METATM/TXLINUX: TRANSACTIONAL
MIEMORY FOR AN OPERATING SYSTEM

HARDWARE TRANSACTIONAL MEMORY CAN REDUCE SYNCHRONIZATION COMPLEXITY

Hany E. Ramadan
Christopher J. Rosshach
Donald E. Porter
Owen S. Hofmann
Aditya Bhandari
Emmett Witchel
University of Texas at Austin

WHILE RETAINING HIGH PERFORMANCE. METATM MODELS CHANGES TO THE X86

ARCHITECTURE TO SUPPORT TRANSACTIONAL MEMORY FOR USER PROCESSES AND THE

OPERATING SYSTEM. TXLINUX IS AN OPERATING SYSTEM THAT USES TRANSACTIONAL

MEMORY TO FACILITATE SYNCHRONIZATION IN A LARGE, COMPLICATED CODE BASE,

WHERE THE BURDENS OF CURRENT LOCK-BASED APPROACHES ARE MOST EVIDENT.

eeeeee Scaling the number of cores on a
processor chip has become a de facto industry
priority, with a reduced focus on improving
Developing
software that exploits multiple processors or

single-threaded performance.

cores remains challenging because of well-
known problems with lock-based code. These
problems include deadlock, convoying, pri-
ority inversion, lack of composability, and the
general complexity and difficulty of reasoning
about parallel computation.

Transactional memory has emerged as an
alternative paradigm to lock-based pro-
gramming, with the potential to reduce
programming complexity to levels compa-
rable to coarse-grained locking without
sacrificing performance.! Hardware transac-
tional memory (HTM) implementations
aim to retain the performance of fine-
grained locking, with the lower program-
ming complexity of transactions.

This article summarizes our experience
adding a few features (in simulation) to the
x86 ISA and trap architectures, letting us
modify the Linux kernel to use transactional
memory for some of its synchronization
needs. Many transactional memory designs
have gone to great lengths to minimize one

Published by the IEEE Computer Society

cost at the expense of another (for example,
fast commits for slow aborts). The absence
of large transactional workloads, such as an
operating system, has made these trade-offs
difficult to evaluate.

There are several important reasons to let
an operating system kernel use HTM.
Many applications (such as Web servers)
spend much of their execution time in the
kernel, and scaling such applications’ per-
formance requires scaling the operating
system’s performance. Moreover, using
transactions in the kernel lets existing user-
level programs immediately benefit from
transactional memory, because common file
system and network activities exercise
synchronization in kernel control paths.
Finally, the Linux kernel is a large, well-
tuned concurrent application that uses
diverse synchronization primitives. An op-
erating system is more representative of
large, commercial applications than the
microbenchmarks currently used to evaluate
hardware transactional memory designs.

Architectural model

To evaluate how different hardware
designs affect system performance, we built

0272-1732/08/$20.00 © 2008 IEEE

Table 1. Transactional features in the MetaTM model.

Contention policy
Backoff policy

Primitive Definition

xbegin Instruction to begin a transaction

xend Instruction to commit a transaction

xpush Instruction to save transaction state and suspend the current transaction
Xpop Instruction to restore transaction state and continue the xpushed transaction
xrestart Instruction to restart a transaction

Choose a transaction to survive on conflict.
Delay before a transaction restarts

a parametrized hardware model called
MetaTM. Although we didn’t closely follow
any particular hardware design, MetaTM
most strongly resembles LogTM with flat
nesting.? It also includes novel modifications
to support the Linux-based transactional
operating system we created, TxLinux.

Transactional semantics

Table 1 shows the transactional features in
MetaTM. Starting and committing transac-
tions with instructions has become a standard
feature of HTM proposals,> and MetaTM
uses xbegin and xend. HTM models can be
organized in a taxonomy according to their
data version-management and conflict-detec-
tion strategies, whether they’re eager or lazy
along either axis.? MetaTM uses eager version
management (new values are stored in place)
and eager conflict detection. The first detec-
tion of a conflicting read/write to the same
address will cause transactions to restart,
rather than wait until commit time to detect
and handle conflicts.

