
20 May/June 2014 Copublished by the IEEE Computer and Reliability Societies 1540-7993/14/$31.00 © 2014 IEEE

IEEE S&P SYMPOSIUM

Michael Z. Lee and Alan M. Dunn | University of Texas at Austin
Jonathan Katz | University of Maryland
Brent Waters and Emmett Witchel | University of Texas at Austin

Anon-Pass, a protocol and system for subscription services, lets users authenticate anonymously while
preventing mass sharing of credentials. Service providers can’t correlate users’ actions but are guaranteed
that each account is in use at most once at a given time.

E lectronic subscriptions are widespread and quickly
becoming the dominant mode of access for ser-

vices like music and video streaming, news, and aca-
demic articles. Although electronic subscriptions are
convenient for users, they reveal a lot of information,
ranging from personal preferences to geographic move-
ments. Many users want electronic services, but they
also want privacy. Simply anonymizing data doesn’t
always protect users’ privacy. Indeed, multiple anony-
mized datasets released for research purposes, includ-
ing the AOL search dataset1 and the Netfl ix Prize
dataset,2 have been partially deanonymized through
correlation or by understanding of the semantics of the
released data.

It’s diffi cult to create systems that protect user pri-
vacy and simultaneously control admission—that is,
keeping out users who haven’t paid. Foregoing one of
these two goals makes achieving the other consider-
ably easier. If users are required to log in to an account,
foregoing anonymity, a service can enforce that no user
is logged in twice simultaneously. On the other hand,
a subscription system using a single shared identity for
all users prevents user identifi cation (although traffi c

anonymization via a system like Tor3 might be required
to mask network-level identifi ers). However, subscrib-
ing users could share the secret with nonsubscribers.

Ideally, we would have an anonymous subscription
system that protects the interests of both the service and
the users. At a high level, such a service needs two opera-
tions: registration and login. Registration lets users sign
up for the service, at which point they might need to pro-
vide identifying details, such as a credit card number or
public key. Login lets registered users access protected
resources via their subscription. Informally, an anony-
mous subscription service ensures that users’ logins
aren’t linked to the information they provided at registra-
tion and login sessions aren’t linkable with one another.

Although cryptographic protocols for providing
anonymous credentials services already exist,4 there
are problems with putt ing these protocols into prac-
tice (for more information, see the “Related Work in
Anonymous Credentials” sidebar). Many of these pro-
tocols are designed for thousands of concurrent users;
however, Netfl ix streamed 1 billion hours of content
in July 2012 and has millions of subscribers.5 At this
scale, some proposed cryptographic operations require

Anon-Pass:
Practical Anonymous Subscriptions

j3lee.indd 20 5/9/14 10:41 AM

www.computer.org/security� 21

too much computation. Existing work doesn’t focus
on realistic evaluation scenarios, making it difficult
to understand what performance issues would arise
in a deployed system. Anon-Pass, a new protocol for
anonymous subscription services, achieves significant
improvements in efficiency over prior protocols.

Anonymous Subscriptions
with Conditional Linkage
How do we achieve both anonymity and admission
control? Ideally, we want each new client operation
to appear to be from a new user, unrelated to previous
users. (Note that, in this article, user denotes the person,
and client denotes the program or machine performing
actions.) However, when two operations are authorized
with the same client secret at the same time, it must
be clear they’re from the same user. To keep login cre-
dentials verifiable but also make them changeable, we
divide time into equal-length intervals or epochs, agreed
on by both clients and servers. Clients use the epoch as
input to a pseudorandom function (PRF), which allows
them to change the login credential for each epoch.
Changing login credentials means each client appears to
be a new user in every new epoch, but each client secret

can create only one unique login credential per epoch,
preventing multiple simultaneous logins with the same
credentials. A login credential provides access only for
the duration of an epoch.

There’s a tension between a service provider’s desire
for a long epoch (to reduce server load) and users’ desire
for a short epoch (to improve anonymity). The service
needs to perform cryptographic checks during login,
making login a computationally expensive operation.
Consequently, the service provider wants to maximize
epoch length. However, users are unlinked from previ-
ous activity only once an epoch boundary has passed
and hence prefer a shorter epoch. For example, when
listening to a music streaming service, users probably
don’t want to wait five minutes—or even one minute—
for the next track to play.

