
Mondrian Memory Protection

Emmett Witchel, Josh Cates, and Krste Asanović
MIT Laboratory for Computer Science, Cambridge, MA 02139

� witchel,cates,krste � @lcs.mit.edu

ABSTRACT
Mondrian memory protection (MMP) is a fine-grained protection
scheme that allows multiple protection domains to flexibly share
memory and export protected services. In contrast to earlier page-
based systems, MMP allows arbitrary permissions control at the
granularity of individual words. We use a compressed permissions
table to reduce space overheads and employ two levels of permis-
sions caching to reduce run-time overheads. The protection tables
in our implementation add less than 9% overhead to the memory
space used by the application. Accessing the protection tables adds
less than 8% additional memory references to the accesses made
by the application. Although it can be layered on top of demand-
paged virtual memory, MMP is also well-suited to embedded sys-
tems with a single physical address space. We extend MMP to
support segment translation which allows a memory segment to
appear at another location in the address space. We use this trans-
lation to implement zero-copy networking underneath the standard
read system call interface, where packet payload fragments are
connected together by the translation system to avoid data copy-
ing. This saves 52% of the memory references used by a traditional
copying network stack.

1. INTRODUCTION
Operating systems must provide protection among different user

processes and between all user processes and trusted supervisor
code. In addition, operating systems should support flexible shar-
ing of data to allow applications to co-operate efficiently. The im-
plementors of early architectures and operating systems [5, 26] be-
lieved the most natural solution to the protected sharing problem
was to place each allocated region in a segment, which has the pro-
tection information. Although this provides fine-grain permission
control and flexible memory sharing, it is difficult to implement ef-
ficiently and is cumbersome to use because each address has two
components: the segment pointer and the offset within the segment.

Modern architectures and operating systems have moved to-
wards a linear addressing scheme, in which each user process has a
separate linear demand-paged virtual address space. Each address
space has a single protection domain, shared by all threads that run

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS-X ’02 San Jose, CA
Copyright 2002 ACM 1-58113-574-2/02/0010 ...$5.00.

within the process. A thread can only have a different protection
domain if it runs in a different address space. Sharing is only pos-
sibly at page granularity, where a single physical memory page can
be mapped into two or more virtual address spaces. Although this
addressing scheme is now ubiquitous in modern OS designs and
hardware implementations, it has significant disadvantages when
used for protected sharing. Pointer-based data structures can be
shared only if the shared memory region resides at the same virtual
address for all participating processes, and all words on a page must
have the same permissions. The interpretation of a pointer depends
on addressing context, and any transfer of control between pro-
tected modules requires an expensive context switch. The coarse
granularity of protection regions and the overhead of inter-process
communication limit the ways in which protected sharing can be
used by application developers. Although designers have been cre-
ative in working around these limitations to implement protected
sharing for some applications [9], each application requires con-
siderable custom engineering effort to attain high performance.

We believe the need for flexible, efficient, fine-grained memory
protection and sharing has been neglected in modern computing
systems. The need for fine-grained protection in the server and
desktop domains is clear from the examples of a web server and
a web client. These systems want to provide extensiblility where
new code modules can be linked in to provide new functionality.
The architects of these systems have rejected designs using the na-
tive OS support for a separate address space per module because
of the complexity and run-time overhead of managing multiple ad-
dress contexts. Instead, modern web servers and clients have solved
the extensiblity problem with a plugin architecture. Plugins allow
a user to link a new module into the original program to provide
a new service. For instance, the Apache web server has a plugin
for the interpretation of perl code in web pages [2], and browsers
support plugins to interpret PDF documents [1]. Linking in code
modules makes communication between the server and the plugin
fast and flexible, but because there is no protection between mod-
ules in the same address space it is also unsafe. Plugins can crash
an entire browser, or open a security hole in a server (e.g., from a
buffer overrun).

Embedded systems have the same problem since they are of-
ten organized as a set of tasks (sometimes including the operating
system) that share physically-addressed memory (see Section 7).
Without inter-task protection, an error in part of the system can
make the entire system unreliable. Similarly, loadable OS kernel
modules (such as in Linux) all run in the kernel’s unprotected ad-
dress space, leading to potential reliability and security problems.

Figure 1 illustrates a general protection system and is based on
the diagrams in [17] and [18]. Each column represents one protec-
tion domain [16] while each row represents a range of memory ad-

Memory
Addresses

None

Read−only

Read−write

Execute−read

Protection domains

Permissions Key

0

0xFFF...

Figure 1: A visual depiction of multiple memory protection do-
mains within a single shared address space.

dresses. The address space can be virtual or physical—protection
domains are independent from how virtual memory translation is
done (if it is done at all). A protection domain can contain many
threads, and every thread is associated with exactly one protection
domain at any one point in its execution. Protection domains that
want to share data with each other must share at least a portion
of their address space. The color in each box represents the per-
missions that each protection domain has to access the region of
memory. An ideal protection system would allow each protection
domain to have a unique view of memory with permissions set on
arbitrary-sized memory regions.

The system we present in this paper implements this ideal pro-
tection system. We call this Mondrian memory protection (MMP)
because it allows the grid in Figure 1 to be painted with any pat-
tern of access permissions, occasionally resembling works by the
eponymous early twentieth century artist. Our design includes all
of the flexibility and high-performance protected memory sharing
of a segmented architecture, with the simplicity and efficiency of
linear addressing. The design is completely compatible with ex-
isting ISAs, and can easily support conventional operating system
protection semantics.

To reduce the space and run-time overheads of providing fine-
grained protection, MMP uses a highly-compressed permissions
table structure and two levels of hardware permissions caching.
MMP overheads are less than 9% even when the system is used
aggressively to provide separate protection for every object in a
program. We believe the increase in design robustness and the re-
duction in application design complexity will justify these small
run-time overheads. In some cases, the new application struc-
ture enabled by fine-grained protection will improve performance
by eliminating cross-context function calls and data copying. We
demonstrate this by saving 52% of the memory traffic in our zero-
copy networking implementation (see Section 5.3). The network-
ing example also illustrates a fine-grain segment translation scheme
which builds upon the base MMP data structures to provide a fa-
cility to present data at different addresses in different protection
domains. The MMP design also has the desirable property that
the overhead is only incurred when fine-grain protection is used,
with less than 1% overhead when emulating conventional coarse-
grained protection.

The rest of the paper is structured as follows. In Section 2 we
give a motivating example and discuss our requirement for mem-
ory system protection. Then we present the hardware and software
components of the MMP design in Section 3. We quantitatively
measure the overheads of our design in our implementation model
in Section 4. We discuss translation in Section 5 and describe its
use in zero-copy networking. We include a discussion of uses for

fine-grained protection and sharing in Section 6, and a discussion
of related work in Section 7. We conclude in Section 8.

2. EXAMPLE AND REQUIREMENTS
We provide a brief example to motivate the need for the MMP

system. More examples are discussed in Section 6. Consider a
network stack where when a packet arrives, the network card uses
DMA to place a packet into a buffer provided to it by the kernel
driver. Instead of the kernel copying the network payload data
to a user supplied buffer as is normally done, the kernel makes
the packet headers inaccessible and the packet data read-only and
passes a pointer to the user, saving the cost of a copy.

Implementing this example requires a memory system to support
the following requirements:

� different: Different protection domains can have differ-
ent permissions on the same memory region.

� small: Sharing granularity can be smaller than a page.
Putting every network packet on its own page is wasteful of
memory if packets are small. Worse, to give the header sep-
arate permissions from the payload would require copying
them to separate pages in a page-based system (unless the
payload starts at a page boundary).

� revoke: A protection domain owns regions of memory and
is allowed to specify the permissions that other domains see
for that memory. This includes the ability to revoke permis-
sions.

Previous memory sharing models fail one or more of these require-
ments.

Conventional linear, demand-paged virtual memory systems can
meet the different requirement by placing each thread in a sep-
arate address space and then mapping in physical memory pages to
the same virtual address in each address context. These systems
fail the small requirement because permissions granularity is at
the level of pages.

Page-group systems [16], such as HP-PA RISC and PowerPC,
define protection domains by which page-groups (collections of
memory pages) are accessible. Every domain that has access to a
page-group sees the same permissions for all pages in the group,
violating the different requirement. They also violate the
small requirement because they work at the coarse granularity of
a page or multiple pages. Domain-page systems [16] are similar to
our design in that they have an explicit domain identifier, and each
domain can specify a permissions value for each page. They fail to
meet the small requirement because permissions are managed at
page granularity.

