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Anon-Pass, a protocol and system for subscription services, lets users authenticate anonymously while 
preventing mass sharing of credentials. Service providers can’t correlate users’ actions but are guaranteed 
that each account is in use at most once at a given time. 

E lectronic subscriptions are widespread and quickly 
becoming the dominant mode of access for ser-

vices like music and video streaming, news, and aca-
demic articles. Although electronic subscriptions are 
convenient for users, they reveal a lot of information, 
ranging from personal preferences to geographic move-
ments. Many users want electronic services, but they 
also want privacy. Simply anonymizing data doesn’t 
always protect users’ privacy. Indeed, multiple anony-
mized datasets released for research purposes, includ-
ing the AOL search dataset1 and the Netfl ix Prize 
dataset,2 have been partially deanonymized through 
correlation or by understanding of the semantics of the 
released data.

It’s diffi  cult to create systems that protect user pri-
vacy and simultaneously control admission—that is, 
keeping out users who haven’t paid. Foregoing one of 
these two goals makes achieving the other consider-
ably easier. If users are required to log in to an account, 
foregoing anonymity, a service can enforce that no user 
is logged in twice simultaneously. On the other hand, 
a subscription system using a single shared identity for 
all users prevents user identifi cation (although traffi  c 

anonymization via a system like Tor3 might be required 
to mask network-level identifi ers). However, subscrib-
ing users could share the secret with nonsubscribers.

Ideally, we would have an anonymous subscription 
system that protects the interests of both the service and 
the users. At a high level, such a service needs two opera-
tions: registration and login. Registration lets users sign 
up for the service, at which point they might need to pro-
vide identifying details, such as a credit card number or 
public key. Login lets registered users access protected 
resources via their subscription. Informally, an anony-
mous subscription service ensures that users’ logins 
aren’t linked to the information they provided at registra-
tion and login sessions aren’t linkable with one another.

Although cryptographic protocols for providing 
anonymous credentials services already exist,4 there 
are problems with putt ing these protocols into prac-
tice (for more information, see the “Related Work in 
Anonymous Credentials” sidebar). Many of these pro-
tocols are designed for thousands of concurrent users; 
however, Netfl ix streamed 1 billion hours of content 
in July 2012 and has millions of subscribers.5 At this 
scale, some proposed cryptographic operations require 
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too much computation. Existing work doesn’t focus 
on realistic evaluation scenarios, making it difficult 
to understand what performance issues would arise 
in a deployed system. Anon-Pass, a new protocol for 
anonymous subscription services, achieves significant 
improvements in efficiency over prior protocols. 

Anonymous Subscriptions 
with Conditional Linkage
How do we achieve both anonymity and admission 
control? Ideally, we want each new client operation 
to appear to be from a new user, unrelated to previous 
users. (Note that, in this article, user denotes the person, 
and client denotes the program or machine performing 
actions.) However, when two operations are authorized 
with the same client secret at the same time, it must 
be clear they’re from the same user. To keep login cre-
dentials verifiable but also make them changeable, we 
divide time into equal-length intervals or epochs, agreed 
on by both clients and servers. Clients use the epoch as 
input to a pseudorandom function (PRF), which allows 
them to change the login credential for each epoch. 
Changing login credentials means each client appears to 
be a new user in every new epoch, but each client secret 

can create only one unique login credential per epoch, 
preventing multiple simultaneous logins with the same 
credentials. A login credential provides access only for 
the duration of an epoch.

There’s a tension between a service provider’s desire 
for a long epoch (to reduce server load) and users’ desire 
for a short epoch (to improve anonymity). The service 
needs to perform cryptographic checks during login, 
making login a computationally expensive operation. 
Consequently, the service provider wants to maximize 
epoch length. However, users are unlinked from previ-
ous activity only once an epoch boundary has passed 
and hence prefer a shorter epoch. For example, when 
listening to a music streaming service, users probably 
don’t want to wait five minutes—or even one minute—
for the next track to play.