We believe that users want unlinkability across
accesses to distinct pieces of content, such as a movie,
song, and news article, but not all accesses to protected
resources need to be unlinkable. For instance, whereas
users want to decorrelate their watching The Godfather
from listening to “Teenage Dream,” they don’t need
to decorrelate watching the first minute of The Godfa-
ther from watching the second minute. Therefore, we

Related Work in Anonymous Credentials

O ur work continues research into anonymous credentials,
which allow admission control while maintaining anonymity.1

Handling credential abuse has been a central theme of much
anonymous credentials work; however, credential abuse takes
on a different meaning in many of the different systems. Early
work focused on e-cash, where credentials represented units
of currency.2,3 The key task was to prevent double-spending.
However, currency-based systems are use limited and don’t
translate to unlimited subscription services.

One of the earliest proposals for anonymous subscription
services was unlinkable serial transactions.4 The system ensures a
user can have only one valid credential at a time by recording every
previously seen credential and issuing a new anonymous credential
at the end of each transaction. Instead of requiring the potentially
unbounded storage cost of unlinkable serial transactions, Anon-
Pass has users periodically contact the service.

More recent work focused on anonymous blacklisting systems
wherein services can blacklist users.5 Anonymous blacklisting
systems usually let services reveal some form of linking information
to prevent future access. Anon-Pass links a user only when the user
explicitly tells the service to, reducing the cryptographic cost.

One way to implement an anonymous subscription service
is by blacklisting users at login and removing them at logout.
However, many of these schemes suffer from poor scalability.

Indeed, authentication for BLAC has overhead proportional to
the number of blacklisted users.6 A more recent system, BLACR,
measures scalability in terms of authentications per minute using
5,000 concurrent users. In contrast, Anon-Pass can sustain almost
500 login operations per second and scales to 12,000 clients
concurrently streaming music.

References
1.	 D. Chaum, “Blind Signatures for Untraceable Payments,”

Advances in Cryptology (CRYPTO 82), 1982, pp. 199–203.
2.	 I. Damgård, “Payment Systems and Credential Mechanisms with

Provable Security against Abuse by Individuals,” Advances in
Cryptology (CRYPTO 88), 1988, pp. 328–335.

3.	 D. Chaum, “Security without Identification: Transaction Systems
to Make Big Brother Obsolete,” Comm. ACM, 1985, pp. 1030–1044.

4.	 S.G. Stubblebine, P.F. Syverson, and D.M. Goldschlag, “Unlinkable
Serial Transactions: Protocols and Applications,” ACM Trans.
Information and System Security, 1999, pp. 354–389.

5.	 R. Henry and I. Goldberg, “Formalizing Anonymous Blacklisting
Systems,” Proc. 32nd IEEE Symp. Security and Privacy, 2011, pp.
81–95.

6.	 P.P. Tsang et al., “Blacklistable Anonymous Credentials: Blocking
Misbehaving Users without TTPs,” Proc. 14th ACM Conf.
Computer and Communications Security, 2007, pp. 72–81.

j3lee.indd 21 5/9/14 10:41 AM

22	 IEEE Security & Privacy� May/June 2014

IEEE S&P SYMPOSIUM

designed Anon-Pass with conditional linkage, wherein
some accesses to protected resources are linked to reduce
computational cost when privacy is less important. We
provide short epochs, giving users the ability to reano-
nymize quickly if they so choose, while also providing an
efficient method for those who don’t need unlinkability
to cheaply reauthenticate for the next epoch.

Syntax and Intended Usage
An anonymous subscription scheme with conditional
linkage consists of two algorithms—Setup and
EndEpoch—and three protocols—Reg, Login, and
Re-up. Setup and EndEpoch are used for bookkeeping
of internal service state and let us clearly define service
provider operations in our proofs. The three protocols
comprise the scheme’s primary functionality: registering
new users in the system (Reg) and authenticating
clients to the system (Login and Re-up). Re-up differs
from normal authentication because it requires that the
client is already logged in to the system. The protocol
implements our scheme’s conditional linkage aspect by
extending the current user session into the next epoch.

