
Hany E. Ramadan and Emmett Witchel
University of Texas at Austin

TRANSACT 2/15/2009

The Xfork in the Road to Coordinated
Sibling Transactions

TM solving the wrong problem ?

2

Finding parallelism is the key challenge of the multi-core era

Transactional memory makes creating critical regions easier

Transactional memory can also make..
finding parallelism easier
... but not with current model/API !

“Numerous types of processing are not well-served by [the flat
transaction model’s simplicity] “ - Gray & Reuter

2

How will TM find threads ?

3

Approach
Intratransaction parallelism

Benefits
Improve performance of individual transactions & utilize cores

Methodology
Revisit transaction model, API

Advice
“Intratransaction parallelism requires genuine support for
nested transactions.” – Gray & Reuter

Nested Transactions

4

Two types
Closed Nesting (commits into parent)

Open Nesting (commits into world)

Serial closed nesting
Simpler semantics (than open)
Small or no performance gain

Parallel closed nesting
Defined semantics for siblings
How much performance gain ?

Begin Tx (parent)
// work a

Begin Tx (nested)
// work b
End Tx (nested)

End Tx (parent)

Forms of intra-transaction parallelism

5

Independent
Dependent
Speculative

atomic Foo
{

}
5

atomic Foo
{

}

Programmer’s mental picture

6

Foo

OR

FooBottomFooTop

AND XOR

6

of leafs = maximum amount of intratransaction parallelism

atomic Foo
{

}

7

OR (independent)
Independent siblings
No short circuit

AND (dependent)
All siblings must commit or none do

XOR (speculative)
Exactly one is allowed to commit
Once one sibling commits, all others made to abort

More forms conceivable

Coordination forms

Coordinated Sibling Model

8

Parallel closed nested transactions
Safety and semantics of closed nesting

Coordination forms express multiple paradigms
fork/join
distributed transactions
speculative execution

Sibling code returns Success/Fail
Commit/retry / abort decision made

based on form, and status of siblings

8

XOR

S S F

CMT
ABT

ABT

xfork: API

9

xfork API shields programmer from the dirty work
Threading, coordination, aborting, speculation, etc.

bool xfork (xforkForm, numForks,

xforkProc, optionalData);

enum xforkForm { AND, OR, XOR };

delegate xforkResult xforkProc (forkNum, optionalData);

enum xforkResult { Success, Failure };

9

xfork: Example

10

using (TransactionScope ts = new TransactionScope())
{

sstm.txStore.write (myAddr, “hello”);
sstm.xfork(xforkForm.XOR, // form

2, // numForks
new Delegate (parallelSearchProc), // xfProc

myList); // data
ts.Complete();

}

xforkResult parallelSearchProc(int forkNum, object myList)
{

if (forkNum == 0) { FwdTraverse(myList) } else { ReverseTraverse(myList) }
return xforkResult.Success;

}

Sibling STM (SSTM): Architecture

11

System.Transactions provides database-derived framework

DB terminology:
TM: Transaction Manager (executes 2 phase commit protocol)
RM: Resource Manager (holds transactional data / votes in 2pc)
‘Enlisting’: when RM first meets TM.

Sibling Executive (SibEx) (RM)
Implements xfork semantics

TxStore (RM)
Conventional STM

SSTM: SibEx

12

1. Schedule work for each fork on some thread
Use existing thread-pool

2. Create sibling nested transactions

3. Invoking user-procedure for each fork

4. Enforce semantics of each sibling form
May involve finding transaction outcome (OR-form), or
enlisting and voting on outcome (AND/XOR-form)

5. Stalling the parent appropriately

12

SSTM: TxStore

13

Extends TL2 to support nesting
Key change: per-object version-number (for write set)
Additional synchronization to supported parallel access

Extend System.Transactions to support nesting
Thread-local transactional context extended with “parents” list

Low-level API, based on System.Object/ICloneable
object TxStore.Read(int address);
void TxStore.Write(int address, object obj);

SSTM: Prototype

14

System configuration
Intel Core2 Quad CPU running at 2.66 Ghz
Microsoft .NET v2 Framework, MS Windows Vista
SSTM: 2,345 lines of C# code

Benchmarks (~600 loc)
SearchList:

Search linked list in parallel

Transfer
Debit/credit of bank accounts using two lists

Compare SSTM to SSTM without xfork
Measure speedup, from 1 to 4 forks

14

SearchList benchmark

15 • Four-fork version also searches from middle of list

Transfer benchmark

16 • Higher overhead due to AND-form coordination

Related Work

17

Nested Transactions
Formalized by [Moss81], [Beeri83]
Used in Argus[Liskov88], Camelot [Eppinger91]

TM Nesting
HTM [Moravan06, McDonald06]
STM [Ni07, Harris07, Moss05]

Parallelism
Fortress[Allen07], XCilk[Agrawal08]
Parallel for-loops, etc. in OpenTM[Baek07]

Composition constructs (e.g. orElse) [Harris05]

17

Conclusion

18

Intratransaction parallelism
Makes TM even more relevant to the challenges of multi-core

Coordinated siblings
Transaction model that suits this type of processing

xfork
Makes coordinated siblings easy to use

Will intratransaction parallelism become a commodity ?

	The Xfork in the Road to Coordinated Sibling Transactions
	TM solving the wrong problem ?
	How will TM find threads ?
	Nested Transactions
	Forms of intra-transaction parallelism
	Programmer’s mental picture
	Coordination forms
	Coordinated Sibling Model
	xfork: API
	xfork: Example
	Sibling STM (SSTM): Architecture
	SSTM: SibEx
	SSTM: TxStore
	SSTM: Prototype
	SearchList benchmark
	Transfer benchmark
	Related Work
	Conclusion

