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Abstract

Decentralized information flow control (DIFC) is a promising
model for writing programs with powerful, end-to-end security
guarantees. Current DIFC systems that run on commodity hard-
ware can be broadly categorized into two types: language-level and
operating system-level DIFC. Language level solutions provide no
guarantees against security violations on system resources, like
files and sockets. Operating system solutions can mediate accesses
to system resources, but are inefficient at monitoring the flow of
information through fine-grained program data structures.

This paper describes Laminar, the first system to implement de-
centralized information flow control using a single set of abstrac-
tions for OS resources and heap-allocated objects. Programmers
express security policies by labeling data with secrecy and integrity
labels, and then access the labeled data in lexically scoped secu-
rity regions. Laminar enforces the security policies specified by
the labels at runtime. Laminar is implemented using a modified
Java virtual machine and a new Linux security module. This paper
shows that security regions ease incremental deployment and limit
dynamic security checks, allowing us to retrofit DIFC policies on
four application case studies. Replacing the applications’ ad-hoc
security policies changes less than 10% of the code, and incurs per-
formance overheads from 1% to 56%. Whereas prior DIFC sys-
tems only support limited types of multithreaded programs, Lami-
nar supports a more general class of multithreaded DIFC programs
that can access heterogeneously labeled data.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.4.6 [Operating
Systems]: Security and Protection—Information flow controls

General Terms Languages, Performance , Security

Keywords Information flow control, Java virtual machine, oper-
ating systems, security region

1. Introduction

As computer systems support more aspects of modern life, from fi-
nance to health care, security becomes increasingly important. Cur-
rent security policies and enforcement mechanisms are typically
sprinkled throughout an application, making security policies dif-
ficult to express, change, and audit. Operating system security ab-
stractions, such as file permissions and user IDs, are too coarse to
express many desirable policies, such as protecting a user’s finan-
cial data from an untrusted browser plug-in. Furthermore, poor in-
tegration of programming language (PL) constructs and operating
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system (OS) security mechanisms complicates the expression and
enforcement of security policies. For example, a user’s credit card
number should not be broadcast on the network, whether the num-
ber originates in a file or a data structure. Files and data structures
are currently governed by completely distinct security mechanisms,
requiring developers to understand both mechanisms. This paper
addresses these issues by integrating PL and OS security abstrac-
tions, allowing application developers to express uniform security
policies that are enforced at all layers of the software stack.

The decentralized information flow control (DIFC) security
model [18] expresses policies based on how applications use data
and more naturally matches how developers and users think of se-
curity policies than traditional security mechanisms. For instance,
traditional access control mechanisms are all-or-nothing; once an
application has the right to read a file, it can do anything with
that file’s data. In contrast, DIFC enforces more powerful policies,
such as permitting an application to read a file, but disallowing
the broadcast of the contents of that file over an unsecured net-
work channel. A DIFC implementation dynamically or statically
enforces end-to-end user specified security policies by tracking
information flow throughout the system.

The DIFC model provides security by allowing users to asso-
ciate secrecy and integrity labels with data and restricting the flow
of information according to these labels. Secrecy guarantees pre-
vent sensitive information from escaping the system, and integrity
guarantees prevent external information from corrupting the sys-
tem.

As an example of the DIFC model, consider Alice and Bob who
want to schedule a meeting while keeping their calendars mostly
secret. Alice and Bob each place a secrecy label on their calendar
file, and then only a thread with those secrecy labels can read it.
Once a thread has a secrecy label, it has been tainted by that label,
and can no longer write to an unlabeled output, such as standard
output or the network. If the thread has the capability to declassify
the information, it may remove the secrecy label and then write the
data to an unlabeled output. In the calendar example, the program
obtains both Alice and Bob’s secrecy label to read both calendar
files, but then it cannot remove the labels. When the thread is ready
to output an acceptable meeting time, it must call a function that
then declassifies the result. The declassification function checks
that its output contains no secret information. For example, the
output is simply a date and does not include Bob’s upcoming visit
to the doctor.