We believe that users want unlinkability across 
accesses to distinct pieces of content, such as a movie, 
song, and news article, but not all accesses to protected 
resources need to be unlinkable. For instance, whereas 
users want to decorrelate their watching The Godfather 
from listening to “Teenage Dream,” they don’t need 
to decorrelate watching the first minute of The Godfa-
ther from watching the second minute. Therefore, we 

Related Work in Anonymous Credentials

O ur work continues research into anonymous credentials, 
which allow admission control while maintaining anonymity.1 

Handling credential abuse has been a central theme of much 
anonymous credentials work; however, credential abuse takes 
on a different meaning in many of the different systems. Early 
work focused on e-cash, where credentials represented units 
of currency.2,3 The key task was to prevent double-spending. 
However, currency-based systems are use limited and don’t 
translate to unlimited subscription services.

One of the earliest proposals for anonymous subscription 
services was unlinkable serial transactions.4 The system ensures a 
user can have only one valid credential at a time by recording every 
previously seen credential and issuing a new anonymous credential 
at the end of each transaction. Instead of requiring the potentially 
unbounded storage cost of unlinkable serial transactions, Anon-
Pass has users periodically contact the service.

More recent work focused on anonymous blacklisting systems 
wherein services can blacklist users.5 Anonymous blacklisting 
systems usually let services reveal some form of linking information 
to prevent future access. Anon-Pass links a user only when the user 
explicitly tells the service to, reducing the cryptographic cost.

One way to implement an anonymous subscription service 
is by blacklisting users at login and removing them at logout. 
However, many of these schemes suffer from poor scalability. 

Indeed, authentication for BLAC has overhead proportional to 
the number of blacklisted users.6 A more recent system, BLACR, 
measures scalability in terms of authentications per minute using 
5,000 concurrent users. In contrast, Anon-Pass can sustain almost 
500 login operations per second and scales to 12,000 clients 
concurrently streaming music.
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designed Anon-Pass with conditional linkage, wherein 
some accesses to protected resources are linked to reduce 
computational cost when privacy is less important. We 
provide short epochs, giving users the ability to reano-
nymize quickly if they so choose, while also providing an 
efficient method for those who don’t need unlinkability 
to cheaply reauthenticate for the next epoch. 

Syntax and Intended Usage
An anonymous subscription scheme with conditional 
linkage consists of two algorithms—Setup and 
EndEpoch—and three protocols—Reg, Login, and 
Re-up. Setup and EndEpoch are used for bookkeeping 
of internal service state and let us clearly define service 
provider operations in our proofs. The three protocols 
comprise the scheme’s primary functionality: registering 
new users in the system (Reg) and authenticating 
clients to the system (Login and Re-up). Re-up differs 
from normal authentication because it requires that the 
client is already logged in to the system. The protocol 
implements our scheme’s conditional linkage aspect by 
extending the current user session into the next epoch.

System initialization begins with the server running 
Setup(n) (where n is the security parameter) to 
generate the service public and secret keys. Following 
setup, clients can register new users at any time; we 
denote the secret key of client i as ski. Independent of 
user registrations (which don’t affect the server’s state 
and can be performed at any time), there’s a sequence 

of Login, Re-up, and EndEpoch executions. The time 
period between two executions of EndEpoch, or 
between Setup and the first execution of EndEpoch, 
is an epoch. Logini (respectively, Re-upi) denotes an 
execution of Login (respectively, Re-up) between the 
ith client and the server, with both parties using their 
prescribed inputs.

During an epoch, we (recursively) define that client 
i is logged in if either Logini was previously run during 
that epoch or, at some point in the previous epoch, client 
i was logged in and Re-upi was run. Client i is linked if 
at some previous point during that epoch, client i was 
logged in and Re-upi was run.