Capability systems [10, 18] are an extension of segmented archi-
tectures where a capability is a special pointer that contains both
location and protection information for a segment. Although de-
signed for protected sharing, these fail the different require-
ment for the common case of shared data structures that contain
pointers. Threads sharing the data structure use its pointers (capa-
bilities) and therefore see the same permissions for objects accessed
via the shared structure. Many capability systems fail to meet the
revoke requirement because revocation can require an exhaustive
sweep of the memory in a protection domain [7]. Some capability
systems meet the different and revoke requirements by per-
forming an indirect lookup on each capability use [13, 29], which
adds considerable run-time overhead.

Large sparse address spaces provide an opportunity for proba-
bilistic protection [35], but this strategy violates the revoke and
different requirement.

refill

Permissions

Table

PLB
Domain ID

Perm Table Base

MEMORY

lookup
refill

SidecarsAddress Regs

CPU

Figure 2: The major components of the Mondrian memory protec-
tion system. On a memory reference, the processor checks permissions
in the address register sidecar. If the reference is out of range of the
sidecar information, or the sidecar is not valid, it attempts to reload the
sidecar from the PLB. If the PLB does not have the permissions infor-
mation, either hardware or software walks the permissions table which
resides in memory. The matching entry from the permissions table is
cached in the PLB and is used to reload the address register sidecar
with a new segment descriptor

3. MMP DESIGN
The major challenge in a MMP system is reducing the space and

run-time overheads. In the following, we describe our initial explo-
ration of this design space and our trial implementation. The imple-
mentation and results are for a 32-bit address space, but MMP can
be readily extended to 64-bit addresses as discussed in Section 3.9.

3.1 MMP Features
MMP provides multiple protection domains within a single ad-

dress space (physical or virtual). Addressing is linear and is com-
patible with existing binaries for current ISAs. A privileged su-
pervisor protection domain is available which provides an API to
modify protection information. A user thread can change permis-
sions for a range of addresses, a user segment, by specifying the
base word address, the length in words, and the desired permission
value. Changing memory protections only incurs the cost of an
inter-protection domain call (Section 3.8), not a full system call.

In all the designs discussed in this section, we provide two bits
of protection information per word, as shown in Table 1. MMP
can be easily modified to support more permission bits or different
permission types.

Perm Value Meaning
00 no perm
01 read-only
10 read-write
11 execute-read

Table 1: Example permission values and their meaning.

Every allocated region of memory is owned by a protection do-
main, and this association is maintained by the supervisor. To sup-
port the construction of protected subsystems, we allow the owner
of a region to export protected views of this region to other protec-
tion domains.

3.2 MMP System Structure
Figure 2 shows the overall structure of an MMP system. The

Binary
Search

...

Address (30)

Address (30)

0x00100020

0x0

Perm (2)

00

01

Translation (32)

+0x2841

+0x0

Figure 3: A sorted segment table (SST). Entries are kept in sorted or-
der and binary searched on lookup. The shaded part contains optional
translation information.

CPU contains a hardware control register which holds the pro-
tection domain ID (PD-ID [16]) of the currently running thread.
Each domain has a permissions table, stored in privileged memory,
which specifies the permission that domain has for each address in
the address space. This table is similar to the permissions part of
a page table, but permissions are kept for individual words in an
MMP system. Another CPU control register holds the base address
of the active domain’s permissions table.

The MMP protection table represents each user segment using
one or more table segments, where a table segment is a convenient
unit for the table representation. We use the term block to mean an
address range that is naturally aligned and whose size is a power of
two. In some MMP variants, all table segments are blocks.

Every memory access must be checked to see if the domain has
appropriate access permissions. A permissions lookaside buffer
(PLB) caches entries from the permissions table to avoid long walks
through the memory resident table. As with a conventional TLB
miss, a PLB miss can use hardware or software to search the per-
mission tables. To further improve performance, we also add a
sidecar register for every architectural address register in the ma-
chine (in machines that have unified address and data registers, a
sidecar would be needed for every integer register). The sidecar
caches the last table segment accessed through this address regis-
ter. As discussed below, the information stored in the sidecar can
map a wider address range than the index address range of the PLB
entry from which it was fetched, avoiding both PLB lookups and
PLB misses while a pointer moves within a table segment. The in-
formation retrieved from the tables on a PLB miss is written to both
the register sidecar and the PLB.

The next two subsections discuss alternative layouts of the en-
tries in the permissions tables. In choosing a format of the permis-
sions table we must balance space overhead, access time overhead,
PLB utilization, and the time to modify the tables when permis-
sions change.

3.3 Sorted Segment Table
A simple design for the permissions table is just a linear array

of segments ordered by segment start address. Segments can be
any number of words in length and start on any word boundary, but
cannot overlap. Figure 3 shows the layout of the sorted segment ta-
ble (SST). Each entry is four bytes wide, and includes a 30-bit start
address (which is word aligned, so only 30 bits are needed) and a
2-bit permissions field (the shaded part is optional and will be dis-
cussed in Section 5). The start address of the next segment implic-
itly encodes the end of the current segment, so segments with no
permissions are used to encode gaps and to terminate the list. On
a PLB miss, binary search is used to locate the segment contain-
ing the demand address. The SST is a compact way of describing
the segment structure, especially when the number of segments is

small, but it can take many steps to locate a segment when the num-
ber of segments is large. Because the entries are contiguous, they
must be copied when a new entry is inserted. Furthermore, the SST
table can only be shared between domains in its entirety, i.e., two
domains have to have identical permissions maps.

3.4 Multi-level Permissions Table

Mid Index (10) Leaf Index (6)

Address from program (bits 31−0)

Bits (21−12) Bits (11−6) Bits (5−0)Bits (31−22)

Leaf Offset (6)Root Index (10)

Figure 4: How an address indexes the multi-level permissions table
(MLPT).

An alternative design is a multi-level permissions table (MLPT).
The MLPT is organized like a conventional forward mapped page
table, but with an additional level. Figure 4 shows which bits of
the address are used to index the table, and Figure 5 shows the
MLPT lookup algorithm. Entries are 32-bits wide. The root table
has 1024 entries, each of which maps a 4 MB block. Entries in
the mid-level table map 4 KB blocks. The leaf level tables have 64
entries which each provide individual permissions for 16 four-byte
words. The supervisor can reduce MLPT space usage by sharing
lower level tables across different protection domains when they
share the same permissions map.

We next examine different formats for the entries in the MLPT.

3.4.1 Permission Vector Entries
A simple format for an MLPT entry is a vector of permission

values, where each leaf entry has 16 two-bit values indicating the
permissions for each of 16 words, as shown in Figure 6. User seg-
ments are represented with the tuple < base addr, length, permis-
sions>. Addresses and lengths are given in bytes unless otherwise
noted. The user segment <0xFFC, 0x50, RW> is broken up
into three permission vectors, the latter two of which are shown
in the figure. We say an address range owns a permissions table
entry if looking up any address in the range finds that entry. For
example, in Figure 6, 0x1000–0x103F owns the first permission
vector entry shown.

Upper level MLPT entries could simply be pointers to lower
level tables, but to reduce space and run-time overhead for large
user segments, we allow an upper level entry to hold either a pointer
to the next level table or a permissions vector for sub-blocks (Fig-

PERM_ENTRY MLPT_lookup(addr_t addr) {
PERM_ENTRY e = root[addr >> 22];
if(is_tbl_ptr(e)) {

PERM_TABLE* mid = e<<2;
e = mid[(addr >> 12) & 0x3FF];
if(is_tbl_ptr(e)) {
PERM_TABLE* leaf = e<<2;
e = leaf[(addr >> 6) & 0x3F];

}
}
return e;

}

Figure 5: Pseudo-code for the MLPT lookup algorithm. The table is
indexed with an address and returns a permissions table entry, which is
cached in the PLB. The base of the root table is held in a dedicated CPU
register. The implementation of is tbl ptr depends on the encoding
of the permission entries.

����������
������ ������������������������������

������

0x1080

0x1040

0x1000

Address
Space

4 bytes

<0x1060, 0x8, RO>
<0x1068, 0x20, RW>

<0xFFC, 0x50, RW>

User segments

10 10 10 00 00 00 00 00 01 01 10 10 10 10 10 10

1010 10 10 10 10 10 10 10 10 10 10 10 10 1010

Leaf table entries

Permission Vector Owned By 0x1040−0x107F

Permission Vector Owned By 0x1000−0x103F

Figure 6: A MLPT entry consisting of a permissions vector. User
segments are broken up into individual word permissions.

Type (1)

1 Perm for 8 sub−blocks (8x2b)Unused (15)

0 Unused (1) Ptr to lower level table (30)

bool is tbl ptr(PERM ENTRY e) � return(e>>31)==0; �

Figure 7: The bit allocation for upper level entries in the permis-
sions vector MLPT, and the implementation of the function used in
MLPT lookup.

ure 7). Permission vector entries in the upper levels contain only
eight sub-blocks because the upper bit is used to indicate whether
the entry is a pointer or a permissions vector. For example, each
mid-level permissions vector entry can represent individual permis-
sions for the eight 512 B blocks within the 4 KB block mapped by
this entry.