DIFC provides two key advantages—clear rules for the legal
propagation of data through a program, and the ability to localize
security policy decisions. In the calendar example, the secrecy la-
bels ensure that any program that can read the data cannot leak the
data, whether accidentally or intentionally. The label is tied to the
data, and it restricts who may access the data. The decision to de-
classify is localized to a small piece of code that can be closely
audited. The result is a system where security policies are easier
to express, maintain, and modify. DIFC can be supported at the
language level [18, 19], in the operating system [12, 26, 28], or in
the architecture [25, 29]. Each approach has strengths and limita-
tions. Language-based DIFC systems rely on extensive type sys-



tem changes, wrap standard libraries, augment types throughout
the entire program, and modify the program structure. OS-based
DIFC systems have trouble enforcing data flow through program
data structures because page mappings are an inefficient mecha-
nism to control permissions for most user-defined data structures.
Architecture-based solutions track labels on data and CPUs in hard-
ware and signal violations, but still require trusted software to man-
age the labels. We limit the scope of this paper to DIFC implemen-
tations on commodity hardware.

This paper introduces a new DIFC system, Laminar, that pro-
vides a common security abstraction and labeling scheme for pro-
gram objects and OS resources, such as files and sockets. By com-
bining the strengths of PL and OS techniques, while minimizing
their limitations, developers express comprehensive security poli-
cies and then the Laminar virtual machine (VM) and OS enforce
these policies.

Laminar can be incrementally deployed—developers need only
modify the security-sensitive portion of their programs. Trusted
and untrusted threads, labeled and unlabeled files, sockets, data
structures, and so on, coexist in the system. In contrast, existing
DIFC languages require pervasive program modifications to label
data structures, variables, functions, and return types [17, 23]. Be-
cause they rely on whole-program static analysis for enforcement
of DIFC rules, they also exclude features such as dynamic class
loading and multithreading.

Laminar introduces lexically scoped security regions. Security
regions limit the scope of non-trivial DIFC enforcement, which
makes it easier to develop, deploy, and audit DIFC programs. Secu-
rity regions also reduce the overhead of dynamic security checks.
All operations on labeled data must occur within security regions.
A typical security region might read a labeled configuration file
and parse it into a labeled data structure. Since all code that manip-
ulates the labeled configuration data structures resides in a security
region, it is easier to identify and audit. Code unrelated to the data
structure needs no modification.
The contributions of this paper are:
1. The design of Laminar, the first system with unified PL and OS

mechanisms for enforcing DIFC. Laminar features a novel di-
vision of responsibilities among the programming model, VM,
and OS.

2. The introduction of security regions, an intuitive primitive that
eases deployment, security programming, implementation, and
auditing.

3. An implementation of Laminar that makes modest additions to
Jikes RVM [1] (a Java virtual machine), and the Linux operating
system.

4. Four case studies that retrofit security policies onto existing
code. These case studies require modification of less than 10%
of the total code base and incur overheads from Laminar rang-
ing from 1% to 56%.

These advantages and initial results suggest that integrating PL
and OS support incurs low overheads and allows the application
developer to write fine-grained security policies that encompass
program data structures as well as system resources.

2. Related work

Previous DIFC systems have either used only PL abstractions or
OS abstractions. Laminar instead enforces DIFC rules for Java
programs using an extended JVM and OS. By unifying PL and
OS abstractions for the first time with a seamless labeling model,
Laminar combines the strengths of previous approaches and further
improves the DIFC programming model.

From IFC to DIFC. Information flow control (IFC) stemmed
from research in multi-level security for defense projects [9]. In the
original military IFC systems [11], an administrator must allocate

all labels and approve all declassification requests. Modern manda-
tory access control (MAC) systems, like security-enhanced Linux
(SELinux), also limit declassification and require a static collec-
tion of labels and principals. Decentralized information flow con-
trol (DIFC) systems allow individual applications to allocate labels
and declassify data for their labels, providing a richer model for
implementing security policies [18].

Language-based DIFC. Language-based DIFC systems [17,19,
23] augment the type system to include secrecy and integrity con-
straints enforced by the bytecode generator. These systems label
program data structures and objects at a fine granularity, but require
programming an intrusive type system or an entirely new language.
These language based systems trust the whole operating system
and provide no guarantees against security violations on system
resources, like files and sockets.

OS-based IFC. Asbestos [26] and HiStar [28] are new operating
systems that provide DIFC properties. Flume [12] is a user-level
reference monitor that provides DIFC guarantees without making
extensive changes to the underlying operating system.

OS DIFC systems provide little or no support for tracking in-
formation flow through application data structures with different
labels. Flume tracks information flow at the granularity of an entire
address space. HiStar can enforce information flow at page gran-
ularity and supports a form of multithreading by requiring each
thread to have a page mapping compatible with its label. Using
page table protections to track information flow is expensive, both
in execution time and space fragmentation, and complicates the
programming model by tightly coupling memory management with
DIFC enforcement. Laminar supports a richer, more natural pro-
gramming model in which threads may have heterogeneous labels
and access a variety of labeled data structures. For example, all of
our application case studies use threads with different labels.