Security
We define two notions of security: soundness, which 
ensures that malicious users can’t generate more active 
logins than the number of times they’ve registered, and 
anonymity, which guarantees unlinkability for clients 
that authenticate using the Login protocol. However, 
clients that reauthenticate using the Re-Up protocol 
will be linked to their actions in the previous epoch.

A scheme is sound if, for all probabilistic polynomial-
time adversaries 𝒜, the probability that 𝒜 succeeds in 
the following experiment is negligible: 𝒜 is a malicious 
user trying to authenticate without using a valid client 
secret it knows. 𝒜 can perform several actions against 
the service, including registering polynomially many 
malicious users (and hence learning the associated 
secret), forcing honest clients to log in and re-up, and 
globally incrementing the current epoch. 𝒜 succeeds if, 
at any point, the number of logged-in clients is greater 
than the number of 𝒜’s users plus the number of honest 
clients currently logged in.

A scheme is anonymous if, for all probabilistic 
polynomial-time adversaries 𝒜, the probability that 
𝒜 succeeds in the following experiment is negligibly 
close to 1/2: 𝒜 is a malicious service trying to link 
users’ access patterns. During setup, a random bit c is 
chosen, 𝒜 sets the service public key, and two clients—
U0 and U1—are registered. 𝒜 then proceeds in three 
phases where, in each phase, 𝒜 may take any number of 
actions among those it’s allowed (while still remaining 
polynomial time):

■■ Phase one. 𝒜 may increment the epoch; query the 
oracle Login(b), which performs a login for Ub; and 
query the oracle Re-up(b), which performs a re-up for 
Ub. In essence, 𝒜 has full knowledge and control of 
the access pattern for U0 and U1. If at some point both 
U0 and U1 aren’t currently logged in, then 𝒜 can pro-
ceed to phase two.

■■ Phase two. 𝒜 may perform the same operations, but 
queries ChallengeLogin(b) and ChallengeRe-up(b) 

Figure 1. The communication between the authentication server, resource 
gateway, and client user agent with respect to the client and the service. (1) 
The user agent initiates communication. (2) The authentication server verifies 
the credentials and returns a sign-in token to the user agent. (3) The user agent 
communicates this sign-in token to the resource gateway, then (4) passes this 
information to the client application. (5) The client application includes the 
token as a cookie along with its normal request. (6) The gateway checks that the 
sign-in token hasn’t already been used in the current epoch and then proxies 
the connection to the application server. (7) The application server returns the 
requested content, and (8) the gateway verifies that the connection is still valid 
before returning the response to the client.
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instead. ChallengeLogin(b) is the same as  
Login(b ⊕ c), and ChallengeRe-up(b) is the same as 
Re-up(b ⊕ c). The second phase ends when neither 
client is logged in at the beginning of an epoch.

■■ Phase three. 𝒜 may perform the same operations as 
during phase one: increment the epoch, query the 
oracle Login(b), and query the oracle Re-up(b).

At any point, 𝒜 can output a bit c′. 𝒜 succeeds if 
c = c′.

Design
Anon-Pass is intended to instantiate our protocol in a 
way that’s practical for deployment. We present a con-
ceptual framework for the system in which the various 
system functionalities are separated.

There are three major pieces of Anon-Pass functional-
ity: the client user agent, the authentication server, and the 
resource gateway. The client user agent and the authenti-
cation server correspond to the client and server in the 
cryptographic protocol. The resource gateway enforces 
admission to the underlying service, denying access to 
users who aren’t properly authenticated. An Anon-Pass 
session is a sequence of epochs beginning when a user 
logs in and ending when the user stops re-upping.

Figure 1 shows the Anon-Pass system’s major 
components. We depict the most distributed setting, 
wherein each of the three functions is implemented sep-
arately from existing services. However, a deployment 
might merge functionality—for example, the resource 
gateway might be folded into an already existing com-
ponent for session management.