MetaTM supports multiple methods for
resolving conflicts between transactional
accesses. One way to resolve transactional
conflicts is to restart one of the transactions.
MetaTM
management policies that choose which
MetaTM supports
strong isolation, the standard in HTM
systems where transactions can be ordered
with respect to nontransactional memory

supports different contention-

transaction restarts.

references. MetaTM provides strong isola-
tion by always restarting a transaction if a
transaction conflicts with a nontransactional
memory reference.

The cost of transaction commits or aborts
is also configurable. Some HTM models

assume software commit or abort handlers
(for example, LogTM specifies a software
abort handler). A configurable cost lets us
explore the performance impact of running
such handlers. MetaTM manages and
accounts for the cache area used by multiple
versions of the same data.

Managing multiple transactions

MetaTM supports multiple active trans-
actions on a single thread of control.t
Recent HTM models have included support
for multiple concurrent transactions for a
single hardware thread to support nesting.>
Current proposals feature closed-nested
transactions,> open-nested transactions,*’
and nontransactional escape hatches.”® In
all of these proposals, the nested code has
access to the updates performed by the
enclosing (uncommitted) transaction. Meta-
TM provides completely independent trans-
for the same hardware thread,
managed as a stack. Independent transac-

actions

tions are easier to reason about than nested
transactions. The hardware support needed is
also simpler than that needed for nesting (a
small number of bits per cache line, to hold
an identifier). Independent transactions have
several potential uses. TxLinux uses them to
handle interrupts, as we discuss later.

The xpush primitive suspends the current
transaction, saving its state so it can
continue later without restarting. Instruc-
tions executed after an xpush are indepen-
dent from the suspended transaction, as are
any new transactions that might be start-
ed—there is no nesting relationship. Meta-
TM supports multiple calls to xpush. The
hardware will stll account for an xpush
performed when no transaction is active (to

JANUARY—FEBRUARY 2008 43

Top PiICKS

EEE MICRO

properly manage xpop, as we describe next).
Suspended transactions can lose conflicts
just like running transactions, and any
suspended transaction that loses a conflict
restarts when it resumes. This is analogous
to overflowed transactions,” which also can
lose conflicts.

The xpop primitive restores a previously
xpushed transaction, letting the suspended
transaction resume (or restart, if it must).
The xpush and xpop primitives combine
suspending transactions and multiple con-
current transactions with a last-in, first-out
(LIFO) ordering restriction. Such an order-
ing restriction isn’t strictly necessary, but it
can simplify the processor implementation,
and it’s functionally sufficient to support
interrupts in TxLinux. Although MetaTM
implements xpush and xpop as individual
a particular HTM could
implement them as groups of instructions.
Suspending and resuming a transaction is

instructions,

fast, and can be implemented by pushing
the current transaction identifier on an in-
memory stack.

Contention management

When a conflict occurs between two
transactions, one transaction must pause or
restart, potentially after having already
invested considerable work since starting.
Contention management aims to improve
performance by reducing wasted work. The
MetaTM model supports Scherer and
Scott’s contention-management strategies,®
adapted to an HTM framework. Because
transactions don’t block in our model (they
can execute, restart, or stall, but can’t wait
on a queue),
adaptation. We also introduce a new policy
called SizeMatters. SizeMatters favors the
transaction with the larger number of

certain features require

unique bytes read or written in its transac-
tion working set. An implementation could
count cache lines instead of bytes. A
transaction using SizeMatters must revert
to time stamp after a threshold number of
restarts because otherwise SizeMatters can
lead to livelock.

Interrupts and transactions
The x86 trap architecture and stack
discipline create challenges for the interac-

tion between interrupt handling and trans-
actions. The problems posed by the x86
trap architecture are similar to those posed
by other modern processors, and existing
HTM proposals don’t adequately address
them. Much existing work on HTM
systems makes several assumptions about
the interaction of interrupts and transac-
tions.” These works assume that transactions
are short and that interrupts rarely occur
during a transaction. As a result, they claim
that efficiently dealing with interrupted
transactions is unnecessary. They assume
that interrupted transactions can be aborted
and restarted, or their state can be virtua-
lized using mechanisms similar to those for
surviving context switches.

The proposals from LogTM® and Zilles®
include support for escape actions, which
could be used to pause the current transac-
tional context to deal with interrupts.
However, neither of these systems let a
thread with a paused transaction create a
new transaction. An important MetaTM
design goal is to enable transactions in
interrupt handlers. As we show later, 11 to
60 percent of transactions in TxLinux come
from interrupt handlers.