System initialization begins with the server running
Setup(n) (where n is the security parameter) to
generate the service public and secret keys. Following
setup, clients can register new users at any time; we
denote the secret key of client i as ski. Independent of
user registrations (which don’t affect the server’s state
and can be performed at any time), there’s a sequence

of Login, Re-up, and EndEpoch executions. The time
period between two executions of EndEpoch, or
between Setup and the first execution of EndEpoch,
is an epoch. Logini (respectively, Re-upi) denotes an
execution of Login (respectively, Re-up) between the
ith client and the server, with both parties using their
prescribed inputs.

During an epoch, we (recursively) define that client
i is logged in if either Logini was previously run during
that epoch or, at some point in the previous epoch, client
i was logged in and Re-upi was run. Client i is linked if
at some previous point during that epoch, client i was
logged in and Re-upi was run.

Security
We define two notions of security: soundness, which
ensures that malicious users can’t generate more active
logins than the number of times they’ve registered, and
anonymity, which guarantees unlinkability for clients
that authenticate using the Login protocol. However,
clients that reauthenticate using the Re-Up protocol
will be linked to their actions in the previous epoch.

A scheme is sound if, for all probabilistic polynomial-
time adversaries 𝒜, the probability that 𝒜 succeeds in
the following experiment is negligible: 𝒜 is a malicious
user trying to authenticate without using a valid client
secret it knows. 𝒜 can perform several actions against
the service, including registering polynomially many
malicious users (and hence learning the associated
secret), forcing honest clients to log in and re-up, and
globally incrementing the current epoch. 𝒜 succeeds if,
at any point, the number of logged-in clients is greater
than the number of 𝒜’s users plus the number of honest
clients currently logged in.

A scheme is anonymous if, for all probabilistic
polynomial-time adversaries 𝒜, the probability that
𝒜 succeeds in the following experiment is negligibly
close to 1/2: 𝒜 is a malicious service trying to link
users’ access patterns. During setup, a random bit c is
chosen, 𝒜 sets the service public key, and two clients—
U0 and U1—are registered. 𝒜 then proceeds in three
phases where, in each phase, 𝒜 may take any number of
actions among those it’s allowed (while still remaining
polynomial time):

■■ Phase one. 𝒜 may increment the epoch; query the
oracle Login(b), which performs a login for Ub; and
query the oracle Re-up(b), which performs a re-up for
Ub. In essence, 𝒜 has full knowledge and control of
the access pattern for U0 and U1. If at some point both
U0 and U1 aren’t currently logged in, then 𝒜 can pro-
ceed to phase two.

■■ Phase two. 𝒜 may perform the same operations, but
queries ChallengeLogin(b) and ChallengeRe-up(b)

Figure 1. The communication between the authentication server, resource
gateway, and client user agent with respect to the client and the service. (1)
The user agent initiates communication. (2) The authentication server verifies
the credentials and returns a sign-in token to the user agent. (3) The user agent
communicates this sign-in token to the resource gateway, then (4) passes this
information to the client application. (5) The client application includes the
token as a cookie along with its normal request. (6) The gateway checks that the
sign-in token hasn’t already been used in the current epoch and then proxies
the connection to the application server. (7) The application server returns the
requested content, and (8) the gateway verifies that the connection is still valid
before returning the response to the client.

Application
server

Gateway
7

6

8

5

Authentication
server

2

1

Client
application

User agent

4

Authentication service

Application serviceClient

3

j3lee.indd 22 5/9/14 10:41 AM

www.computer.org/security� 23

instead. ChallengeLogin(b) is the same as
Login(b ⊕ c), and ChallengeRe-up(b) is the same as
Re-up(b ⊕ c). The second phase ends when neither
client is logged in at the beginning of an epoch.

■■ Phase three. 𝒜 may perform the same operations as
during phase one: increment the epoch, query the
oracle Login(b), and query the oracle Re-up(b).

At any point, 𝒜 can output a bit c′. 𝒜 succeeds if
c = c′.

Design
Anon-Pass is intended to instantiate our protocol in a
way that’s practical for deployment. We present a con-
ceptual framework for the system in which the various
system functionalities are separated.