Our system supports internal and external authenti-
cation servers. An internal authentication server corre-
sponds to a service provider offering anonymous access, 
for instance, The New York Times website offering anon-
ymous access at a premium. An external authentication 
server corresponds to an entity providing anonymous 
access to already existing Web services, for example, 
a commercial Web proxy, such as proxify.com or 
zend2.com, offering anonymous services.

Although not depicted in Figure 1, our system 
implements registration. We don’t discuss the registra-
tion protocol’s payment portion. Anonymous payment 
is a separate and orthogonal problem; possible solu-
tions include paying with e-cash or Bitcoins.

We want services to use our authentication scheme 
without much modification, so we provide a simple 
interface: during a certain time period, authorized cli-
ents can contact the service and are cut off as soon as 
the session is no longer valid. Services might have to 
accommodate Anon-Pass’s access control limitations. 
For example, a media-streaming service might want to 
limit how much data any client can buffer in a given 

epoch. The service provider loses the ability to enforce 
any access control for buffered data.

Timing
Anon-Pass requires time synchronization between cli-
ents and servers because both must agree on epoch 
boundaries. To support a 15-second epoch, clients and 
servers should be synchronized within one second. The 
Network Time Protocol (NTP) is sufficient, available, 
and scalable for this task. The pool.ntp.org organi-
zation (www.ntp.org/ntpfaq/NTP-s-algo.htm) runs a 
pool of NTP servers that keep the clocks of 5 to 15 mil-
lion machines on the Internet synchronized to within 
approximately 100 ms.

The server’s response to a login request includes 
a time stamp. Clients verify that they agree with the 
server on the current epoch. Client anonymity could be 
violated if the epoch number decreases, so clients must 
track the latest time stamp from each server they use 
and refuse to authenticate to a server that returns a time 
stamp that’s earlier than a prior time stamp from that 
server. This ensures that, regardless of any time differ-
ence between server and client, anonymity is preserved.

Clients who re-up choose a random time during the 
epoch to send the re-up request to prevent repetitive 
behavior that becomes identifying. Randomizing the 
re-up request time also has the benefit of spreading 
the computational load of re-ups on the server across 
the entire epoch.

Client User Agent
The client user agent is responsible for establishing user 
secrets, communicating with the authentication server, 
and maintaining client sessions. Separating it from the 
client application achieves two goals: it minimizes the 
amount of code that users must trust to handle their 
secrets, and it lowers the amount of modification neces-
sary to support new client applications.

Once the user agent establishes a connection with 
the authentication server, it runs our Login protocol 
and receives a sign-in token in the form of a standard, 
public-key signature on the user’s PRF value and the 
current epoch. The user agent sends this token to 
the resource gateway as proof that it’s authenticated 
for the current epoch. The resource gateway uses the 
epoch to ensure timely use, and the signature to deter-
mine token validity. The user agent can’t use this token 
in a later epoch.

When the user agent and authentication server run 
our Re-up protocol, the user agent receives a token that 
includes the current and next epoch as well as the two 
corresponding PRF values. These additional values 
allow the resource gateway to link the re-up operations 
to the session’s initial login request.
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Authentication Server
We separated the authentication server from the service 
to offer service providers greater flexibility. The server’s 
primary task is to run the authentication protocols and 
ensure that clients aren’t authenticating more than once 
per epoch. Because the protocol’s cryptographic opera-
tions use a lot of computational resources, we designed 
Anon-Pass so that an authentication service provider 
can distribute the work among multiple machines. The 
only information that needs to be shared between pro-
cesses is the current epoch and PRF values of all logged-
in users, for example, using a distributed hash table. 
Storing only information about currently authenticated 
users relieves service providers of having to store all 
spent tokens, which requires unbounded storage.

Resource Gateway
The resource gateway performs a lightweight access 
check before sending data back to a client. A client can 
receive data during an epoch only if it’s authenticated 
for that epoch. Therefore, the epoch length bounds 
how much data can go to a client before the client must 
reauthenticate (log in or re-up).

