configuration during boot).

7.4 Data structure reorganization
The TxOS prototype design decomposed kernel objects such
as the inode, dentry, and file objects into two main
components: a stable header for static or kernel-internal
bookkeeping, and a data object for fields that could change
during the course of the transaction. We found that many of
the fields of the inode and super block, specifically,
were needlessly included in the data object. For instance,
the inode data object includes several fields that do not
change for the life of the inode, such as the inode number
and the operations pointer. A more subtle example is the in-
ode stat word, which includes some bits that encode the
type (which doesn’t change) and other bits that include the
permissions, which can change in a transaction.

We migrated several of these static fields into the object
header, which has both performance and correctness impli-
cations. In terms of performance, looking up whether an ob-
ject is in the transaction’s working set is relatively expensive,
and adding the object to the transaction’s workset is even
more expensive. There were a number of cases where these
checks can now be elided. Above (§7.2), we describe how
to handle transaction aborts during disk I/O safely. Many
of the places where a transaction could abort when request-
ing disk I/O came from accessing needlessly isolated fields,
such the type of an inode, or the file system configuration op-
tions. This reorganization substantially reduced the amount
of code that needed to be rewritten with explicit error han-
dling.

7.5 Releasing isolation on disk reads
When part of the file system directory tree is not in the in-
memory cache (dcache), it must be read from disk, cre-
ating new inode and dentry data structures to repre-
sent these files. If the disk read occurs during a transaction,
the original TxOS prototype would add these objects to the
transaction’s workset. If the transaction aborts, these cached
entries are discarded and re-read from disk on the next ac-
cess.

In TxOS+, we immediately release isolation on these
newly created data structures, as they contain only previ-
ously committed state. Though the data was read during a
transaction, by releasing isolation, the system treats the files
as if they were read outside of a transaction. If the trans-

Application LOC LOC changed

BFT UpRight library 22,767 174 (0.7%)
Graph server 1,006 18 (1.8%)

Dovecot (IMAP) 138,723 40 (0.0003%)
glibc 1,027,399 826 (0.0008%)
IcedTea JVM 496,305 384 (0.0008%)

Table 2. Lines of code changed to add system transactions.

action modifies any of the files, then TxOS+ creates transac-
tional copies (as it does for all modified kernel objects). If the
transaction fails and rolls back, data from clean disk reads
are kept in the memory cache. This change eliminates costly
and needless disk reads, and reduces the bookkeeping com-
plexity needed to track this special case behavior through the
life of the transaction.

8. Evaluation
We present measurements of our prototype in this section.
Table 2 shows the number of lines we changed to add sys-
tem transactions to a set of large applications and libraries.
The number of changed lines is very small both in absolute
terms and relative to the code size of these projects. We also
modified around 17,000 lines of TxOS source code to create
TxOS+. The number of modified kernel lines is high because
we modified structure definitons to avoid spurious conflicts.

8.1 BFT and System Transactions
Previous BFT systems were generally evaluated using ser-
vices where dependencies between requests could be eas-
ily reasoned about a priori, such as a distributed file system
(running a simplified workload) or a directory service. Many
realistic workloads are not so simple. Thus, we created a new
challenge workload for BFT that has opportunities for con-
currency but does not lend itself to trivial dependency anal-
ysis.

Our challenge workload for fault-tolerant replication
stores backend data for a network router, where nodes are
machines and edges are network links. We tested this work-
load with two kinds of graph datasets, which have differ-
ent graph density. The denser dataset contains a randomly
generated graph with 5,000 vertices and 3,174,615 edges
(density is 0.254), and the sparser graph has 10,900 vertices
and 31,180 edges (density is 0.000525). The sparse graph
is sampled from graph data from the Oregon-2 dataset [27]
and is comprised of network routes between autonomous
systems inferred from RouteViews [3] and other routing in-
formation. Both graphs are undirected. Graph data is stored
in a file, which allows it to be larger than memory. The ap-
plication accesses the data using pread and pwrite calls,
and allows the OS to cache the file data.