Motivating factors

Several factors influence the design of
interrupt handling in an HTM system. The
first factor is transaction length. One of the
main advantages of transactional memory
programming is reduced programming
complexity due to an overall reduction in
possible system states. Coarse-grained locks
provide the same benefit, but at a perfor-
mance cost. Because these short critical
sections can result in high complexity,
future code that attempts to capitalize on
transactional memory’s programming ad-
vantages will likely produce transactions
that are larger than those in today’s
microbenchmarks.

A second factor is the frequency of
interrupts. Our data shows much higher
interrupt rates than, for example, Chung et
al’s Extended Transactional Memory
(XTM) system,” which assumes that I/O
interrupts arrive every 100,000 cycles. For
the modified Andrew benchmark (MAB),

which is meant to simulate a software

development workload, an interrupt occurs
every 24,511 nonidle cycles. The average
transaction length for TxLinux running
MAB is 896 cycles. If the average transac-
tion size grows to 7,000 cycles (a modest 35
cache misses), 31.2 percent of transactions
will be interrupted.

The third factor involves flexibility (or
lack thereof) in interrupt routing. An
interrupt handler must manage many types
of interrupts on a specific processor. In
TxLinux, common interrupt handlers in-
clude the local advanced programmable
interrupt controller (APIC) timers, page
faults, and interprocessor interrupts. Chung
et al.” propose routing interrupts to the
CPU best able to deal with them. Even if
interrupt routing were possible, it’s unclear
how the best CPU is determined. Whereas
CPUs in XTM continually execute transac-
tions, CPUs might or might not be
executing a transaction in other HTM
models, such as LogITM and MetaTM. A
hardware mechanism that indicates which
CPU is currently not executing a transac-
tion would require global communication
and could add significant latency to the
interrupt-handling process.

Interrupt handling in TxLinux

Consistent with our assumptions that
interrupts are frequent, that transactions
will grow in length, and that interrupt
routing is less flexible than other systems
assume, MetaTM handles interrupts with-
out necessarily aborting the current trans-
action. In TxLinux, interrupt handlers use
the xpush and xpop primitives to suspend
any current transaction when an interrupt
arrives.

Interrupt handlers in TxLinux start by
executing an xpush instruction, to suspend
the current This lets the
interrupt handler start new, independent
transactions if necessary. The interrupt

transaction.

return path ends with an xpop instruction.
No nesting relationship exists between the
suspended transaction and the interrupt
handler. Multiple (nested) interrupts can
result in multiple suspended transactions.
Although we chose explicit instructions
to suspend and resume transactions, the
processor can perform this function when it

traps and when it executes an interrupt
return (iret).

Contention management based on time
stamps has been a common default for
HTM systems’ because it's simple to
implement in hardware and it guarantees
forward progress. However, in the presence
of interrupts and multiple active transac-
tions on the same processor, time-stamp-
based contention management can cause
livelock. This problem applies to any
contention-management policy in which a
suspended transaction continues to win over
a current transaction. Consequently, sup-
porting suspended transactions requires
modifying basic hardware contention-man-
agement policies to favor the newest
transaction when transactions conflict on
the same processor.

Stack memory and transactions

Some previous work has assumed that
stack memory isn’t shared between threads
and so has excluded stack memory from the
working sets of transactions.!” However,
stack memory is shared between threads in
the Linux kernel (and in many other
operating system kernels). For example,
the set_pio_mode function in the IDE disk
driver adds a stack-allocated request struc-
ture to the request queue, and waits for
notification that the request is completed.
The structure is filled in by the thread
running on the CPU when the I/O
completion interrupt arrives. This thread
will likely differ from the thread that
initialized the request.

On the x86 architecture, Linux threads
share their kernel stack with interrupt
handlers. To ensure isolation when sharing
kernel stack addresses, stack addresses must
be part of transaction working sets. Inter-
rupt handlers can overwrite stack addresses
and corrupt their values if they aren’t
included in the transaction working set.