Construction
Here, we provide an overview of a cryptographic con-
struction for a secure anonymous subscription scheme 
with conditional linkage that allows us to formalize and 
prove Anon-Pass properties (see “Anon-Pass: Practi-
cal Anonymous Subscriptions” for details6). Our con-
struction uses several primitives—bilinear groups, 
zero-knowledge proofs of knowledge, a PRF family, 
and cryptographic assumptions from prior work. In our 
formal model (unlike the implementation), we assume 
protocols aren’t executed concurrently, so there’s a well-
defined ordering among those events.

Similar to Jan Camenisch and his colleagues’ 
scheme,7 our construction works by associating a 
unique token Yd(t) with each client secret d in each 
epoch t. To register, a client obtains a blind signature 
from the service on a secret of its choosing. To log in, 
the client sends a token and proves in zero knowledge 
that it knows the service’s signature on the secret and 
that this secret was used to compute to the token that 
was sent. The token is used to determine admission to 
the service; the service accepts the token only if it hasn’t 
been presented before in that epoch. Intuitively, the dif-
ficulty of generating signatures ensures soundness, and 
the tokens’ pseudorandomness ensures anonymity. 

We use the Dodis-Yampolskiy PRF8 and an adapted 
version of CL signatures proposed by Camenisch and 
Anna Lysyanskaya.9 These building blocks are efficient 
and enable efficient zero-knowledge proofs as needed 
for our construction.

A client can authenticate during epoch t by sending 
the token Yd(t) and proving in zero knowledge that the 
token is correct. However, if the client is already logged 
in during epoch t – 1, it can authenticate by sending 
Yd(t) and proving that Yd(t – 1) uses the same client 
secret. This method is much more efficient, with the 
tradeoff that the two user sessions are now explicitly 
linked. In an epoch in which the client isn’t logged in, it 
can perform a fresh login to reanonymize itself.

Implementation
We implemented the cryptographic protocol in the 
libanonpass library using the Pairing Based Cryp-
tographic Library,10 PolarSSL (https://polarssl.org) for 
clients, and OpenSSL (www.openssl.org) for the server. 
To show our protocol’s flexibility, we implemented sev-
eral usage scenarios including a music-streaming ser-
vice and an anonymous unlimited-use public transit 
pass. These applications were large enough to highlight 
implementation issues specific to each context.

We implemented the authentication server and 
resource gateway as two separate Nginx modules (www.
nginx.org). The design didn’t need to share much 
state—the only state Anon-Pass needed to track was the 
current set of active login tokens. Both the authentica-
tion server and the resource gateway needed to track 
this information; however, this was consolidated to a 
single distributed hash table as both were run by the 
same service. The authentication server performed the 
cryptographic operations to try to keep expensive com-
putations out of users’ critical data path. Instead, the 
resource gateway only needed to verify a standard Ellip-
tic Curve Digital Standard Algorithm (ECDSA) signa-
ture and verify and update the table of active sessions.

The basic client was a wrapper around libanon-
pass and PolarSSL, which provided an encrypted 
connection. Protocol messages were sent using cook-
ies to simplify server-side parsing and minimize client 
application modifications.

Music-Streaming Service
We implemented a music-streaming service over 
HTTPS by exposing media from Web-accessible URIs. 
The service directly implemented our anonymous cre-
dential scheme and let users choose an anonymous 
session’s granularity as either a full playlist or an indi-
vidual song. We modified VLC (www.videolan.org/
vlc), a popular media player, to communicate with our 
user agent and pass our session tokens as cookies to the 
resource gateway.

Our music service let users download songs, but we 
rate-limited playback. Rate limiting reduces network 
bandwidth usage, which allowed our service to support 
more clients with jitter-free service. Rate limiting also 
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reduces the amount of data a client can buffer during an 
epoch. If a client loses its anonymous service in the next 
epoch, it would have only a small amount of buffered 
data. Our music service couldn’t enforce access control 
for that buffered data.