The server can handle four types of queries from clients:
edge addition, edge deletion, edge existence, and shortest
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Figure 3. Throughput (higher is better) for UpRight graph
server application on TxOS+ and Linux. The x-axis shows
different ratios of write requests to shortest path (read) re-
quests.

path between two vertices. The first two operations can mod-
ify the graph, while the other two only read it. The shortest
path operation takes significantly longer than the others and
includes much more data in its transaction, increasing the
probability and penalty for a transaction abort (misspecula-
tion). Each modify request first tests for the existence of the
edge it seeks to modify, and does no more work if it is trying
to add an existent edge or delete a non-existent edge. Depen-
dencies between requests are data dependent and cannot be
predicted before execution.

This application runs on the Upright BFT library with
TxOS+, our modified JVM and our modified glibc. In our
BFT application evaluation, we use 3 execution replicas with
4 threads for each. All the execution replicas run on Dell Op-
tiplex 780 machines with Intel Core2 Q9400 quad-core 2.66
GHz CPU, 3 GB memory. Because this experiment focuses
is on concurrent isolation, we use the ext2 file system,
which does not guarantee atomic disk updates, but does sim-
plify kernel debugging. The experiment configuration also
has 4 ordering replicas, 4 request quorum replicas, and 40
clients connected over a gigabit network. The clients satu-
rate our execution servers due to the large amount of work
in finding a shortest path. All experiments first warm-up the
JVM at the replicas [9]. We only consider throughput for re-
quests after the initial 20,000 requests to eliminate transient
effects from system startup.

Throughput and Latency Fig 3 shows the throughput
of the BFT graph server on TxOS+ with different mixes
of read/write requests, compared with the throughput of
the server with serial execution on Linux. With read-only
requests, the parallelized BFT graph server on TxOS+
achieves 88.3% (dense) or 10.9% (sparse) higher through-
put than execution on Linux. TxOS+’s throughput improve-
ments from increased parallelism are offset by bookkeeping
that TxOS+ must do to track file I/O. These overheads are

Dataset Tput
(ops/s)

Latency
(ms) Aborts

Dense
graph

0% write
Linux 404.4 96.4 -
TxOS+ 759.1 50.7 0.0 %

50% write
Linux 760.0 50.4 -
TxOS+ 994.9 40.3 0.43 %

100% write
Linux 3601 9.49 -
TxOS+ 3360 10.2 0.19 %

Sparse
graph

0% write
Linux 114.1 334 -
TxOS+ 132.9 298 0.0 %

50% write
Linux 232.5 162 -
TxOS+ 239.8 164 3.6 %

100% write
Linux 3638 9.41 -
TxOS+ 3340 10.0 0.34 %

Table 3. Throughput (higher is better) and latency (lower
is better) for the BFT graph service on TxOS+ and Linux.
TxOS+ uses server-side speculation to parallelize request
processing. The percentage of aborted requests is given for
TxOS+ and is highest with 50% write mix.

lower for denser graphs, which have shorter shortest paths,
and hence fewer file reads and subsequent bookkeeping.

Table 3 provides a cross section view of Figure 3, il-
lustrating noteworthy characteristics of the workload. First,
write operations are significantly faster than read opera-
tions (10× with dense graphs, 35.5× with sparse graphs),
as shown by comparing the latencies of the 0% write and
100% write rows. This is because a read operation actually
computes a shortest path—reading many edges and perform-
ing a substantial computation. Second, shortest path opera-
tions on sparse graphs have a larger read set than those on
dense graphs. This larger read set causes an order of magni-
tude more aborts in the sparse 50% write workload (0.4% to
3.6%). Even with substantially more aborts, TxOS+ shows
comparable performance to Linux. Finally, the 100% write
test has similar latency in both graphs because each write
operation simply updates a given vertex. The 100% write
workload on TxOS+ has a 7–9% reduction in throughput
compared to Linux, which is attributable to the very short
write requests (9.4–10.2 ms) not amortizing thread coordina-
tion costs. Recall that the Linux baseline is single-threaded,
while TxOS+ uses transactions to execute the writes con-
curently.

