
The University of Texas at Austin

UNDERSTANDING TRANSACTIONAL
MEMORY PERFORMANCE

Donald E. Porter and Emmett Witchel

1

Multicore is here
2

 Only concurrent applications will perform better on
new hardware

Intel Single-chip Cloud Computer
48 cores

Tilera Tile GX
100 cores

This laptop
2 Intel cores

Presenter
Presentation Notes
Shift in industry
Commodity machines already have 2-6 cores, 8 core chip due out next quarter
High end chips with as many as 100 cores.
The upshot of this…

http://www.google.com/products/catalog?q=lenovo+thinkpad&oe=&cid=12646718736017746159&sa=image�

Concurrent programming is hard
3

 Locks are the state of the art
 Correctness problems: deadlock, priority inversion, etc.
 Scaling performance requires more complexity

 Transactional memory makes correctness easy
 Trade correctness problems for performance problems
 Key challenge: performance tuning transactions

 This work:
 Develops a TM performance model and tool
 Systems integration challenges for TM

Presenter
Presentation Notes
The challenge is locks are hard
TM promises to make concurrency easy.
In some cases, however, tm can perform much worse than locking
Essentially trading correctness problems for performance
This is a good trade
Tuning TM performance harder than commonly appreciated.
This work helps programmers by …

Simple microbenchmark
4

 Intuition:
 Transactions execute optimistically
 TM should scale at low contention threshold
 Locks always execute serially

lock();
if(rand() < threshold)

shared_var = new_value;
unlock();

xbegin();
if(rand() < threshold)

shared_var = new_value;
xend();

Presenter
Presentation Notes
On each iteration of this microbenchmark, a shared variable is updated with a configurable probability of conflict

Ideal TM performance
5

0

0.5

1

1.5

2

2.5

3
0 10 20 30 40 50 60 70 80 90 10
0

Ex
ec

ut
io

n
Ti

m
e

(s
)

Probability of Conflict (%)

Locks 32 CPUs

Ideal TM 32 CPUs

 Performance win at low
contention

 Higher contention
degrades gracefully

xbegin();
if(rand() < threshold)

shared_var = new_value;
xend();

Lower is better
Ideal, not real data

Presenter
Presentation Notes
Low contention: TM is great
Even w/modest contention, TM is a wash (performance), simpler programming
Pathological at high contention

What are the lessons:
It is important to eliminate high contention
Sources of contention can be surprisingly subtle.
In fact, it took a fair bit of work to produce this graph

Actual performance under contention
6

0

0.5

1

1.5

2

2.5

3
0 10 20 30 40 50 60 70 80 90 10
0

Ex
ec

ut
io

n
Ti

m
e

(s
)

Probability of Conflict (%)

Locks 32 CPUs

TM 32 CPUs

 Comparable
performance at modest
contention

 40% worse at 100%
contention

xbegin();
if(rand() < threshold)

shared_var = new_value;
xend();

Lower is better
Actual data

Presenter
Presentation Notes
Low contention: TM is great
Even w/modest contention, TM is a wash (performance), simpler programming
Pathological at high contention

What are the lessons:
It is important to eliminate high contention
Sources of contention can be surprisingly subtle.
In fact, it took a fair bit of work to produce this graph

First attempt at microbenchmark
7

0

0.5

1

1.5

2

2.5

3
0 10 20 30 40 50 60 70 80 90 10
0

Ex
ec

ut
io

n
Ti

m
e

(s
)

Probability of Conflict (%)

Locks 32 CPUs

TM 32 CPUs

xbegin();
if(rand() < threshold)

shared_var = new_value;
xend();

Lower is better
Approximate data

Presenter
Presentation Notes
Low contention: TM is great
Even w/modest contention, TM is a wash (performance), simpler programming
Pathological at high contention

What are the lessons:
It is important to eliminate high contention
Sources of contention can be surprisingly subtle.
In fact, it took a fair bit of work to produce this graph

