
Chris Rossbach, Owen Hofmann, Don Porter,

Hany Ramadan, Aditya Bhandari, Emmett Witchel

University of Texas at Austin

 Sun “Rock” supports HTM

 Solaris 10 takes advantage of HTM support

Hardware Transactional Memory
is a reality

 Challenge: taking advantage of multi-core
 Parallel programming is difficult with locks:

◦ Deadlock, convoys, priority inversion
◦ Conservative, poor composability
◦ Lock ordering complicated
◦ Performance-complexity tradeoff

 Transactional Memory in the OS
◦ Benefits user programs
◦ Simplifies programming

Intel’s snazzy 80

core chip 

Parallel Programming Predicament

/*

* Lock ordering:

* ->i_mmap_lock (vmtruncate)

* ->private_lock (__free_pte->__set_page_dirty_buffers)

* ->swap_lock (exclusive_swap_page, others)

* ->mapping->tree_lock

* ->i_mutex

* ->i_mmap_lock (truncate->unmap_mapping_range)

* ->mmap_sem

* ->i_mmap_lock

* ->page_table_lock or pte_lock (various, mainly in memory.c)

* ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)

* ->mmap_sem

* ->lock_page (access_process_vm)

* ->mmap_sem

* ->i_mutex (msync)

* ->i_mutex

* ->i_alloc_sem (various)

* ->inode_lock

* ->sb_lock (fs/fs-writeback.c)

* ->mapping->tree_lock (__sync_single_inode)

* ->i_mmap_lock

* ->anon_vma.lock (vma_adjust)

* ->anon_vma.lock

* ->page_table_lock or pte_lock (anon_vma_prepare and various)

* ->page_table_lock or pte_lock

* ->swap_lock (try_to_unmap_one)

* ->private_lock (try_to_unmap_one)

* ->tree_lock (try_to_unmap_one)

* ->zone.lru_lock (follow_page->mark_page_accessed)

* ->zone.lru_lock (check_pte_range->isolate_lru_page)

* ->private_lock (page_remove_rmap->set_page_dirty)

* ->tree_lock (page_remove_rmap->set_page_dirty)

* ->inode_lock (page_remove_rmap->set_page_dirty)

* ->inode_lock (zap_pte_range->set_page_dirty)

* ->private_lock (zap_pte_range->__set_page_dirty_buffers)

* ->task->proc_lock

* ->dcache_lock (proc_pid_lookup)

*/

 Motivation

 TM Primer

 TM and Lock cooperation
◦ OS can use TM to handle output commit

 TM and Scheduling
◦ OS can use TM to eliminate priority inversion

 Related Work

 Conclusion

Key Ideas:

 Critical sections
execute concurrently

 Conflicts are
detected dynamically

 If conflict
serializability is
violated, rollback

Key Abstractions:

 Primitives
◦ xbegin, xend, xretry

◦ xpush, xpop

◦ xcas, xtest, xgettxid

 Conflict
◦ Φ != {W_A} {W_B U W_R}

 Contention Manager
◦ Need flexible policy

Hardware TM Primer

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set

R{ }

W{}
A

PC: 2

Working Set

R{ }

W{}
A

PC: 3

Working Set

R{ }

W{}
A,B

PC: 3

Working Set

R{ }

W{}
A,B

PC: 6 PC: 4PC: 7

Working Set

R{ }

W{}
A,B,C

PC: 7

Working Set

R{ }

W{ }
A,B

C

CONFLICT:

C is in the read set of

cpu0, and in the write

set of cpu1

Assume contention

manager decides cpu1

wins:

cpu0 rolls back

cpu1 commits

PC: 0

Working Set

R{}

W{}

PC: 8

Working Set

R{}

W{}

Hardware TM basics: example

 xspinlocks
◦ spin_lock() -> xbegin

◦ spin_unlock() -> xend

 Basis of our first transactionalization of Linux
◦ 9 subsystems (profile-guided selection)

◦ 30% of dynamic lock calls

◦ 6 developers * ~1 year

 Issues:
◦ I/O (output commit)

◦ idiosyncratic locking (e.g. runqueue)

Conventional Wisdom
„Transactionalization‟

 Legacy code

 I/O
◦ Nested critical section may do I/O

◦ Beware low memory (page faults!)

