The Xfork in the Road to Coordinated

Sibling Transactions

Hany E. Ramadan and Emmett Witchel

University of Texas at Austin

TRANSACT 2/15/2009

TM solving the wrong problem ?

o Finding parallelism is the key challenge of the multi-core era
® Transactional memory makes creating critical regions easlier

® Transactional memory can also make..
° finding parallelism easier

¢ ... but not with current model/API !

“Numerous types of processing are not well-served by [the flat

transaction model’s simplicity] “ - Gray & Reuter

@

How will TM find threads ?

* Approach

® Intratransaction parallelism
® Benetfits

® Improve performance of individual transactions & utilize cores
* Methodology

® Revisit transaction model, API

e Advice

® “Intratransaction parallelism requires genuine support for

nested transactions.” — Gray & Reuter

Nested Transactions

Begin Tx (parent)

* Two types // work a
® Closed Nesting (commits into parent) Begin Tx (nested)
® Open Nesting (commits into world) gr\:\(lzlo'rl'i;(tzneste d)

® Serial closed nesting End Tx (parent)

* Simpler semantics (than open)

® Small or no performance gain

e Parallel closed nesting
® Defined semantics for siblings

e How much performance gain ?

@

Forms of intra-transaction parallelism

° Independent
® Dependent

® Speculative

atomic Foo _
atomic Foo

{

{
-0
3

h

4 O

atomic Foo
Programmer’s mental picture |! o
(\A
Foo | i

OR

FooBottom

XOR

O A O O O

of leafs = maximum amount of intratransaction parallelism

@

Coordination forms

® OR (independent)
® Independent siblings

® No short circuit

® AND (dependent)

o All siblings must commit or none do

® XOR (speculative)

° Exactly one is allowed to commit

® Once one sibling commits, all others made to abort

® More forms conceivable

Coordinated Sibling Model

® Parallel closed nested transactions

° Safety and semantics of closed nesting

® Coordination forms express multiple paradigms
® fork/join
e distributed transactions

° speculative execution

® Sibling code returns Success/Fail ,—@—\
ABT

* Commit/retry / abort decision made CMT ABT

based on form, and status of siblings ‘l’ 12

/

xfork: API

e xfork API shields programmer from the dirty work

® Threading, coordination, aborting, speculation, etc.

bool xfork (xtforkForm, numForks,

xforkProc, optionalData);

enum xforkForm { AND, OR, XOR };
delegate xtforkResult xforkProc (forkNum, optionalData);

enum xforkResult { Success, Failure };

xfork: Example

using (TransactionScope ts = new TransactionScope())
1
sstm. txStore. write (myAddr, “hello”);
sstm.xfork(xforkForm.XOR, // form
2, // numForks
new Delegate (parallelSearchProc), // xfProc
myList); // data
ts.Complete();

;

xforkResult parallelSearchProc(int forkNum, object myList)

{

if (forkNum == 0) { FwdTraverse(myList) } else { ReverseTraverse(myList) }

return xforkResult.Success;

Sibling STM (SSTM): Architecture

* System.Transactions provides database-derived framework
* DB terminology:
® TM:Transaction Manager (executes 2 phase commit protocol)
® RM: Resource Manager (holds transactional data / votes in 2pc)
® ‘Enlisting’: when RM first meets TM.
* Sibling Executive (SibEx) (RM)
® Implements xfork semantics
* TxStore (RM)
® Conventional STM

SSTM: SibEx

1.

Schedule work for each fork on some thread

Use existing thread-pool
Create sibling nested transactions
Invoking user—procedure for each fork

Enforce semantics of each sibling form

May involve finding transaction outcome (OR-form), or

enlisting and voting on outcome (AND/XOR-form)
Stalling the parent appropriately

SSTM: TxStore

* Extends TL2 to support nesting

® Key change: per-object version-number (for write set)

* Additional synchronization to supported parallel access
* Extend System.Transactions to support nesting

® Thread-local transactional context extended with “parents” list
® Low-level API, based on System.Object/ICloneable

® object TxStore.Read(int address);
® void TxStore. Write(int address, object obj);

SSTM: Prototype

® System configuration
* Intel Core2 Quad CPU running at 2.66 Ghz
e Microsoft .NET v2 Framework, MS Windows Vista
e SSTM: 2,345 lines of C# code

® Benchmarks (~600 loc)

e Searchlist:
® Search linked list in parallel
® Transfer

® Debit/credit of bank accounts using two lists

® Compare SSTM to SSTM without xtork

® Measure speedup, from 1 to 4 forks

@

SearchList benchmark

3.5

[]
ki3 |

speadup
i A

—

[]
LT

[0 Baze

O S53TM | Z-core)
B S5TM (d=core)

1,000 nodes

2 500 nodes

500 rodes

10,000 rodes

e Four-fork version also searches from middle of list

Transfer benchmark

3.50

O Base
E S5TM (2-core)
W S5TM (4=core)

3.00

2.50

2.00

1.50

speedup

1.00

0.50

0.00

1,000 nodes

@ » Higher overhead due to AND-form coordination

Related Work

® Nested Transactions

® Formalized by [Moss81], [Beeri83]

® Used in Argus|Liskov88], Camelot [Eppinger91]
® TM Nesting

® HTM [Moravan06, McDonald06]

e STM [NiO7, HarrisO7, Moss05]

® Parallelism
® Fortress[Allen07], XCilk[AgrawalO8]
® Parallel for-loops, etc. in OpenTM[Baek07]

® Composition constructs (e.g. orElse) [HarrisO5]

Conclusion

® Intratransaction parallelism

® MakesTM even more relevant to the challenges of multi-core

® Coordinated siblings

® Transaction model that suits this type of processing

e xfork

® Makes coordinated siblings casy to use

Will intratransaction parallelism become a commodity ?

	The Xfork in the Road to Coordinated Sibling Transactions
	TM solving the wrong problem ?
	How will TM find threads ?
	Nested Transactions
	Forms of intra-transaction parallelism
	Programmer’s mental picture
	Coordination forms
	Coordinated Sibling Model
	xfork: API
	xfork: Example
	Sibling STM (SSTM): Architecture
	SSTM: SibEx
	SSTM: TxStore
	SSTM: Prototype
	SearchList benchmark
	Transfer benchmark
	Related Work
	Conclusion