Many proposals to expose transactions at
the language level'! rely on an atomic
declaration. Such a declaration requires
transactions to begin and end in the same
activation frame. Supporting independent
xbegin and xend instructions complicates
this model because calls to xbegin and xend
can occur in different stack frames. Linux

JANUARY—FEBRUARY 2008 45

Top PiICKS

4ﬁ EEE MICRO

heavily relies on procedures that do some
work, grab a lock, and later release it in a
different function. To minimize the soft-
ware work required to add transactions to
Linux, MetaTM doesn’t require xbegin and
xend to be called in the same activation
frame.

The stack sharing that occurs in Linux
creates two problems: live stack overwrite
and transactional dead stack. The live stack
overwrite problem is a correctness issue in
which interrupt handlers can overwrite live
stack data. The transactional dead stack
problem is a performance issue in which
interrupt handlers can cause spurious trans-
action restarts. We discuss both the prob-
lems and straightforward architectural solu-
tions elsewhere.!?

Modifying Linux to use HTM

We modified the Linux kernel, version
2.6.16.1, to support transactions. Replacing
spinlocks with transactions is natural—the
lock acquire becomes a transaction start and
the lock release becomes a transaction end.
However, complications exist.* For exam-
ple, many spinlocks in the Linux kernel
protect critical regions that perform I/O.
Device /O is incompatible with transac-
tions because devices generally can’t roll
back their state. Determining which critical
regions were safe to convert consumed a
great deal of programmer and testing effort.
Guided by profiling data, we selected the
most contended locks in the kernel for
transactionalization. In addition to spin-
locks, TxLinux also converts instances of
sequence locks, atomic APIs, and read-
copy-update data structures to use transac-
tions.

Evaluation

Linux and TxLinux versions 2.6.16.1
were run on the Simics machine simulator
version 3.0.17. For our experiments, Simics
models an eight-processor symmetric mi-
croprocessor (SMP) machine using the x86
architecture. For simplicity, we assume 1
instruction per cycle (IPC). The memory
hierarchy has two levels of cache per
processor, with splic L1 instruction and
data caches and a unified L2 cache. The
caches contain both transactional and non-

transactional data. L1 caches are 16 Kbytes
with four-way associativity, 64-byte cache
lines, 1-cycle cache hit, and a 16-cycle cache
miss penalty. The L2 caches are 4 Mbytes,
eight-way associative, with 64-byte cache
lines and a 200-cycle miss penalty to main
memory. A MESI snoop protocol maintains
cache coherence, and main memory is a
single shared gigabyte. For this study, we fix
the conflict-detection granularity in Meta-
TM at the byte level, which is somewhat
idealized, but Linux has optimized its
memory layout to avoid false sharing on
SMPs.

The disk device models PCI bandwidth
limitations, DMA data transfer, and has a
fixed 5.5-ms access latency. All of the runs
are scripted, requiring no user interaction.
Finally, Simics models the timing for a
tigon3 gigabit network interface card with
DMA support using an Ethernet link that
has a fixed 0.1-ms latency.

Workloads and microbenchmarks
We evaluated TxLinux on the following
application benchmarks:

® counter performs high-contention
shared counting one thread per CPU;

® pmake executes make —j 8 to parallel
compile the libFLAC source tree;

® petcat sends a data stream over TCP;

* MAB is a well-known filesystem
benchmark, 16

compile phase;

instances and no

* configure configures script for teTeX, 8
instances;

® find searches a 78-Mbyte directory (29
directories, 968 files), 8 instances;

® bonniet+ models a Web cache’s file-
system activity; and

® dpunish performs a filesystem stress
test.

The counter microbenchmark differs

from the rest, in that the transactions it

creates are defined by the microbenchmark.

The rest of the benchmarks are nontransac-

tional user programs that run on top of the

Linux and TxLinux kernels. Thus, only

TxLinux creates transactions, as it is being

exercised by the user-mode benchmarks.

Table 2. Linux and TxLinux system time for selected application benchmarks.

