
OPERATING SYSTEM TRANSACTIONS

Donald E. Porter, Owen S. Hofmann,
Christopher J. Rossbach, Alexander Benn,

and Emmett Witchel

The University of Texas at Austin

OS APIs don’t handle concurrency
2

 OS is weak link in concurrent programming model
 Can’t make consistent updates to system resources

across multiple system calls
 Race conditions for resources such as the file system
 No simple work-around

 Applications can’t express consistency requirements
 OS can’t infer requirements

System transactions
3

 System transactions ensure consistent updates by
concurrent applications
 Prototype called TxOS

 Solve problems
 System level race conditions (TOCTTOU)

 Build better applications
 LDAP directory server
 Software installation

System-level races

if(access(“foo”)) {

fd = open(“foo”);
write(fd,…);
…

}

(root)

4

foo == /etc/passwd

Time-of-check-to-time-of-use (TOCTTOU) race condition

TOCTTOU race eliminated

sys_xbegin();
if(access(“foo”)) {

fd = open(“foo”);
write(fd,…);
…

}
sys_xend();

(root)

5

 How to make consistent updates to stable storage?

Database

rename()

Sys Tx

Example 1: better application design
6

Application Technique

Editor

User directory
service (LDAP)

Enterprise
data storage

????

Simple

Complex

Ex 2: transactional software install

sys_xbegin();

apt-get upgrade

sys_xend();

 A failed install is automatically rolled back
 Concurrent, unrelated operations are unaffected

 System crash: reboot to entire upgrade or none

7

System transactions

 Simple API: sys_xbegin, sys_xend, sys_xabort
 Transaction wraps group of system calls

 Results isolated from other threads until commit

 Transactions execute concurrently for performance
 Conflicting transactions must serialize for safety

 Conflict most often read & write of same datum
 Too much serialization hurts performance

8

Related work
9

 Developers changing syscall API for concurrency
 Ad hoc, partial solutions: openat(), etc.

 System transactions have been proposed and built
 QuickSilver [SOSP ‘91], LOCUS [SOSP ’85]

 Key contribution: new design and implementation
 Uphold strong guarantees and good performance

 System transactions != transactional memory
 TxOS runs on commodity hardware

Outline

 Example uses of system transactions
 TxOS design and implementation
 Evaluation

10

Building a transactional system
11

 Version management
 Private copies instead of undo log

 Detect conflicts
 Minimize performance impact of true conflicts
 Eliminate false conflicts

 Resolve conflicts
 Non-transactional code must respect transactional code

TxOS in action
12

CPU 0 (low priority)
sys_xbegin();
chmod(“f”, 0x755);
sys_xend();

CPU 1 (high priority)
sys_xbegin();
chown(“f”, 1001);
sys_xend();

0x700
1000

Inode “f”
Header

Private Copies Private Copies

0x755
1000

Inode “f”
Data

0x700
1001

Conflicting
Annotation

Contention Mgr.

Abort CPU 0
(lower prio)

Inode “f”
Data

System comparison
13

Previous Systems TxOS
Speculative write
location
Isolation
mechanism
Rollback
mechanism
Commit
mechanism

Deadlock prone

Can cause priority
inversion

Shared data
structures

Two-phase
locking
Undo log

Discard undo log,
release locks

Private copies of
data structures
Private copies +
annotations

Discard private
copies
Publish private
copy by ptr swap

R Add/De
l

Add/Del+R

R

Add/Del

Add/Del+R

R W

R

W

Minimizing false conflicts
14

sys_xbegin();
create(“/tmp/foo”);
sys_xend();

sys_xbegin();
create(“/tmp/bar”);
sys_xend();

 Insight: object semantics allow more permissive conflict
definition and therefore more concurrency

 TxOS supports precise conflict definitions per object
type

 Increases concurrency without relaxing isolation

R Add/Del

R

Add/Del

OK if different
files created,
Dir not read

Serializing transactions and non-
transactions (strong isolation)

15

 TxOS mixes transactional and non-tx code
 In database, everything is transaction
 Semantically murky in historical systems

 Critical to correctness
 Allows incremental adoption of transactions
 TOCTTOU attacker will not use a transaction

 Problem: can’t roll back non-transactional syscall
 Always aborting transaction undermines fairness

Strong isolation in TxOS
16

CPU 0

symlink(“/etc/passwd”,
“/tmp/foo”);

CPU 1
sys_xbegin();
if(access(“/tmp/foo”))

open(“/tmp/foo”);
sys_xend();

Dentry “/tmp/foo”
Header

Dentry “/tmp/foo”
Data

Conflicting
Annotation

 Options:
 Abort CPU1
 Deschedule CPU0

Contention
Manager

Transactions for application state
17

 System transactions only manage system state
 Applications can select their approach

 Copy-on-write paging
 Hardware or Software Transactional Memory (TM)
 Application-specific compensation code

Transactions: a core OS abstraction
18

 Easy to make kernel subsystems transactional
 Transactional filesystems in TxOS

 Transactions implemented in VFS or higher
 FS responsible for atomic updates to stable store

 Journal + TxOS = Transactional Filesystem
 1 developer-month transactional ext3 prototype

Evaluation
19

 Example uses of system transactions
 TxOS design and implementation
 Evaluation

 What is the cost of using transactions?
 What overheads are imposed on non-transactional

applications?