Laminar provides DIFC guarantees at the granularity of lexi-
cally scoped code blocks and data structures with modest changes
to the VM. It also adds a security module to a standard operat-
ing system, as opposed to Asbestos and HiStar, which completely
rewrite the OS. Most of Laminar’s OS DIFC enforcement occurs
in a security module whose architecture is already present within
Linux (Linux security modules [27] (LSM)). The Laminar OS does
not need Flume’s endpoint abstraction to enforce security during
operations on file descriptors (e.g., writes to a file or pipe), as the
kernel-level reference monitor can check the information flow for
each operation on a file descriptor.

Laminar adopts the label structure and the label/capability dis-
tinction derived from JIF and used by Flume. Capabilities in DIFC
systems are formally defined in the next section. They are distinct
from the capabilities used in capability-based operating systems.
Capability-based operating systems, like EROS [22], use point-
ers with access control information to combine system and lan-
guage mechanisms for stronger security. However, capability sys-
tems cannot enforce DIFC rules, and programs must be completely
rewritten to work with the capability programing model.

Table 1 summarizes the taxonomy of design issues common to
DIFC systems. Laminar combines the strengths of PL- and OS-
based systems. Laminar handles implicit flows and provides fine-
grained information flow control just like PL systems but without
resorting to whole-program static analysis. Like OS-based systems,
Laminar can enforce security policies on system resources. Lami-
nar makes it easier to deploy and use information flow control sys-
tems by introducing the intuitive notion of lexically scoped code
blocks called security regions.

Integrating language and OS-based security. Hicks et al. ob-
serve that security-typed languages can be used to ensure that OS
security policies are not violated by trusted system applications,



Issue PL solution [19, 23] OS solution [12, 26, 28] Laminar solution

Main subsystems modified Compiler and type system (1) Complete OS [26, 28] (2) User-level refer-
ence monitor and kernel module [12]

VM and kernel module

Trusted computing base Compiler, VM, and OS OS VM and OS
Securing individual appli-
cation data structures

Whole-program static analysis Either not supported or inefficient because of
page table mechanisms

Dynamic analysis and VM enforce-
ment using read/write barriers

Securing files and OS re-
sources

Not handled (1) Modify entire OS or (2) User-level reference
monitor with kernel module support

Kernel module

Termination, timing, prob-
abilistic channels

Not handled HiStar [28] and Flume [12] handle termination
channels by suppressing termination notifica-
tion

Not handled

Implicit information flow Static analysis Not applicable—information flow tracked at
granularity of thread [28] or address space [12]

Dynamic analysis using lexically
scoped security regions

Deployment issues Code must use new language or
type system

Excludes multithreaded applications whose
threads have heterogeneous security needs

Incrementally deployable

Table 1. Issues for DIFC systems. Laminar offers better functionality than the combination of PL and OS solutions.

such as logrotate [10]. Their framework, called SIESTA, ex-
tends Jif to enforce SELinux [15] MAC policies at the language
level. The aims of Laminar and SIESTA are orthogonal. SIESTA
provides developers with a mechanism to prove to the system that
an application is trustworthy, whereas Laminar provides the devel-
oper a unified abstraction for specifying application security poli-
cies.

Termination, timing and probabilistic channels. Vachharajani
et al. argue that implementing DIFC with dynamic checking is as
correct as static checking by showing that the program termina-
tion channels of static and dynamic DIFC systems leak an arbitrary
number of bits [25]. They prove that a correct dynamic DIFC sys-
tem will over-approximate information flow, rejecting some pro-
grams that do not contain actual information flow violations. Lam-
inar is a dynamic DIFC system and its security regions explicitly
over-approximate information flow.

DIFC systems attempt to eliminate covert channels, which may
be used to leak information, but do not eliminate timing chan-
nels [13] or probabilistic channels [21]. Section 4.3.3 defines and
discusses implicit information flows.

3. DIFC model

All DIFC systems need a mechanism to denote the sensitivity
of information and the privileges of the participating users. This
section describes the mechanisms used by Laminar and the DIFC
rules that determine safe information flows.

In DIFC systems, the security policy is defined in terms of
principals that read and write the data in the system. Examples
of principals in DIFC systems are users [19], processes [12] and
kernel threads [28]. Principals in Laminar are kernel threads.