System time (seconds)

Benchmark Linux TxLinux User/system/idle time (%)
counter 11.68 6.42 0/91/9
pmake 0.66 0.67 27/13/60
netcat 11.20 11.12 1/5/45
MAB 2.48 2.47 22/57/21
config 5.04 5.09 36/43/21
find 0.93 0.93 43/50/7

TxLinux performance

Table 2 shows execution times across all
benchmarks for unmodified Linux and
TxLinux. The execution times we report
here are only the system CPU times because
we converted only the kernel to use
transactions. The user code is identical in
the Linux and TxLinux experiments. To
indicate the overall benchmark execution
time, Table 2 also lists the total benchmark
time by user, system, and idle time. In both
Linux and TxLinux, the benchmarks touch
roughly the same amount of data with the
same locality. Data cache miss rates don’t
change appreciably. These two systems’
performances are comparable, except on
the counter microbenchmark, which sees a
notable performance gain because eliminat-
ing the lock variable saves more than half
of the bus traffic for each iteration of the
loop.

Table 3 shows the basic characteristics of
the transactions in TxLinux. The number of
transactions created and the creation rate are
notably higher than most reported else-
where. For instance, one recent study that
uses the Splash-2 benchmarks® reported
fewer than 1,000 transactions for every
benchmark. The data shows that the restart
rate is low, which is consonant with other
published data.? Relatively low restart rates
are to be expected for TxLinux because
TxLinux is a conversion of Linux spinlocks,
and Linux developers have directed signif-
icant effort to reducing the amount of data
protected by any individual lock acquire.

After the counter microbenchmark, the
find benchmark shows the highest amount

of contention. Several dozen functions

create transactions, but approximately 80
percent of find transactions start in two
functions in the filesystem code (find_get_
page and do_lookup). These transactions,
however, have low contention, causing only
178 restarts. Two other functions cause 88
percent of restarts (get_page_from_freelist
and free_pages_bulk), but create only 5
percent of the transactions.

Stack memory and transactions

Table 3 also shows the number of live
stack overwrites. Although the absolute
number is low relative to the number of
transactions, each instance represents a case
in which, without our architectural mech-
anism, an interrupt handler would corrupt a
kernel thread’s stack in a way that could
compromise correctness.

The table also shows the number of
interrupted transactions. The number is low
because many of the spinlocks that TxLinux
converts to transactions also disable interrupts.
However, the longer transactions are more
likely to be interrupted and will lose
more work from being restarted after an
interrupt.

Stack-based early release prevents 390
transaction conflicts in MAB, 14 in find,
and 4 in pmake. These numbers are small
because TxLinux only uses xpush and xpop in
interrupt handlers, and most transactions are
short, without many intervening function
calls. As transactions get longer, stack-based
early release will become more important.
The work required to release the stack cache
lines isn’t large—MAB releases 48.2 million
stack bytes and pmake releases 2.8 million,
although both run for billions of cycles.

JANUARY—FEBRUARY 2008 4]

Top PiICKS

Table 3. TxLinux transaction statistics. Total transactions, transactions created per second, and restart

measurements for eight CPUs with TxLinux.

Transaction rate Transaction Transaction restart Unique Tx
Benchmark Total transactions (Tx/Sec) restarts percentage restarts
counter 12,003,505 1,371,359 3,357,578 21.9 1,594
pmake 382,657 32,486 10,336 2.6 3,134
netcat 339,265 16,635 10,970 3.1 3,414
MAB 2,166,631 449,322 36,698 1.7 11,856
configure 3,021,123 182,072 65,742 2.1 23,229
find 225,832 121,808 25,774 10.2 5,211

EEE MICRO

Commit and abort penalties

Different HTM proposals create different
penalties at restart and commit time—for
example, software handlers are functions
that run when a transaction commits or
restarts.>’

The results for abort penalties reveal
some subtle interplay between contention
management and abort penalties: Abort
penalties can behave similarly to explicit
backoff, thereby reducing contention. As
the abort penalty increases, performance
doesn’t necessarily decrease, as seen in
netcat and find.

Commit penaltes have an obvious, negative
impact on performance. Although a moderate
amount of work at commit time (such as 100
cycles) doesn’t perceivably change system
performance, counter and MAB slowed by
20 percent at a commit penalty of 1,000 cycles,
and all benchmarks significantly slowed at
10,000 cycles. These effects will become more
pronounced with more transactions.

