
LAMINAR: PRACTICAL FINE-GRAINED
DECENTRALIZED INFORMATION
FLOW CONTROL (DIFC)

Indrajit Roy, Donald E. Porter, Michael D. Bond,
Kathryn S. McKinley, Emmett Witchel

The University of Texas at Austin

Untrusted code on trusted data

Your computer holds trusted and sensitive data
Credit card number, SSN, personal calendar…

But not every program you run is trusted
Bugs in code, malicious plugins…

Security breach !

Security model

Decentralized Information Flow Control (DIFC)
[Myers and Liskov ’97]
Associate labels with the data
System tracks the flow of data and the labels
Access and distribution of data depends on labels

Firefox may read the credit card number
But firefox may not send it to the outside world

Control thy data (and its fate)

File
System

Network

DIFC Implementation

How do we rethink and rewrite code for security?
Hopefully not many changes…

Users create a lattice of labels
Associate labels with the data-structure

Calendar data-structure

User Mon. Tue. Wed.

Alice Watch
game

Office
work

Free

Bob Free Meet
doctor

Free

{Alice, Bob}

{Alice} {Bob}

{}

Information flow in a lattice

Challenge: Programmability vs. security

An ideal DIFC system
No code refactoring or changes to the data structures
Naturally interact with the file system and the network
Enforce fine-grained policies

User Mon. Tue. Wed.

Alice Watch
game

Office
work

Free

Bob Free Meet
doctor

Free

Calendar data-structure

{Alice, Bob}

{Alice} {Bob}

{}

Information flow in a lattice

In this talk: Laminar

A practical way to provide end-to-end
security guarantees.

Outline

Comparison with current DIFC systems
Laminar: programming model

Design: PL + OS techniques
Security regions

Case studies and evaluation
Summary

Current DIFC enabled systems

• Programming language
based (PL)
• Example: Jif, Flow Caml

• Operating system based (OS)
• Example: Asbestos, HiStar, Flume

Two broad
categories

Advantages of Laminar

PL Based OS based Laminar

Fine grained

Object level
Address space or

page level

Advantages of Laminar

PL Based OS based Laminar

Fine grained

End-to-end guarantee

Information leaks possible
through files and sockets

Advantages of Laminar

PL Based OS based Laminar

Fine grained

End-to-end guarantee

Incrementally
deployable

New language or
type system

Code refactoring

Advantages of Laminar

PL Based OS based Laminar

Fine grained

End-to-end guarantee

Incrementally
deployable

Advanced language
features *

*Dynamic class loading, reflection, multi-threading

Advantages of Laminar

PL Based OS based Laminar

Fine grained

End-to-end guarantee

Incrementally
deployable

Advanced language
features

Dynamic analysis

Security regions
(new PL construct)

JVM+OS
integration

JVM tracks labels
of objects

Outline

Comparison with current DIFC systems
Laminar: programming model

Design: PL + OS techniques
Security regions

Case studies and evaluation
Summary

Programming model

No modifications to code that does not access the
calendar

No need to trust such code!

Security regions
Wraps the code that accesses the calendar
Again, no need to trust the code!

Unless it modifies the labels of the data structure

User Monday Tuesday

Alice Watch
game

Office
work

Bob Free Meet
doctor

Less work by the programmer.
Laminar enforces user security policy.

Trust assumptions

Laminar JVM and Laminar OS should perform the
correct DIFC checks
Programmers should correctly specify the security
policies using labels
Limitation — covert channels