There are three major pieces of Anon-Pass functional-
ity: the client user agent, the authentication server, and the
resource gateway. The client user agent and the authenti-
cation server correspond to the client and server in the
cryptographic protocol. The resource gateway enforces
admission to the underlying service, denying access to
users who aren’t properly authenticated. An Anon-Pass
session is a sequence of epochs beginning when a user
logs in and ending when the user stops re-upping.

Figure 1 shows the Anon-Pass system’s major
components. We depict the most distributed setting,
wherein each of the three functions is implemented sep-
arately from existing services. However, a deployment
might merge functionality—for example, the resource
gateway might be folded into an already existing com-
ponent for session management.

Our system supports internal and external authenti-
cation servers. An internal authentication server corre-
sponds to a service provider offering anonymous access,
for instance, The New York Times website offering anon-
ymous access at a premium. An external authentication
server corresponds to an entity providing anonymous
access to already existing Web services, for example,
a commercial Web proxy, such as proxify.com or
zend2.com, offering anonymous services.

Although not depicted in Figure 1, our system
implements registration. We don’t discuss the registra-
tion protocol’s payment portion. Anonymous payment
is a separate and orthogonal problem; possible solu-
tions include paying with e-cash or Bitcoins.

We want services to use our authentication scheme
without much modification, so we provide a simple
interface: during a certain time period, authorized cli-
ents can contact the service and are cut off as soon as
the session is no longer valid. Services might have to
accommodate Anon-Pass’s access control limitations.
For example, a media-streaming service might want to
limit how much data any client can buffer in a given

epoch. The service provider loses the ability to enforce
any access control for buffered data.

Timing
Anon-Pass requires time synchronization between cli-
ents and servers because both must agree on epoch
boundaries. To support a 15-second epoch, clients and
servers should be synchronized within one second. The
Network Time Protocol (NTP) is sufficient, available,
and scalable for this task. The pool.ntp.org organi-
zation (www.ntp.org/ntpfaq/NTP-s-algo.htm) runs a
pool of NTP servers that keep the clocks of 5 to 15 mil-
lion machines on the Internet synchronized to within
approximately 100 ms.

The server’s response to a login request includes
a time stamp. Clients verify that they agree with the
server on the current epoch. Client anonymity could be
violated if the epoch number decreases, so clients must
track the latest time stamp from each server they use
and refuse to authenticate to a server that returns a time
stamp that’s earlier than a prior time stamp from that
server. This ensures that, regardless of any time differ-
ence between server and client, anonymity is preserved.

Clients who re-up choose a random time during the
epoch to send the re-up request to prevent repetitive
behavior that becomes identifying. Randomizing the
re-up request time also has the benefit of spreading
the computational load of re-ups on the server across
the entire epoch.

Client User Agent
The client user agent is responsible for establishing user
secrets, communicating with the authentication server,
and maintaining client sessions. Separating it from the
client application achieves two goals: it minimizes the
amount of code that users must trust to handle their
secrets, and it lowers the amount of modification neces-
sary to support new client applications.

Once the user agent establishes a connection with
the authentication server, it runs our Login protocol
and receives a sign-in token in the form of a standard,
public-key signature on the user’s PRF value and the
current epoch. The user agent sends this token to
the resource gateway as proof that it’s authenticated
for the current epoch. The resource gateway uses the
epoch to ensure timely use, and the signature to deter-
mine token validity. The user agent can’t use this token
in a later epoch.

When the user agent and authentication server run
our Re-up protocol, the user agent receives a token that
includes the current and next epoch as well as the two
corresponding PRF values. These additional values
allow the resource gateway to link the re-up operations
to the session’s initial login request.

j3lee.indd 23 5/9/14 10:41 AM

24	 IEEE Security & Privacy� May/June 2014

IEEE S&P SYMPOSIUM

Authentication Server
We separated the authentication server from the service
to offer service providers greater flexibility. The server’s
primary task is to run the authentication protocols and
ensure that clients aren’t authenticating more than once
per epoch. Because the protocol’s cryptographic opera-
tions use a lot of computational resources, we designed
Anon-Pass so that an authentication service provider
can distribute the work among multiple machines. The
only information that needs to be shared between pro-
cesses is the current epoch and PRF values of all logged-
in users, for example, using a distributed hash table.
Storing only information about currently authenticated
users relieves service providers of having to store all
spent tokens, which requires unbounded storage.