3.4.2 Mini-SST entries
Although permission vectors are a simple format for MLPT en-

tries, they do not take advantage of the fact that most user segments
are longer than a single word. Also, the upper level entries are
inefficient at representing the common case of non-aligned, non-
power-of-two sized user segments.

The sorted segment table demonstrated a more compact encod-
ing for abutting segments—only base and permissions are needed
because the length of one segment is implicit in the base of the next.
A mini-SST entry uses the same technique to increase the encoding
density of an individual MLPT entry.

Perm (2) Offset (4)Offset (5) Perm (2) Offset (4) Perm (2) Offset (4) Perm (2)

mid0 mid1 lastfirstType (2)

1 1 Len (5)

Figure 8: The bit allocation for a mini-SST permission table entry.

Figure 8 shows the bit encoding for a mini-SST entry which can
represent up to four table segments crossing the address range of
an entry. As with the SST, start offsets and permissions are given
for each segment, allowing length (for the first three entries) to be
implicit in the starting offset of the next segment. The mini-SST
was broken up into four segments because experiments showed that
the size of heap allocated objects was usually greater than 16 bytes.

Mini-SST entries encode permissions for a larger region of mem-
ory than just the 16 words (or 16 sub-blocks at the upper table lev-
els) that own it. The first segment has an offset which represent
its start point as the number of sub-blocks (0–31) before the base
address of the entry’s owning range. Segments mid0 and mid1
must begin and end within this entry’s 16 sub-blocks. The last
segment can start at any sub-block in the entry except the first (a

First = <−17, (20), RW>

Mini−SST segment
owned by
0x1040−0x107F

Mini−SST segment
owned by
0x1000−0x103F

Mid0 = <3, (5), NONE>
Mid1 = <8, (2), RO>

Last = <10, 8, RW>

������������
����������
������

0x1080

0x1040

0x1000

User segments
Address
Space

4 bytes

<0x1060, 0x8, RO>
<0x1068, 0x20, RW>

<0xFFC, 0x50, RW>

Last =

<−1, (17), RW>First =

<16, 3, RW>

Figure 9: An example of segment representation for mini-SST entries.

zero offset means the last segment starts at the end address of the
entry) and it has an explicit length that extends up to 31 sub-blocks
from the end of the entry’s owning range. The largest span for an
entry is 79 sub-blocks (31 before, 16 in, 32 after).

The example in Figure 6 illustrates the potential benefit of stor-
ing information for words beyond the owning address range. If the
entry owned by 0x1000–0x103F could provide permissions in-
formation for memory at 0x1040 then we might not have to load
the entry owned by 0x1040.

Figure 9 shows a small example of mini-SST entry use. Seg-
ments within an SST entry are labelled using a < base, length, per-
mission > tuple. Lengths shown in parentheses are represented
implicitly as a difference in the base offsets of neighboring ta-
ble segments. The entry owned by 0x1000-0x103F has seg-
ment information going back to 0xFFC, and going forward to
0x104C. Because of the internal representation limits of the mini-
SST format, the user segment mapped by the entry at address range
0x1000-0x103F has been split across the first and last mini-SST
table segments.

Mini-SST entries can contain overlapping address ranges, which
complicates table updates. When the entry owned by one range
is changed, any other entries which overlap with that range might
also need updating. For example, if we free part of the user segment
starting at 0xFFC by protecting a segment as <0x1040, 0xC,
NONE>, we need to read and write the entries for both 0x1000–
0x103F and 0x1040–0x107F even though the segment being
written does not overlap the address range 0x1000–0x103F. All
entries overlapping the modified user segment must also be flushed
from the PLB to preserve consistency.

We can design an efficient MLPT using mini-SST entries as our
primary entry type. The mini-SST format reserves the top two bits
for an entry type tag, Table 2 shows the four possible types of en-
try. The upper tables can contain pointers to lower level tables. Any
level can have a mini-SST entry. Any level can contain a pointer
to a vector of 16 permissions. This is necessary because mini-SST
entries can only represent up to four abutting segments. If a re-
gion contains more than four abutting segments, we represent the
permissions using a permission vector held in a separate word of
storage, and pointed to by the entry. Finally, we have a pointer to
a record that has a mini-SST entry and additional information. We
use this extended record to implement translation as discussed in
Section 5.

3.5 Protection Lookaside Buffer
The protection lookaside buffer (PLB) caches protection table

entries in the same way as a TLB caches page table entries. The
PLB hardware uses a conventional ternary content addressable
memory (CAM) structure to hold address tags that have a vary-

Type Description
00 Pointer to next level table.
11 Mini-SST entry (4 segments spanning 79 sub-blocks).
01 Pointer to permission vector (16x2b).
10 Pointer to mini-SST+ (e.g., translation (6x32b)).

bool is tbl ptr(PERM ENTRY e) � return(e>>30)==0; �

Table 2: The different types of MLPT entries, and the imple-
mentation of the function used in MLPT lookup. Type is the
type code. Leaf tables do not have type 00 pointers.

ing number of significant bits (as with variable page size TLBs
[15]). The PLB tags have to be somewhat wider than a TLB as
they support finer-grain addressing (26 tag bits for our example de-
sign). Entries are also tagged with protection domain identifiers
(PD-IDs).

The ternary tags stored in the PLB entry can contain additional
low-order “don’t care” address bits to allow the tag to match ad-
dresses beyond the owning address range. For example, the tag
0x10XX, where XX are don’t care bits, will match any address
from 0x1000–0x10FF. On a PLB refill, the tag is set to match on
addresses within the largest naturally aligned power-of-two sized
block for which the entry has complete permissions information.
Referring to the example in Figure 9, a reference to 0x1000 will
pull in the entry for the block 0x1000–0x103F and the PLB tag
will match any address in that range. A reference to 0x1040
will bring in the entry for the block 0x1040–0x107F, but this
entry can be stored with a tag that matches the range 0x1000–
0x107F because it has complete information for that naturally
aligned power-of-two sized block. This technique increases effec-
tive PLB capacity by allowing a single PLB entry to cache permis-
sions for a larger range of addresses.

When permissions are changed for a region in the permissions
tables, we need to flush any out-of-date PLB entries. Permissions
modification occurs much more frequently than page table modifi-
cations in a virtual memory system. To avoid excessive PLB flush-
ing, we use a ternary search key for the CAM tags to invalidate po-
tentially stale entries in one cycle. The ternary search key has some
number of low order “don’t care” bits, to match all PLB entries
within the smallest naturally aligned power-of-two sized block that
completely encloses the region we are modifying (this is a conser-
vative scheme that may invalidate unmodified entries that happen to
lie in this range). A similar scheme is used to avoid having two tags
hit simultaneously in the PLB CAM structure. On a PLB refill, all
entries that are inside the range of a new tag are first searched for
and invalidated using a single search cycle with low-order “don’t
care” bits.

3.6 Sidecar Registers

Addr(32) Valid (1) Base (32) Bound (32) Perm (2) Trans. offset (32)

SidecarAddress register

Figure 10: The layout of an address register with sidecar. The shaded
portion is optional translation information.

Each address register in the machine has an associated sidecar
register which holds information for one table segment as depicted
in Figure 10. The program counter also has its own sidecar used for
instruction fetches. Sidecar registers are an optional component of
the design, but they help reduce traffic to the fully-associative PLB.

On a PLB miss, the demand address from the processor is looked
up in the permissions table, and the permissions table entry that is
returned is entered into the PLB. The table segment that contains
the demand address is also loaded into the sidecar for the address
register that was used to calculate the effective address of the mem-
ory load or store. All fields of the table segment descriptor are
blown up to maximum length in the address sidecar to facilitate fast
checking of base and bounds. For each subsequent load or store, the
effective address is compared against the base and bounds. If the
address lies within the range, the sidecar permissions value is used
to check the access. If the range check fails or the sidecar is invalid,
the PLB is searched for the correct permissions information. The
PLB in turn might miss, causing a fill from the permissions table in
memory.

Sidecars also increase the permissions hit rate by caching an
entire table segment. The PLB can often only index part of the
permission table entry because its index range must be a naturally
aligned power-of-two sized block. For example, in Figure 9 a ref-
erence to 0x1040 will load the segment <0xFFC, 0x50, RW>
into the register sidecar. If that register is used to access loca-
tion 0xFFC we will have a permissions check hit from the sidecar.
Sending 0xFFC to the PLB will result in a permissions check miss
because it only indexes the range 0x1000–0x107F.

To guarantee consistency, all sidecars are invalidated when any
protections are changed. Sidecars are also invalidated on protec-
tion domain switches. The sidecars can be refilled rapidly from the
PLB. Permissions tables have the same coherence issues as page
tables in a multi-processor system. If they are modified, any pro-
cessor which might be caching the data must be notified so it can
invalidate its sidecar registers and invalidate the necessary section
of the PLB.