Contention management

Figure 1 shows restart rates (nonunique
restarts) for our benchmarks under the
different contention-management policies.
No policy minimizes restarts across all
benchmarks. When we exclude the counter
microbenchmark, SizeMatters has the best
average performance, and Polka drops
below time stamp. In light of the Polka
policy’s complexity, moreover, SizeMatters
is a more attractive alternative for hardware
implementation. Whereas Polka incorpo-
rates conflict history, work investment, and
dynamic transaction priority, SizeMatters

requires only the working set size of the
conflicting transactions. These results also
indicate that the time-stamp policy is a
good trade-off of hardware complexity for
performance. Different contention policies
generally have a small effect on system
execution time because TxLinux doesn’t
spend much of its time executing critical
regions.

TxLinux developments

Recent work on TxLinux discusses two
issues in detail: integrating transactions with
the operating system scheduler, and coop-
eration between locks and transactions. A
conflict-management policy that favors
transactions of processes with higher oper-
ating-system scheduling priority nearly
eliminates the priority inversion that is
inherent in locking.

Mixing locks and transactions requires a
new primitive—cooperative transactional
spinlocks (cxspinlocks) that let locks and
transactions protect the same data while
maintaining the advantages of both syn-
chronization primitives. Cxspinlocks let the
system attempt execution of critical regions
with transactions and automatically roll
back to use locking if the region performs
/0. Figure 2 shows how TxLinux spends
less time synchronizing (spinning on spin-
locks and aborting) than Linux (spinning on
spinlocks). Because the transactions in
TxLinux allow concurrent execution of
critical regions, TxLinux spends 34 percent
less time synchronizing. When using cxspin-
locks, TxLinux-cx spends 40 percent less
time synchronizing than Linux, because

Unique Tx restart

Percentage Tx in

Table 3, continued.

Percentage Tx in Live stack

Interrupted

percentage interrupts system calls overwrites transactions
0.01 99 1 8,755 56,793
0.81 60 40 49 104
1.00 16 84 4 33
0.54 46 54 273 1,175
0.76 60 49 523 1,057
2.30 11 89 4 39
cxspinlocks allow the kernel to use more real-world systems. Operating systems, due
transactions. These results exclude bon- to their position as arbiters between com-
nie++, which suffers from a contention puter hardware and software, play a key role
management pathology that will be fixed as in managing concurrency. Operating sys-
part of future work. tems complex synchronization needs also
make them ideal candidates for using
he coming generation of multicore transactional memory, and we have shown
processors will require innovation in that asynchronous events such as interrupts
concurrent programming. Hardware trans- require special consideration when design-
actional memory is a powerful, new syn- ing transactional memory hardware. We
chronization primitive that we are helping expect that operating systems will continue
move from the microbenchmark domain to to evolve in response to greater hardware
4.00
S B counter
BB [] B pmake
- 3.25 [netcat
© 3.00] mMAB
E 2.75] configure |~
g 250 [] find
E 2.25
= 2.00
E 175
2 150
1.25 —
1.00
0.75
0.50
0.25
0.00

Karma

Eruption

Kindergarten Polka

Policy

SizeMatters

Time stamp

Figure 1. Relative transaction restart rate for all benchmarks using different contention-mmanagement policies. We
normalized results with respect to the SizeMatters policy.

JANUARY—FEBRUARY 2008

Top PiICKS

EEE MICRO

14 4444444444444444444444444444444444

Aborts
2 m spins |
10 44444444444444444444444444444444444
8 ..
6 44

~

N

o

Percent of kernel time spent synchronizing

TxLinux-cx

TxLinux-cx
TxLinux-cx

pmake MAB config

TxLinux-cx

TxLinux-cx

TxLinux-cx

find

bonnie++ dpunish

Figure 2. The percent of kernel time spent synchronizing on 16 CPUs for TxLinux and

TxLinux-cx, which uses cxspinlocks.

concurrency, starting with synchronization
primitives and moving to core system
services.

MICRO

References

1. M. Herlihy and J.E. Moss, “Transactional
Memory: Architectural Support for Lock-
Free Data Structures,” Int’l
Symp. Computer Architecture (ISCA 93),
|IEEE CS Press, 1993, pp. 289-300.

2. K.E. Moore et al., "LogTM: Log-based
Transactional Memory,"” IEEE Symp. High-
Performance Computer Architecture (HPCA
06), IEEE CS Press, 2006, pp. 254-265.

3. A. McDonald et al., “Architectural Seman-
tics for Practical Transactional Memory,"

Proc. Ann.