3.1 DIFC abstractions

Standard DIFC abstractions include tags, labels, and capabilities.
Tags are short, arbitrary tokens drawn from a large universe of
possible values (T ) [12]. A tag has no inherent meaning. A set of
tags is called a label.

In a DIFC system, any principal can create a new tag for se-
crecy or integrity. For example, a web application might create one
secrecy tag for its user database and a separate secrecy tag for each
user’s data. The secrecy tag on the user database will prevent au-
thentication information from leaking to the network. The tags on
user data will prevent a malicious user from writing another user’s
secret data to an untrusted network connection.

Principals assign labels to data objects. Data objects include
program data structures (e.g., individual objects, arrays, lists, hash
tables) and system resources (e.g., files and sockets). Previous OS-
based systems limit principals to the granularity of a process or

support threads by enforcing DIFC rules at the granularity of a
page. Our system is the first to expand principals to support threads
as principals and enforce DIFC at object granularity.

Each data object or principal x has two labels, Sx for secrecy
and Ix for integrity. A tag t in the secrecy label Sx of a data object
denotes that it may contain information private to principals with
tag t. Similarly, a tag t in Ix implies that a data object may contain
data endorsed by principals with integrity tag t. Data integrity
is a guarantee that data exists in the same state as when it was
endorsed by a principal. For example, if Microsoft endorses a data
file, and the integrity of the file is preserved, then a user can choose
to trust the file’s contents if she trusts Microsoft. A principal’s
labels restrict the interaction that the principal can have with other
principals and data objects.

A partial ordering of labels imposed by the subset relation forms
a lattice [7]. At the bottom of the lattice are unlabeled resources,
which have the empty label for security and integrity. An implicit
empty label means that the program need not label every data
structure, nor does the OS need to label every file in the file system.
Allowing implicit empty labels makes Laminar easier to deploy
incrementally.

A principal may change the label of a data object or principal
if and only if it has the appropriate capabilities, which generalize
ownership of tags [18]. A principal p has a capability set, Cp, that
defines whether it has the privilege to add or remove a tag. For
each tag t, let t+ and t− denote the capability to add and remove
the tag t. The capability t+ allows a principal to classify data with
secrecy tag t, while the t− capability allows it to declassify data.
Classification raises data to a higher secrecy level; declassification
lowers its secrecy level. Principals can add t to their secrecy label
if they have the t+ capability. If the principal adds t, then we call
it tainted with the tag t. A principal taints itself when it wants to
read secret data. To communicate with unlabeled devices and files,
a tainted principal must use the t− capability to untaint itself and to
declassify the data it wants to write. Note that DIFC capabilities are
not pointers with access control information, which is how they are
commonly defined in capability-based operating systems [14, 22].

DIFC handles integrity similarly to secrecy. The t+ capability
allows a principal to endorse data with integrity tag t, and the
t− capability allows it to drop the endorsement. A principal with
integrity tag t is claiming to represent a certain level of integrity.
For example, code and data signed by a software vendor could
run with that vendor’s integrity tag. When the principal drops
an integrity tag, for example, to read an unlabeled file of lower
integrity, the principal drops the endorsement of the tag.

Note that the capability set Cp is defined on tags. A tag can be
assigned to a secrecy or integrity label. In practice, a tag is rarely
used for both purposes. C−

p is the set of tags which principal p



may declassify (drop endorsements), and C+
p is the set of tags that

p may classify (endorse). Principals and data objects have both
a secrecy and integrity label; a data object with secrecy label s
and integrity label i is written: {S(s), I(i)}. An empty label set
is written: {S(), I()}. The capability set of a principal that can add
both s and i but can drop only i is written: {C(s+, i+, i−)}.

3.2 Restricting information flow

Programs implement policies to control access and propagation of
data by using labels to limit the interaction among principals and
data objects. Information flow is defined in terms of data moving
from a source x to a destination y, at least one of which is a
principal. For example, principal x writing to file y or sending
a message to principal y is an information flow from x to y. If
principal x reads from a file y, then we say information flows
from source y to destination x. Laminar enforces the following
information flow rules for x to y:

Secrecy rule. Bell and LaPadula [2] introduced the simple secu-
rity property and the *-property for secrecy. These properties en-
force that no principal may read data at a higher level (no read up)
or write data to a lower level (no write down). Expressed formally,
information flow from x to y preserves secrecy if:

Sx ⊆ Sy

Note that x or y may make a flow feasible by using their capabilities
to explicitly drop or add a label. For example, x may make a flow
feasible by removing a label L from Sx if it has the declassification
capability for L, i.e. L ∈ C−

x . Similarly, y may use its capabilities
in C+

y to extend its secrecy label and receive information.