Register sidecar information is like a capability in that it has pro-
tection and range information, but it is not managed like a capabil-
ity because it is ephemeral and not user visible. Sidecars are similar
to the resolved address registers in the IBM System/38 [13], where
an address such as the base of an array would be translated, cached
and then reused to access successive array elements.

3.7 Processor Pipeline Implementation
MMP requires some modifications to a processor pipeline, but

the permissions check only needs to occur before the commit point
in the pipeline, and so should not impact processor cycle time. A
permissions fault is treated in the same way as any other address
fault. In an in-order processor, the check is performed before write
back, and in an out-of-order processor the check is performed be-
fore instruction retirement. A processor can speculatively use load
data before permission is granted. Similarly, store data lives in the
speculative store buffer until permission is granted to commit the
store.

The sidecar registers can be physically located by the load/store
unit and only need as many read ports as the number of simulta-
neous load and store instructions supported. For both in-order and
out-of-order processors, the architectural register number is used to
index the sidecar register file. The sidecar registers in an out-of-
order pipeline may be speculatively refilled with the wrong data,
but the segment descriptor will always be for a valid table segment.
An incorrect speculation might bring in the wrong table segment,
but this can only cause a sidecar miss to the PLB, not a protection
breach.

The main performance impact of permissions checking is the ad-
ditional additional memory traffic caused by table lookups. This is
quantified below in Section 4.

3.8 Protected calls
The memory protection structures of the permissions table and

PLB are sufficient to implement call gates [26]. Call gates are gen-
eralizations of system calls, and provide an efficient mechanism for
mutually distrustful protection domains to safely call each other’s
services.

A subsystem exports a limited number of code entry points to
client domains. Calls to these entry points cause a switch in pro-
tection domain to that of the subsystem. There are a number of
ways to implement these protected entry points. The simplest is to
remove all permissions on the entry points so that a call will trap
into the supervisor. Subsystems register their entry points with the
supervisor, so execution can be restarted in the exporting domain
at the requested entry point. Alternatively, hardware can be used
to accelerate the domain switch by encoding the protection domain
for a code entry point within the permissions table entry.

The call gate has a minimum of semantics. For instance the ex-
porting domain needs to establish its own stack if it needs one. Pa-
rameters are passed in registers. More elaborate data structures are
passed using a very simplified form of marshalling which consists
of the caller traversing the data structure and granting appropriate
permission to the provider domain. No data copying is needed,
only the permissions structures are affected. If two domains call
each other frequently, they can copy arguments into buffers which
are properly exported.

Hardware-supported call gates make cross-domain calls efficient
by removing the demultiplexing overhead of system calls. This
allows supervisor services to be implemented with a minimum of
checking. Malloc and free could be implemented efficiently by
the supervisor since it need only check the length on a malloc,
and it need only verify the pointer on a free. There is no transfer
of data. To further speed execution within the supervisor domain,
we assume a small number of wired entries are reserved exclusively
for supervisor use (4 in our implementation). The supervisor can
keep protection information for its text, stack, and data in these
entries so they do not need to be faulted in on every supervisor call.

3.9 Extension to 64 bits
Although this paper only describes an MMP design for a 32-bit

address space, we believe the design can be extended to 64 bits
in a straightforward way, using many of the same techniques that
were used to extend page tables to a wider address space. Us-
ing a forward-mapped scheme, we would have five levels of table
lookup, where the top 3 level tables have 4K entries, and the last
two levels have 2K entries. To make lookups faster, we can hash
the top 42 bits of the address and index into an address hash table
which has either permission entries or pointers to the same lowest
two level tables used by the five table lookup path. The hash ta-
ble is updated whenever a lookup fails and it is updated with the
entry retrieved from searching the five level tables from the root.
The space consumption for this strategy will be larger than the 32-
bit case, but we believe the time consumption could be tuned to be
close to the 32-bit case.

4. EVALUATION
Fine-grain memory protection is useful, but comes at a cost in

both space and time. The permission tables occupy additional
memory and accessing them generates additional memory traffic.
The time and space overheads depend on three things: where the
data is placed in memory, how the programmer protects that data,
and how the program accesses the data.

Data placement is governed by the executable program layout
and by the operation of the heap allocator. We evaluated both C

Benchmark Refs �
�����

Segments Refs/Update Cs
crafty test 3,088 96 64,327,162 6
gcc tr 1,684 20,796 161,944 26
twolf train 11,537 938,844 24,576 8
vpr test 506 6,274 161,191 6
vortex tr 1,291 211,630 12,200 16
j-compress 561 6,430 174,554 14
j-db 109 249,104 876 12
j-jack 402 1,622,330 496 34
j-jess 245 215,460 2,275 10
j-raytrace 1,596 1,243,052 2,567 20
m-jpeg dec 1 58 45,785 6
m-mpeg2 dec 30 46 1,307,794 6
o-em3d 608 131,598 9,240 22
o-health 142 846,514 336 14

Table 3: The reference behavior of benchmarks. The Refs col-
umn is total number of loads and stores in millions. The Seg-
ments column is the number of segments written to the table
(which is twice the number of calls to malloc since each call
effectively creates two segments). The next column is the av-
erage number of memory references between updates to the
permissions table. Cs is the number of segments when run-
ning with coarse-grained protection. These come from initial
program segments, from calls to brk (extending the heap), or
from extending the stack.

and Java programs. C programs were compiled with gcc version
egcs-1.0.3a for a 32-bit MIPS target using -O3 optimization
and static linking to generate an ELF binary. The malloc from the
newlib library was used. The linker and malloc libraries were
used unmodified. The results would be significantly better if the
linker was modified to align and pad program sections, and if mal-
loc was modified to try to align addresses and to place its internal
management state away from the returned memory. The Java pro-
grams were compiled for a MIPS target using MIT’s FLEX Java-
to-native compiler [25]. FLEX’s output was also linked with the
newlib malloc library. The garbage collector in FLEX was dis-
abled for all of our runs to put a heavier load on the memory system.

The biggest challenge in evaluating MMP is trying to predict
how programmers would take advantage of word-granularity pro-
tection. In this evaluation, we considered two extreme cases. In
the first case, we assumed light use of the protection facilities. Pro-
grams were run with the standard protection regions for Unix pro-
cesses: read-only program text, read-only data, read-write data, and
stack. This level of protection is what is provided by most current
virtual memory operating systems. In the second case, we assume
that every object allocated by malloc is in a separate user segment
and that the surrounding words are inaccessible because they hold
malloc internal state.

To gather data on how programs access data, we chose a mix of
benchmarks that were both memory reference and memory alloca-
tion intensive. Table 3 lists the benchmarks used and their refer-
ence properties. Benchmark names prefixed with a “j-” are Java
programs. Benchmarks crafty, gcc, twolf and vpr are from
SPEC 2000, and vortex is from SPEC 95. The tr suffix in-
dicates the training input, and test suffix indicates the test in-
put. Names prefixed “o-” are from the Olden [6] benchmark suite.
Names prefixed with “m-” are from the Mediabench benchmark
suite. Table 3 includes the number of memory references per ta-
ble update. The permissions table is only updated on malloc,
realloc, and free calls, and the results show a wide variation
in how frequently objects are created and deleted.

The programs were run on a MIPS simulator modified to trace

data memory references as well as calls to malloc, realloc,
and free. We considered only data references because the in-
struction reference stream remains inside a single text segment for
these codes, but we put the protection information for the text seg-
ment in the permissions table. These traces were fed to our model
implementations of the SST and the MLPT which keep track of
size of the tables, and the memory accesses needed to search and
update the tables. The implementation also models all invalidates
of sidecars and PLB required for consistency with table updates,
and to prevent multiple hits in the PLB after refills.

We measure space overhead by measuring the space occupied by
the protection tables and dividing it by the space being used by the
application for both program text and data at the end of a program
run. We determine the space used by the application by querying
every word in memory to see if it has valid permissions. As a re-
sult, the space between malloced regions is not counted as active
memory even though it contributes to the address range consumed
by malloc and to the protection table overhead. The stack starts
at 64 KB and is grown in 256 KB increments. Each call to brk
returns 1 MB.

We approximate the effect on runtime by measuring the number
of additional memory references required to read and write the per-
mission tables. We report overhead as the number of additional ref-
erences divided by the number of memory references made by the
application program. The performance impact of these additional
memory references varies greatly with the processor implementa-
tion. An implementation with hardware PLB refill and a specu-
lative execution model should experience lower performance over-
heads as these additional accesses are not latency critical. A system
with software PLB refill and a simple pipeline should have higher
relative time overhead. In addition to counting additional memory
references, we also fed address traces containing the table accesses
to a cache simulator to measure the increase in miss rate caused by
the table lookups.