Public Transit Pass
We implemented a public transit pass as an Android 
application. Currently, public transit providers that issue 
month- or weeklong unlimited-access passes limit user 
access to prevent cheating. Without safeguards, users 
could hand off their pass to their friends. Anonymous sub-
scriptions can provide these safeguards without revealing 
users’ identities (so their movements can’t be tracked).

We used the Java Native Interface to call into liba-
nonpass from an Android application. The Android 
application had a simple interface with a single button 
to generate a login and two additional re-up tokens. 
It then displayed this data as a QR code for a physical 
scanner to read. The login and re-up tokens prevent 
use of the client for the remainder of the current epoch 
and the next two epochs. If the transit provider chose a 
six-minute epoch, this would create a 12- to 18-minute 
period in which a login attempt from the same phone 
would fail. Although this guarantee isn’t precisely the 
same guarantee an unlimited-ride transit pass currently 
provides, it does present an alternative that gives riders 
anonymity while still enforcing a lockout period.

Other anonymous subscription systems, such as 
unlinkable serial transactions (UST),11 and anonymous 
blacklisting systems, such as Nymble12 and BLAC,13 
require network connectivity when clients use authen-
tication tokens. When using a blacklisting system, users 
want to proactively fetch the blacklist to ensure that 
they aren’t on the list prior to contacting a server; other-
wise, they could be deanonymized. Blacklists can grow 
quickly; for example, BLAC adds 0.27 Kbytes of over-
head per blacklist entry. When using a UST-like system, 
users must receive the next token when a prior token 
is used up (but not before). Anon-Pass is ideal for sub-
way systems where network phone coverage is spotty 
at best, because it needs to communicate only in one 
direction at the entry gate.

However, there is a caveat. Although Anon-Pass 
might be able to simulate the lockout period, a transit 
provider must implement an unlimited-use pass, which 
doesn’t map directly to the model enforced today. This 
is because, by definition, Anon-Pass can’t prevent time-
sharing over a longer period of time. Once the 12- to 
18-minute period is up, another user could use a dupli-
cated pass, but the original rider wouldn’t have necessar-
ily exited the system. The requirement of one physical 
device allowing access to one person is broken because 
the credential could be copied in an untraceable manner.

Evaluation
We evaluated several Anon-Pass applications using a 
series of microbenchmarks. Further results, including a 
theoretical cost comparison to prior work and an addi-
tional example service, can be found in “Anon-Pass: 
Practical Anonymous Subscriptions.”6

Measured Operation Costs
There are overheads when integrating the protocols 
into a full system. Figure 2 shows a breakdown of each 
authentication operation and how time was spent on the 
server. For Reg, the signature operation was our modi-
fied CL signature on the blinded client secret, whereas 
Login and Re-up used standard ECDSA signatures. The 
majority of the work for the ECDSA signature could be 
precomputed and hence took almost no time to com-
pute. Re-up was 7.7 times faster than login.

Music-Streaming Service
We built an example music-streaming service; how-
ever, we lack datacenter-level resources, so we adapted 
the benchmark to run on our local cluster of machines. 
Our cluster’s main constraints were the limited network 
bandwidth (1 Gbps) and memory available to run cli-
ents. Each client randomly chose a song and fetched it 
using pyCurl rather than a more memory-intensive 
media player like VLC. Avoiding VLC let us scale to a 
greater number of clients for our testbed.

We served a media library consisting of 406 MP3 
files, drawn from the most popular 500 songs on the 
Grooveshark music service, eliminating duplicates and 
songs longer than 11 minutes. The average song length 

Figure 2. The average cost of different requests on an 
unsaturated server. The bulk of the time is spent on 
signature verification.
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was 4:05 ± 64.38 seconds. We represented the music 
files using white noise encoded at 32 Kbps. The system 
dynamics were independent of the music content; 32 
Kbps let our server saturate its CPU before saturating 
its outbound network bandwidth.