Timing channels
Termination channels
Probabilistic channels

Laminar design

JVM

OS Reference monitor

Dynamic analysis

APP Security regions

Laminar design: security regions

Programming
language construct

Security sensitive
data accessed only
inside a security
region

Lowers overhead
of DIFC checks

Helps incremental
deployment

JVM

OS Reference monitor

Dynamic analysis

APP Security regions

Laminar design: JVM

Dynamic security
checks on app. data

Fine-grained
enforcement

Less code
refactoring

JVM

OS Reference monitor

Dynamic analysis

APP Security regions
Encapsulate access

to secure data

Laminar design : OS

Security checks on
files/sockets…

Prevents security violation
on system resources

JVM

OS Reference monitor

Dynamic analysis

APP Security regions

Fine-grained
enforcement

Encapsulate access
to secure data

Laminar design : JVM+OS

Comprehensive
security guarantee

JVM

OS Reference monitor

Dynamic analysis

APP Security regions

Integration of
VM+OS mechanisms

Fine-grained
enforcement

Encapsulate access
to secure data

Outline

Comparison with current DIFC systems
Laminar: programming model

Design: PL + OS techniques
Security regions

Case studies and evaluation
Summary

Example: calendar

Pseudo code to find a common meeting time for
Alice and Bob

Calendar cal; // has label {Alice, Bob}

secure(new Label(Alice, Bob)){
Calendar a = readFile(“alice.cal”);
Calendar b = readFile(“bob.cal”);
cal.addDates(a, b);
Date d = cal.findMeeting();

… }
catch(..){}

This code has been simplified to help explanation. Refer to the paper for exact syntax.

Labeled
Data

Read data of Alice and Bob.
Access checks by OS

Can read data of Alice and Bob.

Add to common calendar

Calendar Monday Tuesday

Alice Watch
game

Office
work

Bob Free Meet
doctor

bob.cal

Find common meeting time

alice.cal

Security regions for programming ease

Easier to add security policies
Wrap code that touches sensitive
data inside security region

Hypothesis: only small portions
of code and data are security
sensitive

Simplifies auditing

APP Security
region

Untrusted
Code

Untrusted
Code

Threads and security regions

APP Security
region

Untrusted
Code

Untrusted
Code

THREADS

Threads execute the
application code

On entering, threads get the
labels and privileges of the
security region

Supporting security regions: JVM+OS

Calendar cal; // has label {Alice, Bob}

secure(new Label(Alice, Bob)){
Calendar a = readFile(“alice.cal”);
Calendar b = readFile(“bob.cal”);
cal.addDates(a, b);
Date d = cal.findMeeting();

… }
catch(..){}

OS
Reference
monitor

JVM Dynamic
analysis

APP
Security
region

{Alice, Bob}

{Alice} {Bob}

{}

Labeling application data

JVM allocates labeled objects from a separate
heap space

Efficient checks on whether an object is labeled
Object header points to secrecy and integrity labels

Locals and statics are not labeled
Restricted use inside and outside security regions
Prevents illegal information flow

We are extending our implementation to support
labeled statics

Security regions for efficiency

Limits the amount of work done by
the VM to enforce DIFC

Prevent access to labeled objects
outside security regions

Use read/write barriers

Perform efficient address range
checks on objects

APP Security
region

Untrusted
Code

Untrusted
Code

THREAD

Checks outside a security region

APP Security
region

Untrusted
Code

Untrusted
Code

THREAD

Label credentials = new Label (Alice, Bob);
Calendar cal; // has label {Alice, Bob}

secure(credentials){
…
cal.addDates(a, b);
Date d = cal.findMeeting();

… }
catch(..){}

Date d= cal.getMeetTime();

Labeled object read
outside the security region

Checks inside a security region

Mandatory DIFC checks inside
security regions

Secrecy rule
Cannot read more secret
Cannot write to less secret

Integrity rule
Cannot read less trusted
Cannot write to more trusted

APP Security
region

Untrusted
Code

Untrusted
Code

THREAD

Checks inside a security region

Label credentials = new Label (Alice, Bob);
Calendar mainCal; // has label {Alice, Bob}
Calendar aliceCal; //has label {Alice}

secure(credentials){
…
mainCal.event = aliceCal.date;

… }
catch(..){}

Information flow

Thread in security region

aliceCal.date

{Alice, Bob}

{Alice} {Bob}

{}

Information flow in a lattice

mainCal.event
READ

WRITE

Checks inside a security region

Label credentials = new Label (Alice, Bob);
Calendar mainCal; // has label {Alice, Bob}
Calendar aliceCal; //has label {Alice}

secure(credentials){
…
aliceCal.date = mainCal.event ;

… }
catch(..){}

Information flow

Thread in security region

mainCal.event

{Alice, Bob}

{Alice} {Bob}

{}

Information flow in a lattice

aliceCal.date
READ

WRITE

Nested security regions

Laminar allows nesting of security regions
For nesting, the parent security region should have
the correct privileges to initialize the child security
region