For the permissions caching hierarchy, we placed register side-
cars on all 32 integer registers. The results used either a 64-entry
or 128-entry PLB with 4 entries reserved for the supervisor and a
random replacement policy. We do not model the supervisor code
in our experiments, and so we report just the number of PLB entries
available to the application (60 or 124).

4.1 Coarse-Grained Protection Results
Table 4 shows the space and time overhead results for the coarse-

grained protection model. We only present the results for the MLPT
with mini-SST entries and a 60-entry PLB. We contrast the over-
heads of the permissions table with a model of a page table and
TLB which would provide this same kind of protection in a mod-
ern computer system. The overheads are small in both space and
time for both systems. The MLPT space overhead is bigger than the
page table overhead, but it is less than 0.7% for all of the bench-
marks. MLPT uses additional space because it must create a few
leaf level tables to accomodate segments whose start or end ad-
dresses are not divisible by 256 B. If the program segments were
aligned, and grew in aligned quantities, the MLPT and page table
would consume the same space.

The MLPT adds fewer than 0.6% extra memory references, and
requires fewer table accesses than the page table for every bench-
mark except Mediabench’s mpeg2. The mpeg2 run is so short
that writes to the permission table make up a large part of the ta-
ble accesses. The advantage of the MLPT is the reach of its mid-
level mini-SST entries. These entries are owned by 4 KB of address
space, but they can contain information for a 20 KB region. A con-
ventional page table entry only has information for the 4 KB range

Benchmark MLPT mSST 60 PLB PAGE+TLB
X-ref Space l/k X-ref Space l/k

crafty test 0.56% 0.41% 2.1 2.59% 0.15% 2
gcc tr 0.01% 0.08% 2.0 0.17% 0.03% 2
twolf train 0.00% 0.31% 2.0 0.76% 0.11% 2
vpr test 0.00% 0.62% 2.6 0.00% 0.22% 2
vortex tr 0.02% 0.10% 2.0 0.77% 0.04% 2
j-compress 0.00% 0.11% 2.1 2.16% 0.04% 2
j-db 0.32% 0.17% 2.0 0.98% 0.06% 2
j-jack 0.00% 0.04% 2.2 0.04% 0.02% 2
j-jess 0.06% 0.18% 2.1 0.59% 0.06% 2
j-raytrace 0.00% 0.07% 2.2 0.01% 0.03% 2
m-jpeg dec 0.27% 0.61% 2.8 0.12% 0.22% 2
m-mpeg2 dec 0.01% 0.61% 2.3 0.01% 0.22% 2
o-em3d 0.00% 0.07% 2.1 0.02% 0.03% 2
o-health 0.02% 0.12% 2.1 0.07% 0.05% 2

Table 4: The extra memory references X-ref and extra storage
space Space required for a mini-SST permissions table and 60
entry PLB used to protect coarse-grain program regions. We
compare to a traditional page table with a 60 entry TLB. The
l/k column gives the average number of loads required for a
table lookup, which is a measure of how much the mid level
entries are used for permission information.

that owns it. For instance, compress, a benchmark known to
have poor TLB performance, mallocs a 134 KB hash table which
is accessed uniformly. This table requires 33 TLB entries to map,
but would only require 8 entries in the worst case for the PLB. The
number of loads per lookup is close to 2 indicating that mid level
entries are heavily used.

We also simulated an SST with a 60-entry PLB. This performs
much better that either of the previous schemes, with both time
and space overheads below 0.01% on all benchmarks. The ability
of the SST table segments to represent large regions results in ex-
tremely low PLB miss rates. Because there are so few coarse grain
segments, the lookup and table update overhead is small.

These results show that the overhead for MMP word-level pro-
tection is very low when it is not being used.

4.2 Fine-Grained Protection Results
We model the use of fine-grain protection with a standard imple-

mentation of malloc which puts 4–8 bytes of header before each
allocated block. We remove permissions on the malloc headers and
only enable program access to the allocated block. We view this as
an extreme case, as a protected subsystem will typically only export
a subset of all the data it accesss, not its entire address space.

Table 5 shows the results for the fine-grain protection work-
loads. While the SST organization performs well for some pro-
grams, its time and space overhead balloons on other programs. For
o-health the space overhead reaches 44%. The binary search
lookup has a heavy, but variable, time cost, which can more than
double the number of memory references. For j-jack, it averages
20.8 loads per table lookup, but for mpeg2 it is only 4.8. Because
SST must copy half the table on an update on average, updates also
cause significant additional memory traffic. But SST does have sig-
nificantly lower space and time overheads than the MLPT for some
applications like gcc and crafty. The gcc code mallocs a mod-
erate number of 4,072 byte regions for use with its own internal
memory manager. This odd size means the MLPT must use leaf
tables which have limited reach in the PLB, while the SST repre-
sents these segments in their entirety. We are investigating adaptive
policies that would switch between SST and MLPT as the number
of segments increase.

Coarse Fine
Benchmark SCar SCar PLB SCar Elim
crafty test 28.5% 28.5% 0.3% 1.0%
gcc tr 9.4% 11.4% 0.4% 3.3%
twolf train 15.5% 17.8% 2.5% 1.7%
vpr test 37.3% 42.5% 2.6% 7.2%
vortex tr 12.4% 15.0% 0.8% 2.4%
j-compress 5.6% 22.9% 0.0% 11.4%
j-db 14.2% 18.4% 2.0% 2.6%
j-jack 7.3% 9.8% 0.8% 1.9%
j-jess 8.3% 16.6% 0.8% 1.1%
j-raytrace 0.8% 2.5% 0.3% 0.6%
m-jpeg dec 7.0% 13.2% 0.1% 10.9%
m-mpeg2 dec 7.4% 7.4% 0.0% 4.2%
o-em3d 12.8% 13.1% 0.7% 7.0%
o-health 5.6% 8.6% 1.7% 3.8%

Table 6: Measurements of miss rates for a MLPT with mini-
SST entries and a 60 entry PLB. SCar is the sidecar miss rate.
PLB is the global PLB miss rate (PLB misses/total references).
SCar Elim is the number of references to the permissions table
that were eliminated by the use of sidecar registers for the fine-
grained protection workload. For coarse-grained protection,
the PLB miss rates were close to zero on all benchmarks and so
are not shown here.

All MLPT organizations take almost exactly the same space and
so their space overhead is reported together in one column. The
space overhead for the MLPT is less than 9% for all permission
entry types. The mini-SST format can require a little more space
than the permission vector format when programs use many small
segments that cannot be represented in the mini-SST format. Five
of the benchmarks required permission vector escapes, but only
two required more than 30 escapes. The health benchmark re-
quired 4,037 pointers to permissions vectors in the leaf entries, and
j-jess 332. Although is not likely to represent real program be-
havior [36], health provides a stress test for our system because
it allocates many small segments.

We garbage collect MLPT permission tables when they become
unused. This keeps memory usage close to the overhead of the leaf
tables, which is

��� ��������� 	�

% because information for 16 words

is held in a single word entry. Some overheads are higher than
6.25% because of non-leaf tables. Each table has a counter with
the number of active entries. When this counter reaches zero, the
table can be garbage collected. The reads and writes to update this
counter are included in the memory reference overhead.

The mini-SST organization is clearly superior to the permission
vector format (compare columns vec 60 PLB to mSST 60 PLB).
Every benchmark performs better and the highest overhead (vpr)
is more than halved, dropping from 19.4% to 7.5%. Lookups dom-
inate the additional memory accesses, as would be expected. jpeg
and mpeg from mediabench are small programs that don’t run for
very long so updating the tables is a noticable fraction of table
memory references for these benchmarks. j-jack has high up-
date overhead because it performs many small allocations with lit-
tle activity in between (from Table 3 it does less than 500 memory
reference in between table updates). When we increase the num-
ber of available PLB entries to 124 (column mSST 124 PLB), the
worst case memory reference overhead drops to 6.3%, with some
benchmarks, like vpr, benefiting greatly from the increased reach
of the PLB.