Figure 4 compares time to recover a failed graph server
node on TxOS+ and Linux. In this experiment, a server is
stopped at 36 seconds and restarted at 53 seconds (17 sec-
onds later). The recovering server re-executes all interven-
ing requests until it has caught up. By executing recovery re-
quests in parallel, TxOS+ recovers 29.9% faster than Linux.

8.2 IMAP
We modified the Dovecot email server, version 1.0.10, to use
system transactions. Dovecot is a production-quality email
server, shipped as a standard feature in many mainstream
Linux distributions, supporting a range of protocols, includ-
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Figure 4. Comparison of time to recover a BFT server in TxOS+
(black) vs. Linux (grey). The x-axis shows time and the y-axis is
in 1000’s of requests completed. The dotted line tracks the correct
execution nodes. In both cases, a node stopped at 36 seconds and
restarted at 53 seconds. In this experiment, TxOS+ recovers 29.9%
faster than Linux.

ing IMAP, and a range of back-end mail storage formats.
Specifically, we changed its maildir backend storage for-
mat [1, 6], to use transactions instead of directory lock files.
We use unmodified maildir as our baseline, and replace
lock files with system transactions for safety. We test with
the IMAP client protocol, which touts concurrent client sup-
port as an explicit, but often problematic, feature.

We note that maildir was originally designed to be
lock free. Due to race conditions between a sequence of
readdir system calls and rename calls, Dovecot has
reintroduced lock files at the directory granularity [15]. We
performed an experiment where we disabled this lock file
and confirmed qualitatively that we could reproduce disturb-
ing anomalies attributable to unrepeatable mailbox reads, in-
cluding temporarily lost email messages when another client
marks a message as read.

To evaluate the impact of adding transactions to Dove-
cot, we also wrote a client test application in Python 2.6.5,
using the imaplib IMAP client library. This script uses
a single test account, and launches a configurable number
of concurrent clients (1–4 in our experiments), accessing a
shared mailbox with an initial size of 1500 messages. Each
client performs 100 operations on randomly selected mes-
sages; a configurable fraction are message reads and the rest
are randomly chosen between creating a new message and
deleting a random message.

We run our IMAP server on a Dell PowerEdge T300
server, with a quad-core Intel Xeon X3363 CPU at 2.83 GHz
and 4 GB of RAM. We ran the client script on a SuperMicro
SuperServer, with 4 quad-core Intel Xeon X7350 CPUs (16
cores total), at 2.93 GHz with 48 GB of RAM. As with the
BFT experiments, our focus is on concurrent isolation, so we
use the ext2 file system for debugging simplicity.

Table 4 reports a sample of measured performance data
at a range of write fractions and concurrent clients. Each

Clients OS % Writes
0 10 25 50 100

1
Linux 0.15 0.29 0.63 1.20 2.30
TxOS+ 0.14 0.28 0.62 0.96 2.08

2
Linux 0.12 0.42 0.95 1.47 2.83
TxOS+ 0.10 0.34 0.74 1.38 1.92

4
Linux 0.14 0.60 1.37 2.45 4.80
TxOS+ 0.13 0.38 0.80 1.40 2.66

Table 4. Execution time in seconds of an IMAP client mi-
crobenchmark comparing transactional Dovecot on TxOS+
with Unmodified Dovecot on Linux, with varying write frac-
tions and concurrent clients. Lower is better. Work scales
with the number of clients, so the same value for a write
fraction across more clients indicates perfect scaling.

value is the average of at least three runs. On single-client or
read-only workloads, Dovecot on TxOS+ and Linux perform
comparably, indicating that transactions do not harm base-
line performance. With two clients, performance improves
on TxOS+ by 7–47%, with four clients, the improvement in-
creases from 8–80%. We attribute these performance gains
to both the elimination of work creating and deleting lock
files, as well as improved block allocation and write schedul-
ing (commensurate with previous results [34]).

9. Related Work
System Transactions. A number of historical research op-
erating systems have provided OS-level transactions, either
as a general-purpose programming abstraction [37, 46], or to
help isolate untrusted OS extensions [40]. These systems es-
sentially applied database implementation techniques to the
OS; TxOS [34] innovated by selecting concurrency manage-
ment techniques more appropriate for an OS kernel. This
work innovates by substantially refining these mechanisms
and evaluates them on the largest transactional OS work-
loads to date (to the best of our knowledge).