Resource Gateway
The resource gateway performs a lightweight access
check before sending data back to a client. A client can
receive data during an epoch only if it’s authenticated
for that epoch. Therefore, the epoch length bounds
how much data can go to a client before the client must
reauthenticate (log in or re-up).

Construction
Here, we provide an overview of a cryptographic con-
struction for a secure anonymous subscription scheme
with conditional linkage that allows us to formalize and
prove Anon-Pass properties (see “Anon-Pass: Practi-
cal Anonymous Subscriptions” for details6). Our con-
struction uses several primitives—bilinear groups,
zero-knowledge proofs of knowledge, a PRF family,
and cryptographic assumptions from prior work. In our
formal model (unlike the implementation), we assume
protocols aren’t executed concurrently, so there’s a well-
defined ordering among those events.

Similar to Jan Camenisch and his colleagues’
scheme,7 our construction works by associating a
unique token Yd(t) with each client secret d in each
epoch t. To register, a client obtains a blind signature
from the service on a secret of its choosing. To log in,
the client sends a token and proves in zero knowledge
that it knows the service’s signature on the secret and
that this secret was used to compute to the token that
was sent. The token is used to determine admission to
the service; the service accepts the token only if it hasn’t
been presented before in that epoch. Intuitively, the dif-
ficulty of generating signatures ensures soundness, and
the tokens’ pseudorandomness ensures anonymity.

We use the Dodis-Yampolskiy PRF8 and an adapted
version of CL signatures proposed by Camenisch and
Anna Lysyanskaya.9 These building blocks are efficient
and enable efficient zero-knowledge proofs as needed
for our construction.

A client can authenticate during epoch t by sending
the token Yd(t) and proving in zero knowledge that the
token is correct. However, if the client is already logged
in during epoch t – 1, it can authenticate by sending
Yd(t) and proving that Yd(t – 1) uses the same client
secret. This method is much more efficient, with the
tradeoff that the two user sessions are now explicitly
linked. In an epoch in which the client isn’t logged in, it
can perform a fresh login to reanonymize itself.

Implementation
We implemented the cryptographic protocol in the
libanonpass library using the Pairing Based Cryp-
tographic Library,10 PolarSSL (https://polarssl.org) for
clients, and OpenSSL (www.openssl.org) for the server.
To show our protocol’s flexibility, we implemented sev-
eral usage scenarios including a music-streaming ser-
vice and an anonymous unlimited-use public transit
pass. These applications were large enough to highlight
implementation issues specific to each context.

We implemented the authentication server and
resource gateway as two separate Nginx modules (www.
nginx.org). The design didn’t need to share much
state—the only state Anon-Pass needed to track was the
current set of active login tokens. Both the authentica-
tion server and the resource gateway needed to track
this information; however, this was consolidated to a
single distributed hash table as both were run by the
same service. The authentication server performed the
cryptographic operations to try to keep expensive com-
putations out of users’ critical data path. Instead, the
resource gateway only needed to verify a standard Ellip-
tic Curve Digital Standard Algorithm (ECDSA) signa-
ture and verify and update the table of active sessions.

The basic client was a wrapper around libanon-
pass and PolarSSL, which provided an encrypted
connection. Protocol messages were sent using cook-
ies to simplify server-side parsing and minimize client
application modifications.

Music-Streaming Service
We implemented a music-streaming service over
HTTPS by exposing media from Web-accessible URIs.
The service directly implemented our anonymous cre-
dential scheme and let users choose an anonymous
session’s granularity as either a full playlist or an indi-
vidual song. We modified VLC (www.videolan.org/
vlc), a popular media player, to communicate with our
user agent and pass our session tokens as cookies to the
resource gateway.

Our music service let users download songs, but we
rate-limited playback. Rate limiting reduces network
bandwidth usage, which allowed our service to support
more clients with jitter-free service. Rate limiting also

j3lee.indd 24 5/9/14 10:41 AM

www.computer.org/security� 25

reduces the amount of data a client can buffer during an
epoch. If a client loses its anonymous service in the next
epoch, it would have only a small amount of buffered
data. Our music service couldn’t enforce access control
for that buffered data.