TxOS Prototype
20

 Extend Linux 2.6.22 to support system transactions
 Add 8,600 LOC to Linux
 Minor modifications to 14,000 LOC

 Runs on commodity hardware
 Transactional semantics for a range of resources:

 File system, signals, processes, pipes

Hardware and benchmarks
21

 Quadcore 2.66 GHz Intel Core 2 CPU, 4 GB RAM

Benchmark Description

install install of svn 1.4.4

make Compile nano 2.06 inside a tx

dpkg dpkg install OpenSSH 4.6

LFS large/small Wrap each phase in a tx

RAB Reimplemeted Andrew Benchmark
Each phase in a tx

Transactional software install

 A failed install is automatically rolled back
 Concurrent, unrelated operations are unaffected

 System crash: reboot to entire upgrade or none

22

sys_xbegin();
dpkg –i openssh;
sys_xend();

10% overhead

sys_xbegin();
install svn;
sys_xend();

70% overhead

Transaction overheads
23

0 0.5 1 1.5 2 2.5 3

LFS Large Read Rnd

LFS Small Read

LFS Small Delete

make

dpkg

install

Execution Time Normalized to Linux

Memory overheads on LFS large:
13% high, 5% low (kernel)

Write speedups
24

0 2 4 6 8 10 12 14 16 18 20

LFS S Create

LFS L Write Seq

LFS L Write Rand

RAB mkdir

RAB cp

Speedup over Linux

 Better I/O scheduling – not luck
 Tx boundaries provide I/O scheduling hint to OS

Lightweight DB alternative
25

 OpenLDAP directory server
 Replace BDB backend with transactions + flat files

 2-4.2x speedup on write-intensive workloads
 Comparable performance on read-only workloads

 Primarily serviced from memory cache

rename() DatabasesSys Tx

Non-transactional overheads
26

 Non-transactional Linux compile: <2% on TxOS
 Transactions are “pay-to-play”

 Single system call: 42% geometric mean
 With additional optimizations: 14% geomean
 Optimizations approximated by eliding checks

What is practical?
27

1

1.05

1.1

1.15

1.2

22
08/07

23 24 25 26 27 28 29 30 31
09/09

Mean Linux Syscall Overhead, Normalized to 2.6.22

 Feature creep over 2 years costs 16%
 Developers are willing to give up performance for

useful features
 Transactions are in same range (14%), more powerful

OSes should support transactions

 Practical implementation techniques for modern OS
 Transactions solve long-standing problems

 Replace ad hoc solutions

 Transactions enable better concurrent programs

http://www.cs.utexas.edu/~porterde/txos
porterde@cs.utexas.edu

28

Backup Slides
29

Windows kernel transaction manager
30

 Framework for 2-Phase Commit
 Coordinate transactional file system, registry

 Transactional FS and registry
 Completely different implementation
 FS updates in place, Registry uses private copies
 Little opportunity for code reuse across subsystems

 Explicitly transacted code
 More conservative, limited design choice
 TxOS allows implicit transactions, application wrappers

Distributed transactions
31

 User/language-level transactions
 Cannot isolate OS managed resources

 TABS [SOSP ‘85], Argus [SOSP ‘87], Sinfonia [SOSP
’07]

 TABS – transactional windows manager
 Grayed out aborted dialog

 Argus – similar strategies for limiting false conflicts

Transactional file systems
32

 Good idea, difficult to implement
 Challenging to implement below VFS layer
 Valor [FAST ‘09] introduces OS support in page cache

 Lack simple abstractions
 Users must understand implementation details
 Deadlock detection (Transactional NTFS)
 Logging and locking mechanism (Valor)

 Lack support for other OS resources in transactions
 Windows KTM supports transactional registry

Speculator
33

 Goal: hide latency of operations
 NFS client requests, synchronous writes, etc.

 Similar implementation at points
 Different goals, not sufficient to provide

transactional semantics
 Isolation vs. dependences

xCalls [EuroSys ’09]
34

 User-level techniques for transactional system calls
 Within a single application only

 Works for many common cases (buffering writes)
 Edge cases difficult without system support
 E.g., close() or munmap() can implicitly delete a file

	Operating System Transactions
	OS APIs don’t handle concurrency
	System transactions
	System-level races
	TOCTTOU race eliminated
	Example 1: better application design
	Ex 2: transactional software install
	System transactions
	Related work
	Outline
	Building a transactional system
	TxOS in action
	System comparison
	Minimizing false conflicts
	Serializing transactions and non-transactions (strong isolation)
	Strong isolation in TxOS
	Transactions for application state
	Transactions: a core OS abstraction
	Evaluation
	TxOS Prototype
	Hardware and benchmarks
	Transactional software install
	Transaction overheads
	Write speedups
	Lightweight DB alternative
	Non-transactional overheads
	What is practical?
	OSes should support transactions
	Backup Slides
	Windows kernel transaction manager
	Distributed transactions
	Transactional file systems
	Speculator
	xCalls [EuroSys ’09]