We simulated three different scenarios: a baseline 
system without any authentication, a login-only system 
in which users couldn’t reauthenticate cheaply, and the 
full Anon-Pass system including re-up. When authen-
tication was involved, we used an epoch length of 15 
seconds. The scenario began with 6,000 clients gradu-
ally logging in over a period of five minutes. After a song 
finished, the client unlinked itself and chose a new song 
to stream. After 10 more minutes, we had an additional 
6,000 clients log in, also over a five-minute period. 
We couldn’t scale the experiment further because we 
exhausted the resources that could be devoted to addi-
tional clients.

Figure 3 shows the CPU utilization on the applica-
tion server sampled once every five seconds. Anon-Pass 
used more CPU resources than the baseline applica-
tion because the service had to perform an additional 
ECDSA verification once per epoch. Until approxi-
mately 17 minutes into the experiment, the login-only 
service was very similar to Anon-Pass. However, at 17 
minutes, the login-only service’s utilization graph drops 
and is much more variable.

To see why this happens, we look at a graph of the 
CPU utilization for authentication, which shows the 
limited capacity of the login-only service server (see 

Figure 4). At 6,000 clients, the login-only service 
could keep up with authentication requests. How-
ever, the steady-state average CPU utilization was 
already 77.9 percent. At the CPU saturation point, 
8,100 clients were attempting to connect to the ser-
vice. When a user couldn’t reauthenticate, the music 
playback was cut off, and the client was forced to 
retry. With 12,000 clients attempting to stream music 
concurrently, the login-only configuration had a cli-
ent failure rate of 34 percent, compared to only 0.02 
percent when using Re-up.

Public Transit Pass
To evaluate the public transit pass scenario, we used the 
Android application and computed the time it took to 
generate the login QR code on a commodity phone. The 
login QR code consisted of a normal client login and two 
additional Re-up tokens. The time to generate a login 
QR code on an HTC Evo 3D was 222 ± 24 ms. Power 
usage on this platform was minimal because the applica-
tion didn’t need access to any radios on the phone.

On our server, the combined login and token veri-
fication cost 8.4 ms of CPU time, most of which was 
the cost of verifying the login. Putting this into per-
spective, in 2013, Bay Area Rapid Transit had approx-
imately 385,600 riders per day on weekdays.14 We 
don’t have data on traffic peaks; however, Anon-Pass 
can easily handle the total load. One modern CPU 
core on our server can perform the approximately 
400,000 verifications in just under an hour. These 
operations are trivially parallelizable across multiple 
cores and machines.

A non-Pass is a building block for anonymous 
authentication and can be used in a range of 

applications. We’ve made our source code publicly 
available at https://github.com/ut-osa/anon-pass in 
the hopes of spurring further developments in this 
field. Anon-Pass demonstrates that it’s possible to bal-
ance the tension between client flexibility and service 
load through the use of a lighter-weight reauthentica-
tion operation for some usage models. However, work 
remains to convince services to provide unlinkability 
for their users. 
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Figure 3. CPU usage on the application server, measured every five seconds. CPU 
usage with login-only follows the Anon-Pass behavior until the authentication 
server reaches saturation. The music-streaming clients time out, and the 
application server has an overall drop in CPU utilization due to the lower 
number of clients successfully completing requests.
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Figure 4. The authentication server CPU usage, measured every five seconds. 
The average CPU utilization for login-only at 6,000 clients (the first stable 
segment) is 77.9 percent (±2.42) and reaches saturation near the 17-minute 
mark, or approximately 8,100 clients. CPU utilization for Anon-Pass is 16.8 
percent (±0.73) at 6,000 clients and 33.4 percent (±0.96) at 12,000 clients (the 
second stable segment).
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