Public Transit Pass
We implemented a public transit pass as an Android
application. Currently, public transit providers that issue
month- or weeklong unlimited-access passes limit user
access to prevent cheating. Without safeguards, users
could hand off their pass to their friends. Anonymous sub-
scriptions can provide these safeguards without revealing
users’ identities (so their movements can’t be tracked).

We used the Java Native Interface to call into liba-
nonpass from an Android application. The Android
application had a simple interface with a single button
to generate a login and two additional re-up tokens.
It then displayed this data as a QR code for a physical
scanner to read. The login and re-up tokens prevent
use of the client for the remainder of the current epoch
and the next two epochs. If the transit provider chose a
six-minute epoch, this would create a 12- to 18-minute
period in which a login attempt from the same phone
would fail. Although this guarantee isn’t precisely the
same guarantee an unlimited-ride transit pass currently
provides, it does present an alternative that gives riders
anonymity while still enforcing a lockout period.

Other anonymous subscription systems, such as
unlinkable serial transactions (UST),11 and anonymous
blacklisting systems, such as Nymble12 and BLAC,13
require network connectivity when clients use authen-
tication tokens. When using a blacklisting system, users
want to proactively fetch the blacklist to ensure that
they aren’t on the list prior to contacting a server; other-
wise, they could be deanonymized. Blacklists can grow
quickly; for example, BLAC adds 0.27 Kbytes of over-
head per blacklist entry. When using a UST-like system,
users must receive the next token when a prior token
is used up (but not before). Anon-Pass is ideal for sub-
way systems where network phone coverage is spotty
at best, because it needs to communicate only in one
direction at the entry gate.

However, there is a caveat. Although Anon-Pass
might be able to simulate the lockout period, a transit
provider must implement an unlimited-use pass, which
doesn’t map directly to the model enforced today. This
is because, by definition, Anon-Pass can’t prevent time-
sharing over a longer period of time. Once the 12- to
18-minute period is up, another user could use a dupli-
cated pass, but the original rider wouldn’t have necessar-
ily exited the system. The requirement of one physical
device allowing access to one person is broken because
the credential could be copied in an untraceable manner.

Evaluation
We evaluated several Anon-Pass applications using a
series of microbenchmarks. Further results, including a
theoretical cost comparison to prior work and an addi-
tional example service, can be found in “Anon-Pass:
Practical Anonymous Subscriptions.”6

Measured Operation Costs
There are overheads when integrating the protocols
into a full system. Figure 2 shows a breakdown of each
authentication operation and how time was spent on the
server. For Reg, the signature operation was our modi-
fied CL signature on the blinded client secret, whereas
Login and Re-up used standard ECDSA signatures. The
majority of the work for the ECDSA signature could be
precomputed and hence took almost no time to com-
pute. Re-up was 7.7 times faster than login.

Music-Streaming Service
We built an example music-streaming service; how-
ever, we lack datacenter-level resources, so we adapted
the benchmark to run on our local cluster of machines.
Our cluster’s main constraints were the limited network
bandwidth (1 Gbps) and memory available to run cli-
ents. Each client randomly chose a song and fetched it
using pyCurl rather than a more memory-intensive
media player like VLC. Avoiding VLC let us scale to a
greater number of clients for our testbed.

We served a media library consisting of 406 MP3
files, drawn from the most popular 500 songs on the
Grooveshark music service, eliminating duplicates and
songs longer than 11 minutes. The average song length

Figure 2. The average cost of different requests on an
unsaturated server. The bulk of the time is spent on
signature verification.

Authentication operation
Register Login Re-up

Ti
m

e
(m

s)
0

2

4

6

8

10

12

14

16

18

20 19.84

8.26

1.07

Data handling
Hash server
Sign
Verify

0

2

4

6

8

10

12

14

16

18

20

j3lee.indd 25 5/9/14 10:41 AM

26	 IEEE Security & Privacy� May/June 2014

IEEE S&P SYMPOSIUM

was 4:05 ± 64.38 seconds. We represented the music
files using white noise encoded at 32 Kbps. The system
dynamics were independent of the music content; 32
Kbps let our server saturate its CPU before saturating
its outbound network bandwidth.