Subtle sources of contention
8

if(a < threshold)

shared_var = new_value;

eax = shared_var;

if(edx < threshold)

eax = new_value;

shared_var = eax;

Microbenchmark code

gcc optimized code

 Compiler optimization to avoid branches
 Optimization causes 100% restart rate
 Can’t identify problem with source inspection + reason

Presenter
Presentation Notes
Gcc optimizing to eliminate a branch on a deeply pipelined processor
Loads original value into reg, conditional update, writes the value back
Correct optimization, but this last line causes 100% restart rate even at low prob of contention
CLICK
Which costs more than any missed branch
CLICK
The scary part is…

Developers need TM tuning tools
9

 Transactional memory can perform pathologically
 Contention
 Poor integration with system components
 HTM “best effort” not good enough

 Causes can be subtle and counterintuitive
 Syncchar: Model that predicts TM performance

 Predicts poor performance remove contention
 Predicts good performance + poor performance

system issue

This talk
10

 Motivating example
 Syncchar performance model
 Experiences with transactional memory

 Performance tuning case study
 System integration challenges

Presenter
Presentation Notes
This talk is based on several year’s experience working with transactional memory, and is structured as follows:
Motivating example that outlines the talk
Describe a model of TM performance.
War stories – some issues well known, some not

The Syncchar model
11

 Approximate transaction performance model
 Intuition: scalability limited by serialized length of

critical regions
 Introduce two key metrics for critical regions:

 Data Independence: Likelihood executions do not
conflict

 Conflict Density: How many threads must execute
serially to resolve a conflict

 Model inputs: samples critical region executions
 Memory accesses and execution times

Data independence (In)
12

 Expected number of non-conflicting, concurrent
executions of a critical region. Formally:

In = n - |Cn|
n =thread count

Cn = set of conflicting critical region executions
 Linear speedup when all critical regions are data

independent (In = n)
 Example: thread-private data structures

 Serialized execution when (In = 0)
 Example: concurrent updates to a shared variable

Presenter
Presentation Notes
Highly data indepentent code is great for parallelism, but can probably be captured by locking
Data independence is a good high-order metric, but falls does not capture parallelism for irregular applications

Example:
13

Write a

Read a

Write a

Read a Write a

Write a

Time

 Same data independence (0)
 Different serialization

Thread 1

Thread 2

Thread 3

Presenter
Presentation Notes
We need a second metric to capture this

 Intuition: Low density High density

 How many threads must be serialized to eliminate a
conflict?

 Similar to dependence density introduced by von Praun
et al. [PPoPP ‘07]

Conflict density (Dn)
14

Write a

Read a

Write a

Read a Write a

Write a

Time

Thread 1

Thread 2

Thread 3

Presenter
Presentation Notes
We need a second metric to capture this

Syncchar metrics in STAMP
15

0

2

4

6

8

10

12

8 16 32 8 16 32 8 16 32 8 16 32

Pr
oj

ec
te

d
Sp

ee
du

p
ov

er
 L

oc
ki

ng

Conflict Density

Data Independence

intruder kmeans bayes ssca2

Higher is better

Presenter
Presentation Notes
We’ll cover the details of the prediction in the next slide
Point: examples of both metrics contributing to speedup: ssca2 highly data indepenent, whereas bayes is highly irregular and all speedup comes from low density conflicts, and intruder/kmeans in the middle

Predicting execution time
16

 Speedup limited by conflict density
 Amdahl’s law: Transaction speedup limited to time

executing transactions concurrently

cs_cycles = time executing a critical region
other = remaining execution time

Dn = Conflict density

other
D

ncyclescsTimeExecution
n

+







÷=

)1,max(
__

Syncchar tool
17

 Implemented as Simics machine simulator module
 Samples lock-based application behavior
 Predicts TM performance
 Features:

 Identifies contention “hot spot” addresses
 Sorts by time spent in critical region
 Identifies potential asymmetric conflicts between

transactions and non-transactional threads

Syncchar validation: microbenchmark
18

0
0.5

1
1.5

2
2.5

3

0 10 20 30 40 50 60 70 80 90 100

Ex
ec

ut
io

n
Ti

m
e

(s
)

Probability of Conflict (%)

Locks 8 CPUs
TM 8 CPUs
Syncchar

 Tracks trends, does not model pathologies
 Balances accuracy with generality

Lower is better

Presenter
Presentation Notes
Avoids baking details into model.
For example, linear vs. exponential backoff in htm

Syncchar validation: STAMP
19

0 0.5 1 1.5 2

ssca2 32CPU

ssca2 16CPU

ssca2 8CPU

intruder 32CPU

intruder 16CPU

intruder 8CPU

Execution Time (s)

Predicted
Measured

 Coarse predictions track scaling trend
 Mean error 25%

 Additional benchmarks in paper

Syncchar summary
20

 Model: data independence and conflict density
 Both contribute to transactional speedup

 Syncchar tool predicts scaling trends
 Predicts poor performance remove contention
 Predicts good performance + poor performance

system issue

 Distinguishing high contention from system issues is
key step in performance tuning

This talk
21

 Motivating example
 Syncchar performance model
 Experiences with transactional memory

 Performance tuning case study
 System integration challenges

Presenter
Presentation Notes
So for all of the hackers in the audience, we’re in the fun part of the talk: experiences with TM.
2 categories: performance tuning and system integration

TxLinux case study
22

 TxLinux – modifies Linux synchronization primitives
to use hardware transactions [SOSP 2007]

0

2

4

6

8

10

12

14

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

Li
nu

x

Tx
Li

nu
x-

xs

Tx
Li

nu
x-

cx

pmake bonnie++ mab find config dpunish

%
 K

er
ne

l T
im

e
Sp

en
t S

yn
ch

ro
ni

zi
ng

aborts
spins

16 CPUs – graph taken from SOSP talk
Lower is better

Presenter
Presentation Notes
Graph from SOSP talk
General trend – transactions lower sync time in the kernel
Except for pathological backoff in bonnie++
We couldn’t resolve before the conference

Bonnie++ pathology
23

 Simple execution profiling indicated ext3 file system
journaling code was the culprit

 Code inspection yielded no clear culprit
 What information missing?

 What variable causing the contention
 What other code is contending with the transaction

 Syncchar tool showed:
 Contended variable
 High probability (88-92%) of asymmetric conflict

Presenter
Presentation Notes
Given the size of the linux code base, this is a lot of manual analysis

Bonnie++ pathology, explained
24

 False asymmetric conflicts for unrelated bits
 Tuned by moving state lock to dedicated cache line

lock(buffer->state);
...
xbegin();
...
assert(locked(buffer->state));
...
xend();

...
unlock(buffer->state);

struct
bufferhead
{

…
bit state;
bit dirty;
bit free;
…

};

Tx R

W

Presenter
Presentation Notes
DON’T BOG DOWN!

Tuned performance – 16 CPUs
25

0

0.2

0.4

0.6

0.8

1

1.2

bonnie++ MAB pmake radix

Ex
ec

ut
io

n
Ti

m
e

(s
) TxLinux

TxLinux Tuned

>10 s

 Tuned performance strictly dominates TxLinux
Lower is better

This talk
26

 Motivating example
 Syncchar performance model
 Experiences with transactional memory

 Performance tuning case study
 System integration challenges
 Compiler (motivation)
 Architecture
Operating system

Presenter
Presentation Notes
Mention that we’re not going to mention compiler any further

HTM designs must handle TLB misses
27

 Some best effort HTM designs cannot handle TLB misses
 Sun Rock

 What percent of STAMP txns would abort for TLB
misses?
 2% for kmeans
 50-100%

 How many times will these transactions restart?
 3 (ssca2)
 908 (bayes)