Proc. Ann. Int’l Symp. Computer Architec-
ture (ISCA 06), IEEE CS Press, 2006,
pp. 53-65.

4. H. Ramadan et al., “The Linux Kernel: A
Challenging Workload for Transactional
Memory,” Workshop Transactional Memo-
ry Workloads, 2006.

5. M. Moravan et al.,, "“Supporting Nested
Transactional Memory in LogTM,"”" Proc.
Int’l Conf. Architectural Support for Pro-

gramming Languages and Operating Sys-
tems (ASPLOS 06), ACM Press, 2006,
pp. 359-370.

C. Zilles and L. Baugh, ""Extending HTM to
Support Non-busy Waiting and Non-trans-
actional Actions,” ACM SIGPlan Workshop
Transactional Computing, 2006.

J. Chung et al., “Tradeoffs in Transactional
Proc. Int’l Conf.
Architectural Support for Programming

Memory Virtualization,”

Languages and Operating Systems (AS-
PLOS 06), ACM Press, 2006, pp. 371-381.
W.N. Scherer Ill and M.L. Scott, ""Advanced
Contention Management for Dynamic Soft-
ware Transactional Memory,"” Proc. Symp.
Principles of Distributed Computing (PODC
05), AMC Press, 2005, pp. 240-248.

R. Rajwar and J. Goodman, ‘“Transactional
Lock-free Execution of Lock-based Pro-
grams,”’ Int'l Conf. Architectural
Support for Programming Languages and
Operating Systems (ASPLOS 02), ACM
Press, 2002, pp. 5-17.

L. Hammond et al., "Programming with

Proc.

Transactional Coherence and Consisten-
cy,”" Proc. Int’l Conf. Architectural Support
for Programming Languages and Operating

Systems (ASPLOS 04), ACM Press, 2004,
pp. 1-13.

11. Sun Microsystems, The Fortress Language
Specification, 2006.

12. H. Ramadan et al, "“MetaTM/TxLinux:
Transactional Memory for an Operating
System,"” Proc. Ann. Int’l Symp. Computer
Architecture (ISCA 07), IEEE CS Press,
2007, pp. 92-103.

13. W. Chuang et al., ""Unbounded Page-based
Transactional Memory,”" Proc. Int’l Conf.
Architectural Support for Programming
Languages and Operating Systems (AS-
PLOS 06), ACM Press, 2006, pp. 347-358.

14. C. Rossbach et al., “TxLinux: Using and
Managing Hardware Transactional Memory
in the Operating System,” Proc. ACM
SIGOPS Symp. Operating System Principles
(SOSP 07), ACM Press, 2007, pp. 87-102.

Hany E. Ramadan is a PhD student at the
University of Texas at Austin. His research
interests include parallelism in large soft-
systems, architectural support to
enable greater concurrency in software,

ware

and transaction models. Ramadan has an
MS in computer science from the Univer-
sity of Minnesota.

Christopher J. Rossbach is a PhD student
at the University of Texas at Austin. His
research focuses on transactional memory,
architecture, and parallel programming.
Rossbach has a BS in computer systems
engineering from Stanford University.

Donald E. Porter is a PhD student in
computer science at the University of Texas
at Austin. His research interests include
concurrent systems and operating system

support for transactions. Porter has a BA in
computer science and mathematics from

Hendrix College.

Owen S. Hofmann is a PhD student in
computer science at the University of
Texas at Austin. His research interests
include hardware and operating system
support for parallel programming. Hof-
mann has a BA in computer science from

Ambherst College.

Aditya Bhandari is a graduate student in
computer science at the University of Texas
at Austin. His research interests include
transactional memory in operating systems
and virtualization. Bhandari has a BE in
computer engineering from the University
of Pune.

Emmett Witchel is an assistant professor of
computer science at the University of Texas
at Austin. His research interests include
computer architecture and its relationship
to the operating system and compiler.
Witchel has a PhD in electrical engineering
and computer science from the Massachu-
setts Institute of Technology.

Direct questions or comments to Hany
Ramadan, Department of Computer Sci-
ences, University of Texas at Austin, 1
University Station C0500, Austin, TX
78712; ramadan@cs.utexas.edu.

For more information on this or any
other computing topic, please visit our
Digital Library at http:/computer.org/
csdl.

JANUARY—FEBRUARY 2008 5]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