We simulated three different scenarios: a baseline
system without any authentication, a login-only system
in which users couldn’t reauthenticate cheaply, and the
full Anon-Pass system including re-up. When authen-
tication was involved, we used an epoch length of 15
seconds. The scenario began with 6,000 clients gradu-
ally logging in over a period of five minutes. After a song
finished, the client unlinked itself and chose a new song
to stream. After 10 more minutes, we had an additional
6,000 clients log in, also over a five-minute period.
We couldn’t scale the experiment further because we
exhausted the resources that could be devoted to addi-
tional clients.

Figure 3 shows the CPU utilization on the applica-
tion server sampled once every five seconds. Anon-Pass
used more CPU resources than the baseline applica-
tion because the service had to perform an additional
ECDSA verification once per epoch. Until approxi-
mately 17 minutes into the experiment, the login-only
service was very similar to Anon-Pass. However, at 17
minutes, the login-only service’s utilization graph drops
and is much more variable.

To see why this happens, we look at a graph of the
CPU utilization for authentication, which shows the
limited capacity of the login-only service server (see

Figure 4). At 6,000 clients, the login-only service
could keep up with authentication requests. How-
ever, the steady-state average CPU utilization was
already 77.9 percent. At the CPU saturation point,
8,100 clients were attempting to connect to the ser-
vice. When a user couldn’t reauthenticate, the music
playback was cut off, and the client was forced to
retry. With 12,000 clients attempting to stream music
concurrently, the login-only configuration had a cli-
ent failure rate of 34 percent, compared to only 0.02
percent when using Re-up.

Public Transit Pass
To evaluate the public transit pass scenario, we used the
Android application and computed the time it took to
generate the login QR code on a commodity phone. The
login QR code consisted of a normal client login and two
additional Re-up tokens. The time to generate a login
QR code on an HTC Evo 3D was 222 ± 24 ms. Power
usage on this platform was minimal because the applica-
tion didn’t need access to any radios on the phone.

On our server, the combined login and token veri-
fication cost 8.4 ms of CPU time, most of which was
the cost of verifying the login. Putting this into per-
spective, in 2013, Bay Area Rapid Transit had approx-
imately 385,600 riders per day on weekdays.14 We
don’t have data on traffic peaks; however, Anon-Pass
can easily handle the total load. One modern CPU
core on our server can perform the approximately
400,000 verifications in just under an hour. These
operations are trivially parallelizable across multiple
cores and machines.

A non-Pass is a building block for anonymous
authentication and can be used in a range of

applications. We’ve made our source code publicly
available at https://github.com/ut-osa/anon-pass in
the hopes of spurring further developments in this
field. Anon-Pass demonstrates that it’s possible to bal-
ance the tension between client flexibility and service
load through the use of a lighter-weight reauthentica-
tion operation for some usage models. However, work
remains to convince services to provide unlinkability
for their users.

Acknowledgments
We thank Sangman Kim and Lara Schmidt for their kind help.
We also thank our shepherd, Paul Syverson, and the anony-
mous reviewers for their useful feedback. This research was
supported by funding from National Science Foundation
grants IIS-0964541, CNS-0905602, CNS-1223623, and
CNS-1228843 as well as National Institutes of Health grant
LM011028-01.

Figure 3. CPU usage on the application server, measured every five seconds. CPU
usage with login-only follows the Anon-Pass behavior until the authentication
server reaches saturation. The music-streaming clients time out, and the
application server has an overall drop in CPU utilization due to the lower
number of clients successfully completing requests.

0 10 20 30

C
PU

 (%
)

0

10

20

30

40

50

Login-only saturation

Login-only
Anon-Pass
Unmodified
application

Time (min.)

j3lee.indd 26 5/9/14 10:41 AM

www.computer.org/security� 27

References
1.	 S. Hansell, “AOL Removes Search Data on Vast Group of

Web Users,” The New York Times, 8 Aug. 2006.
2.	 A. Narayanan and V. Shmatikov, “Robust De-anonymiza-

tion of Large Sparse Datasets,” Proc. 29th IEEE Symp.
Security and Privacy, 2008, pp. 111–125.

3.	 R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
Second-Generation Onion Router,” Proc. 13th Conf. Use-
nix Security Symp., 2004, pp. 303–320.

4.	 R. Henry and I. Goldberg, “Formalizing Anonymous
Blacklisting Systems,” Proc. 32nd IEEE Symp. Security and
Privacy, 2011, pp. 81–95.