4.3 Memory Hierarchy Performance
Table 6 shows the performance of the permissions caching hi-

Benchmark SST 60 PLB Space vec 60 PLB mSST 60 PLB mSST 124 PLB
Space X-ref upd ld/lk X-ref upd ld/lk X-ref upd ld/lk X-ref upd ld/lk

crafty test 0.0% 0.0% 49% 7.4 0.6% 3.2% 1% 2.1 0.6% 1% 2.1 0.0% 1% 2.1
gcc tr 0.2% 0.7% 36% 13.4 4.0% 3.6% 4% 2.8 1.5% 13% 2.9 1.0% 19% 2.9
twolf tr 22.2% 141.0% 63% 16.5 6.6% 10.6% 1% 3.0 7.5% 1% 3.0 6.3% 1% 3.0
vpr test 0.1% 0.7% 96% 11.2 4.5% 19.4% 1% 2.9 7.5% 1% 2.9 1.4% 1% 2.9
vortex tr 0.8% 105.0% 95% 16.0 4.5% 4.3% 3% 2.8 2.4% 7% 2.8 1.2% 13% 2.9
j-compress 0.2% 0.0% 54% 12.8 0.4% 3.1% 1% 2.2 0.1% 9% 2.4 0.0% 59% 2.7
j-db 16.3% 69.1% 5% 19.2 4.9% 7.4% 7% 2.9 6.4% 8% 3.0 5.6% 9% 3.0
j-jack 23.5% 20.0% 31% 20.8 6.9% 4.8% 18% 2.9 3.0% 27% 2.9 2.1% 39% 2.9
j-jess 12.7% 22.0% 7% 18.7 4.8% 3.4% 6% 2.9 2.6% 8% 2.9 2.1% 10% 3.0
j-raytrace 30.5% 10.1% 11% 21.4 6.8% 1.1% 12% 3.0 1.0% 14% 3.0 0.8% 17% 3.0
m-jpeg dec 0.0% 0.0% 75% 4.8 6.3% 3.1% 9% 2.9 0.5% 64% 3.0 0.4% 86% 3.0
m-mpeg2 dec 0.0% 0.0% 71% 5.2 7.2% 0.1% 18% 2.8 0.0% 71% 2.8 0.0% 85% 2.7
o-em3d 3.2% 16.2% 2% 18.7 6.5% 2.6% 8% 3.0 2.1% 9% 3.0 1.7% 12% 3.0
o-health 44.0% 75.3% 12% 20.0 8.3% 7.6% 13% 3.0 6.1% 17% 3.0 5.7% 18% 3.0

Table 5: Comparison of time and space overheads with inaccessible words before and after every malloced region. The Space column
is the size of the permissions table as a percentage of the application’s active memory. The last three organizations are all MLPT
and all occupy about the same space. The X-Ref column is the number of permissions table memory accesses as a percentage of
the application’s memory references. The upd colum indicates the percentage of table memory accesses that were performed during
table update. The remainder of the references are made during table lookup. The ld/lk column gives the average number of loads
required for a table lookup.

erarchy including the sidecar miss rate and the PLB global miss
rate for the fine-grained protection workload. The sidecar registers
normally capture 80–90% of all address accesses, while the PLB
captures over 97% in all cases.

We also show the percentage reduction in references to the per-
missions tables as a result of using sidecar registers. The principal
motivation for using sidecars is to reduce traffic to the PLB, but
there is a significant performance gain also (more than 10% for
two benchmarks) because some sidecar hits would be PLB misses
as explained in Section 3.6.

As another indirect measure of performance impact, we mea-
sured the increase in miss rate caused by the additional permis-
sions table accesses. The results for a typical L1 cache (16 KB)
and a typical L2 cache (1 MB) are shown in Figure 7. Both caches
are 4-way set associative. For the L1 cache, at most an additional
0.25% was added to the miss rate, and for the L2 cache, at most
0.14% was added to the global miss rate but most apps experienced
no difference in L2 miss rates.

5. SEGMENT TRANSLATION
The MMP table structures are effective at associating permis-

sions with memory addresses. Other information can also be as-
sociated with addresses and held in the table segment descriptors.
We can make a segment of memory appear to reside in a different
address range by storing a translation offset in the table segment
descriptor. The translation offset is added in to every address cal-
culation within the table segment’s range.

Figure 11 shows an example of how this facility might be used.
Addresses in the range 0x1000-0x12FF actually refer to mem-
ory stored at the two different address regions 0x80002000–
0x800021FF and 0x80002800–0x800028FF. This is imple-
mented by the creation of two segments that have translation infor-
mation, i.e., <0x1000, 0x200, RO, +0x80001000>, and
<0x1200, 0x100, RO, +0x80001600>. The final seg-
ment field holds the translation offset.

The MMP system does not dictate policy, but one reasonable
choice is that only the protection domain that owns a segment can
install a translation, and the translation must point to another seg-
ment owned by the same protection domain. This property would
be checked by the supervisor when it is called to establish the map-

Benchmark 16 KB, 4-way 1 MB, 4-way
App MMP � App MMP �

crafty test 1.86% 1.87% 0.01% 0.01% 0.01% 0.00%
gcc tr 4.25% 4.30% 0.06% 0.22% 0.22% 0.00%
twolf train 2.82% 3.04% 0.21% 0.00% 0.00% -0.00%
vpr test 3.37% 3.62% 0.25% 0.00% 0.00% 0.00%
vortex tr 0.71% 0.72% 0.02% 0.10% 0.10% 0.00%
j-compress 2.82% 2.82% 0.00% 0.12% 0.12% 0.00%
j-db 2.25% 2.39% 0.14% 0.50% 0.53% 0.03%
j-jack 0.54% 0.55% 0.01% 0.24% 0.24% 0.01%
j-jess 0.84% 0.86% 0.02% 0.07% 0.07% 0.00%
j-raytrace 0.22% 0.23% 0.00% 0.03% 0.03% 0.00%
m-jpeg dec 0.43% 0.43% -0.00% 0.09% 0.09% 0.00%
m-mpeg2 dec 0.20% 0.20% -0.00% 0.04% 0.04% 0.00%
o-em3d 0.42% 0.42% 0.01% 0.19% 0.20% 0.00%
o-health 2.44% 2.58% 0.14% 2.41% 2.55% 0.14%

Table 7: App is the cache miss rate of the application bench-
mark, while MMP is the combined cache miss rate for the ref-
erences of the benchmark and the MMP protection structures.

� is their difference. A MLPT was used with mini-SST en-
tries and a 60 entry PLB. This table holds results from two
experiments, differing only in cache size—16 KB and 1 MB.
The cache was a 4-way set-associative with 32-byte lines. -0.00
means the miss rate decreased slightly. Reference streams were
simulated for a maximum of 2 billion references.

pings.
Figure 11 shows how translation can be used to implement zero-

copy networking with a standard read system call interface. The
client domain passes a buffer to the kernel via read. The kernel
becomes the owner of the buffer, and it remaps the packet payloads
into the buffer without copying them. When the user references
the buffer (e.g., 0x1000), it is reading data from 0x80002000
which is where the packet payload resides.

Segment translation does not preclude other levels of memory
translation. For an embedded system that uses a physical address
space, segment translation could be the only level of memory trans-
lation in the system. For a system that uses virtual addresses, the
result of segment translation is a virtual address which is translated
to a physical address by another mechanism. Translations are not

Client Segments

Kernel Packets

header

0x1000

0x80002000

0x80002800
header

0x1200

0x1300

0x80002900

0x80002200

<0x1000,0x200,RO,+0x80001000>

<0x1200,0x100,RO,+0x80001600>

Figure 11: Using memory protection and segment translation to im-
plement zero-copy networking. The network interface card DMAs
packets into the kernel. The kernel exports the packets to an untrusted
client by creating segments for the payload of the packets. Segment
translation is used to present the illusion to the client that the packet
payloads are contiguous in memory at 0x1000-0x12FF.

recursive, a translated segment cannot be the target of other trans-
lations.

5.1 Byte Granularity Translation
To allow packet payloads to consist of any number of bytes, seg-

ment translation must be done at the byte level. Byte level transla-
tion creates two issues.

The first is that addresses which appear to be aligned can create
unaligned references when used. The address issued by the pro-
cessor is the user address plus the translation offset. If a segment
is translated to an odd-byte boundary (e.g., <0x1000, 0x200,
+0x80002003>), then a reference to user address 0x1000 be-
comes an unaligned reference to 0x80003003. Some modern
processors can handle unaligned loads from the same cache line in
a single cycle, but require two cycles for unaligned loads that cross
cache line boundaries.

The second issue is a little more complex. Returning to the ex-
ample in Figure 11, consider the case where the first packet has one
fewer byte of data payload: 0x1FF bytes instead of 0x200. We
can almost represent this situation with the segments <0x1000,
0x1FF, RO, +0x80001000> and <0x11FF, 0x101, RO
+0x80001601>, but the length of our segments and their base
address must be word aligned, they can not be byte aligned. The
problem is with the word at address 0x11FC. The first three bytes
need to come from the first segment, and the last byte needs to come
from the second segment.

We call a word that spans segment translation boundaries a
seamed word. Seamed words must be represented in the permis-
sions table. To simplify the representation, they are defined to be
single word segments that must occur on the first word of two ad-
jacent segments, e.g., the word at address 0x11FC in our example.
We then only need to represent that two adjacent segments have a
seam and how many bytes from the first segment are used. The
remaining bytes are taken from the second segment.