Natural hierarchical semantics

More details are present in the paper

Supporting security regions: OS

OS acts as a repository for labels
New labels can be allocated using a
system call

Labels stored in security fields of the
kernel objects

Before each resource access, the
reference monitor performs DIFC checks

E.g. inode permission checks, file access checks
OS

Reference
monitor

JVM Dynamic
analysis

APP
Security
region

Outline

Comparison with current DIFC systems
Laminar: programming model

Design: PL + OS techniques
Security regions

Case studies and evaluation
Summary

Evaluation hypothesis

Laminar requires modest code changes to retrofit
security to applications

Less burden on the programmer

Laminar incurs modest overheads
Practical and efficient

Laminar requires modest changes

Application LOC Protected
Data

LOC Added

GradeSheet 900 Student
grades

92 (10%)

Battleship 1,700 Ship locations 95 (6%)

Calendar 6,200 Schedules 290 (5%)

FreeCS
(Chat server)

22,000 Membership
properties

1,200 (6%)

≤10% changes

Laminar has modest overheads

Compared against unmodified applications running on
unmodified JVM and OS
Overheads range from 1% to 54%
IO disabled to prevent masking effect

Lower overheads expected in real deployment

0
10
20
30
40
50
60

GradeSheet Battleship Calendar FreeCS

All experiments on Quad-code Intel Xeon 2.83 GHz

Related Work

IFC and lattice model
Lattice Model[Denning’76], Biba’77, Bell-LaPadula’73

Language level DIFC
Jif[Myers’97], FlowCaml[Simonet’03], Swift[Chong’07]

OS based DIFC
Asbestos[Efstathopoulos’05], HiStar[Zeldovich’06],
Flume[Krohn’07], DStar[Zeldovich’08]

Summary

Current DIFC systems fall short of enforcing
comprehensive DIFC policies

Laminar solves this by introducing security regions
and integrating PL + OS mechanisms

Laminar provides fine-grained DIFC, and yet has
low overheads

Thank you!

Current DIFC systems fall short of enforcing
comprehensive DIFC policies

Laminar solves this by introducing security regions
and integrating PL + OS mechanisms

Laminar provides fine-grained DIFC, and yet has
low overheads

BACKUP SLIDES !

The University of Texas at Austin

Implicit information flow

// H has label {secret}
// L has label {}
L.val = false;

if(H.val)
L.val = true;

L is assigned true

H is secret

Value of L
reveals H

L remains falseH.val
=true

NO

YES

Handling implicit information flows

// H has label {secret}
// L has label {}
L.val = false;
secure(credentials){

if(H.val)
L.val = true;

} catch(…) {
}

Mandatory catch block.
Executes with same labels as the

security region

H.val
=true

L.val not
assigned

VM raises
exception

L.val not
assigned

NO

YES

L.val always
false !

No implicit flow
Exception

not revealed

	��Laminar: Practical Fine-Grained Decentralized Information Flow Control (DIFC)
	Untrusted code on trusted data
	Security model
	Control thy data (and its fate)
	DIFC Implementation
	Challenge: Programmability vs. security
	In this talk: Laminar
	Outline
	Current DIFC enabled systems
	Advantages of Laminar
	Advantages of Laminar
	Advantages of Laminar
	Advantages of Laminar
	Advantages of Laminar
	Outline
	Programming model
	Trust assumptions
	Laminar design
	Laminar design: security regions
	Laminar design: JVM
	Laminar design : OS
	Laminar design : JVM+OS
	Outline
	Example: calendar
	Security regions for programming ease
	Threads and security regions
	Supporting security regions: JVM+OS
	Labeling application data
	Security regions for efficiency
	Checks outside a security region
	Checks inside a security region
	Checks inside a security region
	Checks inside a security region
	Nested security regions
	Supporting security regions: OS
	Outline
	Evaluation hypothesis
	Laminar requires modest changes
	Laminar has modest overheads
	Related Work
	Summary
	Thank you!
	��BackUP Slides !
	Implicit information flow
	Handling implicit information flows