5.	 M. Liedtke, “Netflix Users Watched a Billion Hours Last
Month,” USA Today, 4 July 2012.

6.	 M.Z. Lee et al., “Anon-Pass: Practical Anonymous Subscrip-
tions,” 2013; http://z.cs.utexas.edu/users/osa/anon-pass.

7.	 J. Camenisch et al., “How to Win the Clone Wars: Effi-
cient Periodic n-Times Anonymous Authentication,”
Proc. 13th ACM Conf. Computer and Communications
Security, 2006, pp. 201–210.

8.	 Y. Dodis and A. Yampolskiy, “A Verifiable Random Func-
tion with Short Proofs and Keys,” Proc. 8th Int’l Conf.
Theory and Practice in Public Key Cryptography, 2005, pp.
416–431.

9.	 J. Camenisch and A. Lysyanskaya, “Signature Schemes
and Anonymous Credentials from Bilinear Maps,”
Advances in Cryptology (CRYPTO 04), 2004, pp. 56–72.

10.	 B. Lynn, “On the Implementation of Pairing-Based Cryp-
tosystems,” PhD thesis, Stanford Univ., 2007.

11.	 S.G. Stubblebine, P.F. Syverson, and D.M. Goldschlag,
“Unlinkable Serial Transactions: Protocols and Applica-
tions,” ACM Trans. Information and System Security, 1999,
pp. 354–389.

12.	 P.C. Johnson,” Nymble: Anonymous IP-Address Block-
ing,” Proc. 7th Int’l Conf. Privacy Enhancing Technologies,
2007, pp. 113–133.

13.	 P.P. Tsang et al., “Blacklistable Anonymous Credentials:
Blocking Misbehaving Users without TTPs,” Proc. 14th
ACM Conf. Computer and Communications Security, 2007,
pp. 72–81.

14.	 “Ridership Reports | bart.gov,” Bay Area Rapid Transit,
2013; http://www.bart.gov/about/reports/ridership.

Michael Z. Lee is pursuing a PhD in computer science at
the University of Texas at Austin. His research inter-
ests include applied cryptography in anonymous sys-
tems and operating systems security. Lee received an
MS in computer science from the University of Texas
at Austin. Contact him at mzlee@cs.utexas.edu.

Alan M. Dunn is pursuing a PhD in computer science at
the University of Texas at Austin. His research inter-
ests include system-level data privacy and using novel
cryptographic constructions in realistic systems.

Dunn received an MS in computer science from the
University of Texas at Austin. Contact him at adunn@
cs.utexas.edu.

Jonathan Katz is a professor in the University of Mary-
land’s Department of Computer Science and director
of the Maryland Cybersecurity Center. His research
interests include cryptography, privacy/anonymity,
and the “science of cybersecurity.” Katz received a
PhD in computer science from Columbia University.
Contact him at jkatz@cs.umd.edu.

Brent Waters is an associate professor at the Univer-
sity of Texas at Austin. His research interests include
cryptography and computer security. Waters received
a PhD in computer science from Princeton Univer-
sity. He’s a Microsoft Faculty Fellow. Contact him at
bwaters@cs.utexas.edu.

Emmett Witchel is an associate professor in the Uni-
versity of Texas at Austin’s Department of Computer
Science. His research interests include operating sys-
tems, security, concurrency, and architecture. Witchel
received a PhD in computer science and electrical
engineering from the Massachusetts Institute of Tech-
nology. Contact him at witchel@cs.utexas.edu.

Selected CS articles and columns are also available for free
at http://ComputingNow.computer.org.

Figure 4. The authentication server CPU usage, measured every five seconds.
The average CPU utilization for login-only at 6,000 clients (the first stable
segment) is 77.9 percent (±2.42) and reaches saturation near the 17-minute
mark, or approximately 8,100 clients. CPU utilization for Anon-Pass is 16.8
percent (±0.73) at 6,000 clients and 33.4 percent (±0.96) at 12,000 clients (the
second stable segment).

C
PU

 (%
)

Login-only saturation

Time (min.)
0 10 20 30

0

20

40

60

80

100

Login-only
Anon-Pass

j3lee.indd 27 5/9/14 10:41 AM