Integrity rule. The integrity rule constrains who can alter infor-
mation [3] and restricts reads from lower integrity (no read down)
and writes to higher integrity (no write up). In our system, we en-
force the following rule:

Iy ⊆ Ix

Intuitively, the integrity label of x should be at least as strong as
destination y. Just like the secrecy rule, x may make a flow feasi-
ble by endorsing information sent to a higher integrity destination,
which is allowed if x has the appropriate capability in C+

x . Simi-
larly, y may need to reduce its integrity level, using C−

y , to receive
information from a lower integrity source.

Label changes. According to the previous two rules, a principal
can enable information flow by using its current capabilities to drop
or add a label. Laminar requires that the principal must explicitly
change its current labels. Zeldovich et al. show that automatic, or
implicit, label changes can form a covert storage channel [28].

In Laminar, a principal p may change its label from L1 to L2 if
it has the capability to add tags present in L2 but not in L1, and can
drop the tags that are in L1 but not in L2. Formally, this is stated
as:

(L2 − L1) ⊆ C
+
p and (L1 − L2) ⊆ C

−

p

3.3 Calendar example

Again consider scheduling a meeting between Bob and Alice using
a scheduling server that is not administered by either Alice or Bob.
Alice’s calendar file has a secrecy tag, a, and Bob’s calendar file
has a secrecy tag, b.

Ensuring secrecy. Focusing on Alice, she gives a+ to the
scheduling server to let it read her secret calendar file, which has
label {S(a)}. A thread in the server uses the a+ capability to start
a security region with secrecy tag a that reads Alice’s calendar file.
Once the server’s thread has the label {S(a)}, it can no longer
return to the empty label because it lacks the declassification capa-
bility, a−. As a result, the server thread can read Alice’s secret file,
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Figure 1. Design of Laminar. Unlabeled objects have an implicit empty
label. Trusted components are shaded.

but it can never write to an unlabeled device like the disk, network,
or display. If the server thread creates a new file, it must have label
{S(a)}, which is unreadable to its other threads. Before the server
thread can communicate information derived from Alice’s secret
file to another thread, the other thread must add the a tag, and also
becomes unable to write to unlabeled channels.

Ensuring integrity. The scheduling server runs its plugins with
an integrity tag, i, corresponding to the idea of having an au-
thority vouch for the safety and correctness of plugins, just as
addons.mozilla.org vouches for plugins by allowing a se-
cure network connection. The server cannot execute or read a plu-
gin that has an integrity label lower than {I(i)}. The server is as-
sured that plugins and their input files have not been written by any
principal with an integrity label lower than {I(i)}. The DIFC in-
tegrity rule gives the server confidence that its code and data files
have not been tampered with.

Sharing secrets with trusted partners. Alice and Bob collabo-
rate to schedule a meeting while both retaining fine-grained con-
trol over what information is exposed. Both send the server a code
module in a file that has integrity label {I(i)}. For example, they
might have access to such an integrity label because they are both
employed by the company running the scheduling server. Alice’s
module has access to both her a+ and a− capabilities, so the server
calls her code which reads her secret calendar file and selectively
declassifies parts of it, for instance, making her availability between
10:00am and 1:30pm on Mondays and Tuesdays publicly available
(unlabeled). Alice controls which of her data flows into the sched-
uler. Bob does the same, and the scheduler can communicate with
both of them their possible meeting times.

Discussion. In this example, Alice specifies a declassifier as a
small code module that can be loaded into a larger server applica-
tion, which can be completely ignorant of DIFC and requires no
modifications to work with Alice’s DIFC-aware module. For pre-
vious DIFC systems, this example would be more cumbersome.
OS-based DIFC systems would require the declassifier to run as a
separate process. Language-based systems would require the entire
application to be annotated for DIFC enforcement. By integrating
OS and language techniques, Laminar substantially improves the
state of the art in DIFC.

4. Design

This section describes how Laminar enforces DIFC in an enhanced
VM and OS. Figure 1 illustrates the Laminar architecture. The VM



enforces DIFC rules within the application’s address space. The
OS security module mediates accesses to system resources. Only
the VM and the OS are trusted in our model.