Transactional file systems are deployed as part of Win-
dows 7 [36], and they exist in several research proto-
types [17, 39, 43]. It is possible that a transactional file
system is sufficient to run the workloads described in this
paper; but to our knowledge, integrating such large appli-
cations with file system transactions has not been explored.
Based on our experience, there are a number of complica-
tions that arise when OS-level primitives outside the file sys-
tem are not rolled back on a transaction abort. For instance,
the IMAP implementation was simplified by automatic roll-
back of a file descriptor, which would require more cumber-
some application code on a transactional file system.

Speculative Execution in the OS. Speculator [30] extends
the operating system with an application isolation and roll-
back mechanism that is similar to transactions in many re-
spects, improving system performance by speculating past



high-latency events. The primary difference is that specula-
tions are not isolated from each other; when two speculations
touch the same OS data, they are automatically merged. The
initial motivation for Speculator was to hide the latency of
common NFS server requests. Speculator has also been ex-
tended to hide latency of synchronous writes to a local file
system [32], security checks [31], and to debug system con-
figuration [44].

Most relevant to this work, Speculator has been used to
hide BFT access latency on the client, speculating that it
knows the likely answer all replicas will give [47]. Specu-
lator is insufficient to parallelize execution of BFT servers,
as speculations are not isolated. Concurrent speculations
will be merged, doing nothing to prevent non-determinism.
Transactions can isolate independent requests on the server
and serialize them according to the prescribed order. Thus
these similar systems provide related, but distinct guaran-
tees; the differences in their isolation properties dictate what
problems they can solve.

High-throughput BFT Systems. BFT systems achieve
high availability through replication. This comes at a through-
put cost, so improving throughput is a focus of BFT research.

Batching requests increases throughput and is used in
PBFT [11] and Zyzzyva [23]. Although batching reduces
communication overhead, replicas still must execute re-
quests in a serial order. To parallelize request execution,
Kotla and Dahlin [24] suggested using application-specific
knowledge to find independent sets of requests in an or-
dered batch that can be parallelized. Checking dependen-
cies among requests requires complete foreknowledge of
their execution behavior—difficult to obtain in practice, es-
pecially when the OS is involved.

HRDB [45] and Byzantium [18] are BFT replicated
databases that use that use use database transactions to par-
allelize request processing. These systems use weaker con-
currency isolation guarantees: HRDB ensures one-copy se-
rializability while Byzantium relies on snapshot isolation.

These systems, as well as TxOS+, use transactions as a
tool for maximizing BFT concurrency. TxOS+ extends the
concurrency from structured tables to unstructured OS op-
erations, supporting a wider range of applications. Unlike
TxOS+, which uses ordered transactions, these systems or-
der commits by deferring the database commit, harming per-
formance. Ordered system transactions provide a simpler
route for applications to use transactional semantics.

Pausing transactional memory. User-level hardware trans-
actional memory systems have proposed similar pausing [50]
or open nesting [28] mechanisms to keep libc and OS state
out of user-level transactions. In these systems, a program
would pause its transaction before calling malloc to avoid
hardware rollback of libc bookkeeping; in our libc, malloc
might pause the transaction to keep its state out of the OS. To
the best of our knowledge, these pausing mechanisms have
not been evaluated on substantial code bases. Because soft-

ware transactional memory is usually implemented above
the JVM or libc, pausing is not necessary; pausing is needed
only for lower-level transactional mechanisms.

10. Conclusion
This paper takes a promising idea, system transactions, and
applies them to server applications that have struggled to
balance high throughput with strong safety and concurrency
guarantees due to a crippled OS interface. This paper con-
tributes new ideas about the right OS interfaces for these
applications and supporting middleware, validated with sub-
stantial workloads. In the process of supporting applications
that are larger than previously studied, we improved a num-
ber of aspects in the design and implementation of system
transactions. This work is an important step in a line of re-
search towards OSes that efficiently provide strong guaran-
tees, leading to better applications.
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