 Critical sections may defy transactionalization

 Programmer flexibility
◦ Tx performs well when actual contention is rare

◦ Locks perform better when contention is high.

Locks and Transactions must
Cooperate!

 Cooperative Transactional Spinlock

 Critical sections use locks OR transactions
◦ Most critical sections attempt transactions

◦ Rollback and lock if a crit sec attempts I/O

◦ Locks optimize crit sec that always does I/O

 Contention manager involved in lock
acquisition

 “Informing Transactions”
◦ xbegin must return a reason for retry

 One developer * 1 month to convert

Cxspinlocks

Cxspinlock API
cx_optimistic:
Use transactions, restart
on I/O attempt

cx_exclusive
Acquire a lock, using
contention manager

cx_end
Release a critical
section

void cx_optimistic(lock){

status = xbegin;

if(status==NEED_EXCL){

xend;

if(gettxid)

xrestart(NEED_EXCL);

else

cx_exclusive(lock);

return;

}

while(!xtest(lock,1));

}

void cx_exclusive(lock){

while(1) {

while(*lock != 1);

if(xcas(lock, 1, 0))

break;

}

}

void cx_end(lock){

if(xgettxid) {

xend;

} else {

*lock = 1;

}

}

NEED_EXCL == need exclusive.

Returned from xbegin when hardware

detects I/O in a transaction.

void cx_optimistic(lock){

status = xbegin;

if(status==NEED_EXCL){

xend;

if(gettxid)

xrestart(NEED_EXCL);

else

cx_exclusive(lock);

return;

}

while(!xtest(lock,1));

}

cpu 0 cpu 1

void cx_exclusive(lock){

if(xgettxid)

xrestart(NEED_EXCL);

while(1) {

while(*lock != 1);

if(xcas(lock, 1, 0))

break;

}

}

txid: 0

Working Set

R{}

W{}

txid: 0

Working Set

R{}

W{}

lock 1 (unlocked) 1 (unlocked)

txid: 1

0 (locked)

cpu0 has entered the critsec and

the contention manager decides

which thread wins.

Assuming CM decides for cpu1,

cpu0 rolls back.

Conversely, if CM decides that

cpu0 wins, xcas fails, and cpu1

will spin until lock leaves cpu0’s

working set.

Working Set

R{ }

W{}

lock

Working Set

R{}

W{}

cxspinlock action zone

…

cx_optimistic(lock);

do_useful_work();

if(arcane_condition)

perform_io();

cx_end();

…

void cx_optimistic(lock){

status = xbegin;

if(status==NEED_EXCL){

xend;

if(gettxid)

xrestart(NEED_EXCL);

else

cx_exclusive(lock);

return;

}

while(!xtest(lock,1));

}

lock 1 (unlocked)

arcane_condition 0

The critsec did not

perform I/O, and the

work is committed

without ever taking

the lock!

1

Suppose the critsec

does need to

perform I/O…

The hardware

detects IO and rolls

back, returning

NEED_EXCL from

xbegin

void cx_exclusive(lock){

while(1) {

while(*lock != 1);

if(xcas(lock, 1, 0))

break;

}

}

0 (locked)