Figure 12 shows the record used to represent seamed words and
translation information in the mini-SST format. The record is six
words long and is pointed to by a table entry which is a type 10
pointer (see Table 2). There are 32 bits of translation for each seg-
ment.

The upper two bits, used for type information when the mini-
SST format is used for table entries, are reallocated in this record
to indicate the location of seamed words. We can use these bits

first(7)seam(2) mid0(6) mid1(6)

translation first (32)

seam cross0(16) seam cross1(16)

translation mid0 (32)

translation mid1 (32)

translation last (32)

last(11)

seam0 seam1

Figure 12: The format for a record with a mini-SST entry and trans-
lation information.

because we already know the type of the entry once we reach it.
The arrow heads indicate where seamed words are allowed to oc-
cur. The bits are independent and if the first bit (seam0) is set, a
seam is between table segments first and mid0. If the second
bit is set(seam1), a seam is between mid1 and last. We divide
the last word of the record into two 16-bit fields, which each repre-
sent the byte cross-over point for the corresponding seamed entry.
In our example, the cross-over point is 3 bytes because 0x11FC–
0x11FE come from the first segment and 0x11FF comes from the
second segment.

This record format restricts the system to two seamed entries
in every 16 words, and requires that translated segments be repre-
sentable by a mini-SST entry. If there are many small regions (e.g.,
many small network packets) it is better to copy the contents rather
than construct many translated or seamed regions.

5.2 Translation Hardware Implementation
The translation offset sits in the address sidecar register (Fig-

ure 10) and must be added in to every memory address calculation.
This will increase the typical two operand add used for address
arithmetic to a three operand add. The additional 3:2 carry-save
adder will add a few gate delays to memory access latency.

A seamed load requires the processor have support to collect the
bytes within a single word load from different addresses. Fortu-
nately, the pipeline mechanism is almost identical to what is needed
for unaligned loads that cross cache line boundaries—bytes from
different locations must be shifted and muxed together. The only
difference with seamed loads is that the two locations being read
are not within three bytes of each other.

Segment translation does not cause cache hardware aliasing
problems, because translation occurs before the access is sent to the
cache and memory system. There can be a software pointer aliasing
problem if software assumes that only numerically equal pointers
point to the same data. Since all memory meta-data is changed via
supervisor calls, the supervisor can enforce policies that mitigate
the negative effects of software pointer aliasing. One policy would
be that, since a domain must own both the translated segment and
its image, the domain can only export the segment, and not the im-
age. This prevents other domains from seeing the translation and
becoming confused, but would support applications like zero-copy
networking.

5.3 Zero-copy Networking
There are many proposals in the literature for zero-copy net-

working [9, 23, 30]. Most are successful at eliminating extra copies
in the kernel. The hardest implementation issue is eliminating the
copy between the kernel and the user. Systems like IOLite [23]
change the user/kernel interface and programming model to pass
around collections of pointers. The user is aware that her data
is split into various memory regions which complicates program-

ming. Another approach has user handlers manage the copy from
the network interface directly [20]. Direct access to the network in-
terface requires special hardware, does not interact well with multi-
programming and demand paging, and results in the entire packet,
not just the payload, being transfered to user space. A final ap-
proach [9] uses page remapping, which can be implemented under
the standard read system call. The implementation in [9] is lim-
ited to the hardware page granularity, and so only applicable within
large packets (the largest standard Ethernet packet is less than 1600
bytes).

We believe the page remapping approach is the best for zero-
copy networking. MMP eliminates the page size restriction and
extends the approach to data that is split among multiple packets. It
offers the programming ease of linear buffers with the performance
of zero copy networking stacks.

The kernel buffers packets as they arrive on a TCP connection. It
then maps the payload from these packets into contiguous segments
(provided by read) which the user can then access (see Figure 11).
Permissions are only given for access to the data payload so the
network stack is isolated from a malicious or buggy user.

5.3.1 Evaluation
We recorded a web client receiving 500 KB of packets and simu-

lated the action of a kernel driver which accepts the packets into
kernel memory and then translates the packet payload segments
into a contiguous segment which is exported to the client. The
client then streams through the entire payload. In this scenario,
the kernel reads the packet headers, and writes the permissions ta-
bles to establish the translation information. The client reads the
data, causing the system to read the translation and permissions
data from the protection table.

We compare the number of memory references required for the
segment translation solution with the number of memory references
required for the standard copying implementation. In the copying
implementation the kernel reads the headers, and then reads the
packet payloads and writes them to a new buffer. The client streams
through the new buffer.

Zero-copy networking saves 52% of the memory refereces of
a traditional copying implementation. It has a size overhead of
29.6% for the permission tables. 61% of that 29.6% overhead is
for permissions tables and the remaining 39% is for the translation
records. 11% of the references are unaligned and cross cache line
boundaries. 0.5% of the references are seamed. If we charge 2
cycles for the unaligned loads that cross cache line boundaries, 10
cycles for the seamed loads and discount all other instructions, the
translation implementation still saves 46% of the reference time of
a copying implementation.

6. OTHER USES FOR FINE-GRAINED
PROTECTION AND TRANSLATION

We believe that fine-grained protection offers exciting opportu-
nities for application developers. Appel [3] surveys some appli-
cations that make use of page-based virtual memory. Many of
these same ideas could perform better with finer grain protection
and with cheap inter-protection domain calls.

Fine-grained protection can provide support for fast memory
bounds checking. Buffer overruns in unsafe languages are a com-
mon source of security holes [32]. MMP could catch a program’s
attempt to jump into writable data. It could also catch the program
trying to write off the end of a piece of memory. Bounds check-
ing is useful for program debugging and if implemented by MMP
would be available to the kernel.

A related functionality, data watchpoints [33], can be easily im-
plemented with our fine-grained protection. A data watchpoint gen-
erates a trap when a given word in memory is modified. Some pro-
cessors support a handful of watched memory locations [15, 14],
but our fine-grained protection scales to thousands of individually
protected words.

Generational garbage collectors [19] need to be notified when
older objects are updated to point to younger ones. Checking this
in software is time consuming. With MMP, we can write protect
older objects and signal whenever an update causes a young object
to be referenced by an old object.

Compilers for unsafe languages like C are often unable to apply
compelling optimizations because of their inability to prove some-
thing about the memory reference behavior of the program. The
following loop illustrates the point.

void foo(int* a, int B[]) {
for(int i = 0; i < N; ++i) {

*a += B[i]; }}

The compiler can not register allocate *a if it can not prove that
a and B are not aliases. With fine-grained protection, the compiler
can write-protect B outside the loop and then accumulate *a in a
register. Fix up code is needed in case B is written.

Flexible sub-page protection enables distributed shared memory
systems like Shasta [27] and its predecessor [28]. Shasta found
significant benefit from configurable line sizes, but since these line
sizes did not map to virtual address pages it performed access
checks in software. While the authors of Shasta used impressive
compiler techniques to reduce the cost of these software access
checks, our fine-grained protection would reduce this cost further.
In addition, fine-grained protection can be used to perform object-
level distributed caching, rather than standard block based caching
which is susceptible to false sharing.

6.1 Combining fine-grained protection and
translation

When fine-grained protection is combined with byte level trans-
lation, we discover additional opportunities for implementing sys-
tem services. We explored one application in detail, zero-copy net-
working, in Section 5.3.

A persistent problem for supporting large numbers of user
threads is the space occupied by each thread’s stack [11]. Each
thread needs enough stack to operate, but reserving too much stack
space wastes memory. With paged virtual memory, stack must be
allocated in page sized chunks. This strategy requires a lot of phys-
ical memory to support many threads, even though most threads
don’t need a page worth of stack space. With MMP segment trans-
lation, the kernel can start a thread and only translate a very small
part of its stack (e.g., 128 bytes). If the thread uses more stack
than this, the kernel can translate the next region of the stack to a
segment non-contiguous with the first, so the stack only occupies
about as much physical memory as it is using, and that memory
does not have to be physically contiguous.

A common data structure that MMP protection and translation
could optimize is the mostly-read-only data structure. An exam-
ple comes from the widely used NS network simulator [22]. Each
packet is mostly read-only data. When simulating a wireless net-
work, packets are “broadcast” to nodes which read the read-only
data, but also write a small node-specific scratch area in the packet
(e.g., to fill in the receive power which is node specific). The cur-
rent NS simulator supports this data structure by copying the packet
for each node. This copying reduces the size of simulations that
are possible with a given amount of physical memory, and takes

cycles that could be used for computation. Splitting the packet into
read-only and read-write sections and managing them separately is
possible, but it complicates a core data structure. By using fine-
grain MMP translation, a single read-only payload can be made
visible at different addresses within multiple protection domains.
Each domain can then have a private read/write region allocated to
run contiguous to the read-only view.

7. RELATED WORK
In Section 2, we discussed the problems with page-based virtual

memory, segment-based architectures, capabilities, and probabilis-
tic protection address spaces.