For example, Alice may write a program in Java using the
Laminar API to label her data. Alice’s program uses the same
label namespace present in the file system: it can read data from a
labeled file into a data structure with the same label. She compiles
the code using a standard, untrusted, bytecode generator such as
javac. The Laminar just-in-time (JIT) compiler and VM execute
the bytecode, and the Laminar OS executes the Laminar VM.
Laminar ensures that any accesses or modifications to labeled data
follow the DIFC rules and occur in a security region, a lexically
scoped region specified by the program. Security regions make
it easier to secure and audit only the portions of a program that
need it, making it easier to deploy Laminar incrementally. They
also decrease the cost of dynamic security checks by the Laminar
runtime.

4.1 Enforcement mechanism

The Laminar OS extends a standard operating system with a Lami-
nar security module for information flow control. The Laminar OS
security module governs information flows through all standard OS
interfaces, including through devices, files, pipes and sockets. The
OS regulates communication between threads of the same or differ-
ent processes that access the labeled or unlabeled system resources
or that use OS inter-process communication mechanisms, such as
signals. OS enforcement applies to all applications, preventing un-
labeled or non-Laminar applications from circumventing the DIFC
restrictions.

The Laminar VM regulates information flow between heap ob-
jects and between threads of the same process via these objects.
These flows are regulated by inserting dynamic DIFC checks in the
application code. Because the Laminar VM regulates these flows
within the address space, the OS allows data structures and threads
to have heterogeneous labels. All threads in multithreaded pro-
cesses without a trusted VM must have the same labels and ca-
pabilities.

4.2 Programming model

Laminar provides language extensions, a new security library, and
new security-related system calls. The secure keyword is used to
lexically scope a security region. Figure 2 depicts the library API,
which includes tag creation, declassification, and label queries.
The Laminar OS exports security system calls to the trusted VM
for capability and label management, as shown in Figure 3. An
untrusted application may directly use these system calls to manage
its capabilities and labels.

Threads are the only principals in Laminar, but the thread’s la-
bels and capabilities are modified when entering and exiting secu-
rity regions. In Laminar, labeled data objects (files, heap allocated
objects etc.) can be accessed only inside security regions. Hence,
outside a security region threads always have empty labels. The
VM and the OS do not allow code outside the security region to ac-
cess labeled data objects. During the execution of a security region,
the VM gives the thread the labels and capabilities of the secu-
rity region so that the OS can mediate access to system resources
according to the security region’s labels. Security regions are not
visible to the OS, so the thread itself must have the labels and ca-
pabilities. At the end of the security region, the VM restores the
thread’s original capabilities and labels.

4.3 Security regions

A security region is a lexically scoped code block that has parame-
ters for a capability set, a secrecy label, and an integrity label. The
labels dictate which data the program may touch inside the secu-
rity region. The capabilities dictate how a thread within a security

Laminar Application Library API.
Label getCurrentLabel(LabelType t)

Return the current secrecy or integrity label of the security region.
Tag createAndAddCapability()

Create a new tag and add both capabilities to the current principal.
void removeCapability(CapType c, Tag name,

boolean global)

Drop the given capability from the current principal.
Setting the global flag drops a capability permanently, whereas not
setting it drops the capability for the scope of a security region.

Object copyAndLabel(Object o, Label l)

Return a copy of the object o with new label l.

Figure 2. Laminar library API. LabelType denotes the secrecy or in-
tegrity label. CapType denotes the plus, minus or both capabilities for a
given tag. The API also has wrapper functions(not shown) for the new sys-
tem calls introduced in Laminar OS.

Laminar System Calls.
tag t alloc tag(capList t &caps)

Return a new tag, add the plus and minus capabilities to the calling
principal, and write the new capabilities into caps.

int set task label(tag t l, int op, int type)

Set the type (secrecy or integrity) label of the current principal.
int drop label tcb(pid t tid)

Drop the current temporary labels of the thread without capability
checks. Can be called only by threads with the special integrity tag.

int drop capabilities(capList t *caps, int tmp)

Drop the given capabilities from the current principal. Tmp is
a flag used to suspend a capability for a security region or during a
fork().

int write capability(capability t cap, int fd)

Send a capability to another thread via a pipe.
int create file labeled(char* name, mode t m,

struct label *l)

Create a labeled file with the given labels.
int mkdir labeled(char* name, mode t m, struct

label *l)

Create a labeled directory with the given labels.

Figure 3. Laminar system calls. The tag t and capability t types
represent a single tag or capability, respectively. The struct label type
represents a set of tags that compose a label, and the capList t type is a
list of capabilities.

region may add or remove labels. When we say a security region
performs an action, we mean a kernel thread executing within the
region performs the action.