 Practical HTM designs must handle TLB misses

Presenter
Presentation Notes
Best effort that doesn’t handle TLB misses isn’t good enough

Input size
28

 Simulation studies need scaled inputs
 Simulating 1 second takes hours to weeks

 STAMP comes with parameters for real and
simulated environments

Presenter
Presentation Notes
We’ve all learned from H&P that you get inaccurate results from inputs that are too small

Input size
29

0

5

10

15

20

25

30

8 16 32 8 16 32 8 16 32

Sp
ee

du
p

Speedup normalized to 1 CPU – Higher is better

Big

Sim

genome ssca2 yada

 Simulator inputs too small to amortize costs of
scheduling threads

Presenter
Presentation Notes
Unfortunately, the STAMP simulator inputs have this problem.
We are only measuring parallel phase
What is happening here is that…
Natural segue to the final challenge area – OS integration

We aren’t the only ones who’ve had this problem - our “big” inputs have resolved performance issues other researchers were having

System calls – memory allocation
30

xbegin();
malloc();
xend();

Thread 1

Common case behavior:
Rollback of transaction rolls back heap bookkeeping

Heap

Pages: 2

Allocated Free

Legend

System calls – memory allocation
31

xbegin();
malloc();
xend();

Thread 1

Heap

Uncommon case behavior:
Allocator adds pages to heap
Rolls back bookkeeping, leaking pages

Pages: 2Pages: 3

Pathological memory leaks in STAMP genome and
labyrinth benchmark

Allocated Free

Legend

Presenter
Presentation Notes
This was a relatively simple example. Lest you think this is trivial, there are substantially more complex issues mentioned in the paper, such as the use of futexes in the allocator leading to application deadlock.

System integration issues
32

 Developers need tools to identify these subtle issues
 Indicated by poor performance despite good

predictions from Syncchar

 Pain for early adopters, important for designers
 System call support evolving in OS community

 xCalls [Volos et al. – Eurosys 2009]
 Userspace compensation built on transactional pause

 TxOS [Porter et al. – SOSP 2009]
 Kernel support for transactional system calls

Related work
33

 TM performance models
 von Praun et al. [PPoPP ’07] – Dependence density
 Heindl and Pokam [Computer Networks 2009] –

analytic model of STM performance

 HTM conflict behavior
 Bobba et al. [ISCA 2007]
 Ramadan et al. [MICRO 2008]
 Pant and Byrd [ICS 2009]
 Shriraman and Dwarkadas [ICS 2009]

Presenter
Presentation Notes
We are the first to close the loop between a simple model and concrete predictions and application inside a tool
Conflict behavior work – in context of improving HTM design – a laudable, complimentary goal to our work, which is about helping programmers in an imperfect world

Conclusion

 Developers need tools for tuning TM performance
 Syncchar provides practical techniques
 Identified system integration challenges for TM

Code available at:
http://syncchar.code.csres.utexas.edu

porterde@cs.utexas.edu

34

Backup slides
35

	Slide Number 1
	Multicore is here
	Concurrent programming is hard
	Simple microbenchmark
	Ideal TM performance
	Actual performance under contention
	First attempt at microbenchmark
	Subtle sources of contention
	Developers need TM tuning tools
	This talk
	The Syncchar model
	Data independence (In)
	Example:
	Conflict density (Dn)
	Syncchar metrics in STAMP
	Predicting execution time
	Syncchar tool
	Syncchar validation: microbenchmark
	Syncchar validation: STAMP
	Syncchar summary
	This talk
	TxLinux case study
	Bonnie++ pathology
	Bonnie++ pathology, explained
	Tuned performance – 16 CPUs
	This talk
	HTM designs must handle TLB misses
	Input size
	Input size
	System calls – memory allocation
	System calls – memory allocation
	System integration issues
	Related work
	Conclusion
	Backup slides