Single-address space operating systems (SASOSes) place all
processes in a single large address space, so any process can at-
tempt to access any address within the space. Protection is pro-
vided by per-process protection domains which specify the access
rights for regions of memory. Management of protection informa-
tion can be separated from paging information [16], though these
are often combined. The granularity of protection in single-address
space systems is usually a page to match the capabilities of the un-
derlying paging hardware. An advantage of the protection domain
approach is that conventional pointers can be used, and permissions
can be easily revoked by modifying the per-process permissions ta-
bles. Domain-page systems [16] can only set permissions at the
granularity of a memory page. Page-group systems, such as HP PA-
RISC and PowerPC, require that a collection of pages are mapped
together and with the same permissions across all domains (though
each domain independently might or might not have access at that
fixed permission) [16]. MMP builds upon the SASOS protection
domain approach but extends it to word granularity. MMP can be
considered a domain-segment system.

The Apple Newton also had a form of page-group system, where
an active process had access to a set of regions (called domains)
which had the same access permissions across all processes. The
ARM940T is a recent embedded processor that allows the active
process to access eight overlapping segments of the global physi-
cal address space, but the segments must have power-of-2 size and
alignment with a minimum size of 4 KB [4].

Research on SASOSes has concentrated on large virtual address
spaces where pointers are immutable names [8, 12]. Another im-
portant application area is embedded systems, which often have
a single small physical address space. Capabilities are one popu-
lar solution for permissions control in SASOSes, but they are ill
suited to embedded systems because of the need to reuse physical
addresses which requires efficient rights revocation. In contrast,
MPP is well suited for use within a single small physical address
space embedded system because revocation is straightforward.

There are a range of software techniques for memory protec-
tion. Software fault isolation [34] is a general technique that re-
stricts the address range of loads and stores by modifying a pro-
gram binary. Purify [24] is a software solution for memory bounds
checking based on executable rewriting. It has gained wide accep-
tance, however it can’t be used in an OS kernel, or in some em-
bedded development environments since required system services
are often not available in these environments and the allocators for
these systems tend to have individual, non-standard semantics. Ex-
ecutable rewriting systems degrade performance considerably. Safe
langauge techniques [31] degrade performance less, but are only
applicable to a given target language. Proof-carrying code [21] is
a system where software carries its own proof of safety that just
needs to be checked at run-time, but only works for small pieces of
code. An MMP system can run arbitrary code for existing ISAs at
high speed.

8. CONCLUSION
We have presented and evaluated a proposal for fine-grained

memory protection and translation. MMP is compatible with cur-
rent architectures and ISAs. It supports flexible sharing of data be-
tween applications and simplifies the construction of protected sub-
systems. Compared with previous protection domain approaches,
we remove the restriction that permissions are managed at page
granularity. Compared to capabilities, we provide a more flexible
permissions model, fast rights revocation, and compatibility with
current linearly addressed ISAs. Our feasibility study indicates
that the space and run-time overhead of providing this fine-grain
protection is small and scales with the degree to which fine-grain
protection is used. Our zero-copy networking example shows how
our new facilities can be used to implement efficient applications.

9. ACKNOWLEDGEMENTS
We would like to thank Frans Kaashoek (who would have pre-

ferred we used the Dutch spelling, Mondriaan), Ronny Krashinsky,
Chris Batten, John Jannotti, Doug DeCouto and the anonymous
reviewers for their comments and Benjie Chen for the NS exam-
ple. This work is supported by DARPA PAC/C award F30602-00-
2-0562, NSF CAREER award CCR-0093354, and a donation from
Infineon Technologies.

10. REFERENCES
[1] Adobe Systems Incorporated. Adobe PDF Plugin, 2002.

http://www.adobe.com/.
[2] Apache Software Foundation. mod perl, 2002.

http://perl.apache.org/.
[3] A. W. Appel and K. Li. Virtual memory primitives for user

programs. In Proceedings of ASPLOS-IV, April 1991.
[4] ARM Ltd. ARM940T Technical Reference Manual (Rev 2),

ARM DDI 0144B 2000.
[5] Burroughs Corporation. The Descriptor—a Definition of the

B5000 Information Processing System., 1961. http://
www.cs.virginia.edu/brochure/images/
manuals/b5000/descrip/descrip.html.

[6] M. Carlisle. Olden: Parallelizing Programs with Dynamic
Data Structures on Distributed-Memory Machines. PhD
thesis, Princeton University, 1996.

[7] N. P. Carter, S. W. Keckler, and W. J. Dally. Hardware
support for fast capability-based addressing. In Proceedings
of ASPLOS-VI, pages 319–327, San Jose, California, 1994.

[8] J. Chase. An Operating System Structure for Wide-Address
Architectures. PhD thesis, University of Washington, 1995.

[9] H. K. J. Chu. Zero-copy TCP in Solaris. In USENIX Annual
Technical Conference, pages 253–264, 1996.

[10] J. B. Dennis and E. C. V. Horn. Programming semantics for
multiprogrammed computations. CACM, 9(3):143–155,
March 1966.

[11] D. Grunwald and R. Neves. Whole-program optimization for
time and space efficient threads. In Proceedings of
ASPLOS-VII, Oct 1996.

[12] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and
J. Liedtke. The Mungi single-address-space operating
system. Software—Practice and Experience, 28(9):901–928,
1998.

[13] M. E. Houdek, F. G. Soltis, and R. L. Hoffman. IBM
System/38 support for capability-based addressing. In ISCA,
pages 341–348, 1981.

[14] Intel Corporation. Volume 1: Basic architecture. Intel

Architecture Software Developer’s Manual, Volume 1: Basic
Architecture, 1997.

[15] G. Kane and J. Heinrich. MIPS RISC Architecture
(R2000/R3000). Prentice Hall, 1992.

[16] E. J. Koldinger, J. S. Chase, and S. J. Eggers. Architectural
support for single address space operating systems. In
ASPLOS-V, pages 175–186, 1992.

[17] B. Lampson. Protection. In Proc. 5th Princeton Conf. on
Information Sciences and Systems, 1971.

[18] H. M. Levy. Capability-Based Computer Systems. Digital
Press, Bedford, Massachusetts, 1984.

[19] H. Lieberman and C. Hewitt. A real-time garbage collector
based on the lifetimes of objects. In Communications of the
ACM 23(6):419–429, 1983.

[20] K. Mackenzie, J. Kubiatowicz, M. Frank, W. Lee, V. Lee,
A. Agarwal, and M. F. Kaashoek. Exploiting two-case
delivery for fast protected messaging. In HPCA, pages
231–242, 1998.

[21] G. C. Necula. Proof-carrying code. In POPL ’97, pages
106–119, Paris, Jan. 1997.

[22] NS Notes and Documentation.
http://www.isi.edu/vint/nsnam/, 2000.

[23] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a unified
I/O buffering and caching system. ACM Transactions on
Computer Systems, 18(1):37–66, 2000.

[24] Rational Software Corporation. Purify, 2002.
http://www.rational.com/media/products/
pqc/D610 PurifyPlus unix.pdf.

[25] M. Rinard and et al. The FLEX compiler infrastructure.
1999–2001.
http://www.flex-compiler.lcs.mit.edu.

[26] J. Saltzer. Protection and the control of information sharing
in Multics. Comm. ACM 17, 7 (July 1974), 388–402, 1974.

[27] D. Scales, K. Gharachorloo, and C. Thekkath. Shasta: A low
overhead, software-only approach for supporting finegrain
shared memory. In Proceedings of ASPLOS-VII, Oct 1996.

[28] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R.
Larus, and D. A. Wood. Fine-grain access control for
distributed shared memory. In ASPLOS-VI, 1994.

[29] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast
capability system. In SOSP, pages 170–185, 1999.

[30] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A
user-level network interface for parallel and distributed
computing. In Symposium on Operating Systems Principles,
pages 303–316, 1995.

[31] T. von Eicken, C.-C. Chang, G. Czajkowski, C. Hawblitzel,
D. Hu, and D. Spoonhower. J-kernel: A capability-based
operating system for Java. In Secure Internet Programming,
pages 369–393, 1999.

[32] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun
vulnerabilities. In Network and Distributed System Security
Symposium, pages 3–17, San Diego, CA, February 2000.

[33] R. Wahbe. Efficient data breakpoints. In Proceedings of
ASPLOS-V, Oct 1992.

[34] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. ACM SIGOPS
Operating Systems Review, 27(5):203–216, December 1993.

[35] C. Yarvin, R. Bukowski, and T. Anderson. Anonymous RPC:
Low-latency protection in a 64-bit address space. In USENIX
Summer, pages 175–186, 1993.

[36] C. B. Zilles. Benchmark health considered harmful.
Computer Architecture News, 29(3), 2001.