The cx_exclusive

call results in the

critsec being

entered with a lock

to protect I/O

 Implemented HW(MetaTM) as x86 extensions

 Simulation environment
◦ Simics 3.0.27 machine simulator

◦ 16k 4-way tx L1 cache; 4MB 4-way L2; 1GB RAM

◦ 1 cycle/inst, 16 cyc/L1 miss, 200 cyc/L2 miss

◦ 16 & 32 processors

 Benchmarks
◦ pmake, bonnie++, MAB, configure, find

 TxLinux with xspinlocks
◦ 16 cpus -> 2% slowdown over Linux

 Pathological backoff in bonnie++

 16 cpus->1.9% speed up excluding bonnie++

◦ 32 cpus -> 2% speedup over Linux

 TxLinux with cxspinlocks
◦ 16 cpus -> 2.5% speedup over Linux

◦ 32 cpus -> 1% speedup over Linux

TxLinux Performance

Reducing Synchronization Overhead

•16 cpus

•1-12% sync

•xs 34% lower

•cx 40% lower

0

2

4

6

8

10

12

14

L
in

u
x

T
x
L

in
u

x
-x

s

T
x
L

in
u

x
-c

x

L
in

u
x

T
x
L

in
u

x
-x

s

T
x
L

in
u

x
-c

x

L
in

u
x

T
x
L

in
u

x
-x

s

T
x
L

in
u

x
-c

x

L
in

u
x

T
x
L

in
u

x
-x

s

T
x
L

in
u

x
-c

x

L
in

u
x

T
x
L

in
u

x
-x

s

T
x
L

in
u

x
-c

x

L
in

u
x

T
x
L

in
u

x
-x

s

T
x
L

in
u

x
-c

x

pmake bonnie++ mab find config dpunish

P
e

rc
e

n
t

o
f

K
e

rn
e

l
T

im
e

 S
p

e
n

t
S

y
n

c
h

ro
n

iz
in

g

aborts

spins

 Motivation

 TM Primer

 TM and Lock cooperation
◦ OS can use TM to handle output commit

 TM and Scheduling
◦ OS can use TM to eliminate priority inversion

 Related Work

 Conclusion

 Transaction Restarts can waste a lot of work

 Contention Management and OS scheduler
can work at cross purposes
◦ HW policies avoid livelock

◦ But HW policies ignore OS goals

◦ e.g. timestamp

 OS requires better contention management

Transactions and Scheduling

Memory

0xA0:
0x80:
0x40:my_data
0x00:

CPU A

pid=x

POL: normal
PRIO: low
txid:
ws:

CPU B

pid=y

POL: real-time
PRIO: high
txid:
ws:

1. x,A starts tx:1

2. y,B starts tx:2

3. x,A reads 0x40

4. y,B writes 0x40

CONFLICT!

1(older) 2(younger)
{0x40(w)}{0x40(r)}

Low priority, non-real-
time process wins
conflict!

0

5

10

15

20

25

30

pmake bonnie++ mab find dpunish config

P
e
rc

e
n

t
o

f
re

s
ta

rt
s
 u

n
d

e
r

p
ri

o
 i
n

v
e
rs

io
n

16 cpus

32 cpus

9% conflicts -> priority inversion
0.02% -> policy inversion

 OS communicates priority to TM HW
 os-prio contention management policy

◦ decides in favor of higher priority process
◦ default to other policies when necessary

 Eliminates 100% of priority inversion
◦ Better than priority-inversion avoidance for locks

 Negligible performance cost (<1%)

 Hardware Transactional Memory
◦ TCC [Hammond 04], LogTM[-SE] [Moore 06], VTM [Rajwar

05], UTM [Ananian 05] HASTM, PTM, HyTM, RTM

 Dynamic selection of synchronization
◦ Speculative Lock Elision, TLR [Rajwar 01,02]

◦ Reconciling Locks and Transactions [Welc 06]

 I/O in Transactions
◦ Suspend [Moravan 06, Zilles 06]

◦ Guarantee Completion [Blundell 07]

 Scheduling
◦ HW support for inversion free spinlocks [Akgul 03]

◦ Linux RT patch, Solaris 10

 Lock and Transactions need to cooperate
◦ negligible performance cost

◦ cxspinlock API simplifies conversion to tx

 The cxspinlock API enables I/O in tx

 Transactions can reduce sync overhead
◦ but beware new pathologies

 Priority inversion can be eliminated with TM

 Release: www.metatm.net

(Special thanks to Sun Microsystems for the student scholarship!)