Only code within a security region can access labeled data. Se-
curity regions demarcate the code regions that are security sensi-
tive, easing the programmer’s burden when adding security policies
to existing programs. The programmer is just required to wrap the
pieces of code that touch labeled data in a security region, such as a
routine that reads a sensitive file into a data structure. Usually only a
small portion of code and data in a program is security sensitive, so
security regions also simplify the task of auditing security-sensitive
code.

Requiring threads to access labeled data within security regions
limits the amount of work the VM and compiler must do to enforce
DIFC, provided that a substantial portion of the execution time is
spent operating on unlabeled data. Every time the program reads or
writes labeled objects or OS resources within a security region, the
system must check the information flow with respect to the current
labels of the thread executing within the region. For example, an
assignment w = r inside a security region R is safe if and only
if the information flow from r to the thread inside R and from the
thread to w is legal. Note that the Laminar library API (Figure 2)
does not include a routine for adding labels to a thread. In order to
add labels, a thread must start a security region.



Security regions provide several benefits. They make it easier
for programmers to add security policies to existing programs.
They also make it easier for programmers to audit security code,
and limit the effects of implicit information flows (Section 4.3.3).
Finally, they make the DIFC implementation more efficient by
reducing the amount of code that requires full DIFC checks.

4.3.1 Example

Figure 4 depicts code where the calendar server reads a file belong-
ing to Alice, adds an event to the common calendar, and exports the
common meeting schedule for Bob. As shown, the data structure
cal has the secrecy tags a and b. The thread entering the security
region is initialized with the secrecy label S(a, b) and therefore it
can read secret data guarded by these tags. Its integrity label i re-
stricts it from reading data that is not tagged with i. The thread has
the capability C(a−) to declassify tag a. The line L1 is a valid in-
formation flow because the label of the thread executing at L1 is
{S(a, b), I(i)}, which is more restrictive than f . (We adhere to the
convention that a is the label of a).

At line L2, the VM checks that the write to calendar c is legal.
The write is legal because cal has the same secrecy label as the
thread in the security region at that point. At line L3, the common
meeting time is computed and stored in s2. Note that s2 has the
same labels as the security region. At line L4, a nested security
region is started to declassify data. The copying and relabeling of
s2, at L5, is legal because the thread has the a− capability. Notice
that if line L5 were copyAndLabel(s2, S(), I(i)), it
would result in a VM exception because the thread does not have
the b− capability. In this example, the OS checks the file operations
in line L1 and the VM checks the operations in line L2–L5.

4.3.2 Security region initialization

Laminar enforces certain rules when a thread enters a security
region. Let SR, IR, and CR be the security, integrity, and capability
sets of a security region, R. Similarly, let SP , IP , and CP be the
sets associated with a kernel thread P , that enters and then leaves
R. Laminar supports arbitrary nesting of security regions. P could,
therefore, already be inside a security region when it enters R.
When the thread enters the security region, the following rules hold:

SR ⊆ (C+
p ∪ SP ) and IR ⊆ (C+

p ∪ Ip) (1)

CR ⊆ CP (2)

The first rule states that the creating principal P must have either
the add capability or the label itself for any tag it will have within a
security region.The second rule states that the principal P can only
retain a subset of its current capabilities when it enters a security
region.

The above rules encapsulate the common sense understanding
that a parent principal, P , has control over the labels and capabil-
ities it passes to a security region, and that the system will not let
the principal create a security region with security properties that
the principal itself lacks. The rules also state that security regions
nest in the natural way based on the labels and capabilities of the
thread entering the nested region.

4.3.3 Implicit information flows

A major benefit of security regions is that they limit the amount
of analysis necessary to restrict implicit information flows. Im-
plicit information flow leaks secret data through control flow de-
cisions [8]. For example, the code in Figure 5 shows an implicit
flow from the control variable H to the data variable L. By looking
at the value of L, a thread can deduce the value of H . Since L is
low secrecy and H is high secrecy, this implicit flow is a violation
of DIFC rules. The system must therefore detect and prohibit this
flow.

Calendar cal; // has labels {S(a,b), I(i)}
Output ret; // has labels {S(b), I(i)}
File f; // has labels {S(a), I(i)}

secure ({S(a,b), I(i), C(a−)}) {
[L1] Schedule s1 = getScheduleFromFile(f);

[L2] caladdSchedule(s1);

[L3] Schedule s2 = cal.getCommonSchedule();

[L4] secure({S(b), I(i), C(a−)}){
[L5] ret.val = Laminar.copyAndLabel(s2, S(b), I(i));

[L6] }
...

Figure 4. Example pseudocode to read and update a calendar. The thread
(not shown) has the required capabilities a+, a−, b+ and i+ to initialize
the security region.

// H has labels {S(h), I()}
// L has labels {S(), I()}
// Invariant: y == 2x

L = false;

secure ({S(h), I(), C()}) {
x++;

if (H) L = true;

y = 2 * x;

...

} catch (...) {
y = 2 * x;

}

Figure 5. Pseudocode that shows how implicit flows are handled with
secure/catch.

// H has labels {S(h), I()}
// L has labels {S(), I()}
L = false;

secure ({S(h), I(), C()}) {
if (H) while (true) { }

} catch (...) { }

Figure 6. Pseudocode that leaks data via a termination channel.

Laminar has a special construct to limit implicit flows—each se-
curity region has a required catch block as shown in Figure 5. The
catch block executes with the same labels as the security region,
and the capability set at the time of the exception. For instance, if
H is true and the program attempts assignment to L, then Lami-
nar raises an exception because the security region does not have
the right to declassify H . The catch block gives the programmer
a chance to restore program invariants before exiting the security
region. No flow occurs between H and L because L is never as-
signed, regardless of whether H is true or false, and control flow
continues after the secure/catch blocks. The VM suppresses all ex-
ceptions inside a security region that are not explicitly caught, in-
cluding exceptions within a catch block. The VM continues execu-
tion after the security region.

In addition to restricting exception control flow, Laminar limits
implicit flows by restricting how a security region returns from a
region through non-exceptional control flow. In particular, the VM
enforces that security regions must exit via fall through. Security
regions cannot use break, return, or continue to exit, except
in the trivial case where these expressions cause control flow to
continue from the statement immediately after the security region
ends.

Laminar thus eliminates implicit flows by hiding the control
flow of a security region from code outside of the security region. In
Figure 5, code outside of the security region cannot distinguish an



execution where H is true from one where it is false. In contrast,
DIFC systems that rely on static analysis prevent these flows by
detecting them during compilation [18].

Both Laminar and static analysis DIFC systems assume that
programs (or in Laminar’s case, security regions) terminate. Fig-
ure 6 shows an example of an implicit flow via a termination chan-
nel, that leaks secret information based on whether the application
terminates. If control returns from this security region, then unpriv-
ileged code can learn that H is false. Similarly, a colluding appli-
cation might learn that H is true if the application must be explic-
itly killed. OS-based DIFC systems eliminate termination channels
by ensuring that no one with whom communication is prohibited
is notified of thread termination. In practice, termination channels
have been low bandwidth and difficult to exploit, but in a multi-
threaded environment, exploitation might be significantly easier.
For instance, if H is usually false, a low security thread may de-
duce that fact with high probability.

In cases where reestablishing a program invariant is difficult,
a secure catch block can simply kill the process, for example, by
calling System.exit(). If high-secrecy data structures become
corrupted, programmers may want to terminate the program rather
than require a declassifier to notice the corruption. However, exit-
ing the program in the catch block creates a termination channel. A
more restrictive model would prevent this termination channel by
ensuring that only a security region with full declassification capa-
bilities kills the process.

4.4 VM-OS interface

Security regions are abstractions that are not visible to the OS.
For the OS to enforce DIFC rules on system calls made in a
security region, the VM must set appropriate labels on the current
kernel thread using the set task label system call. As an
optimization, the VM omits setting the labels in the kernel thread if
the security region does not perform a system call. When the VM
sets the labels on a thread, the OS checks to ensure that the labels
are legal given the thread’s capabilities.

Acquiring tags and capabilities. Principals in Laminar acquire
capabilities in three ways: they allocate a new tag, they inherit them
through fork(), or they perform inter-process communication.
The system carefully mediates capability acquisition, lest a princi-
pal incorrectly declassify or endorse data.

A principal can allocate a new tag via the alloc tag system
call. The OS security module that allocates tags is trusted and
ensures that all tags are unique. The principal that allocates a
tag becomes the owner of the new tag. The owner can give the
plus and minus capabilities for the new tag to any other principal
with whom it can legally communicate. By default, a thread that
gains a capability within a security region retains the capability
on exit from the region. The thread must explicitly call drop -

capability to prevent the capability from propagating to the
calling context.

Threads and security regions form a natural hierarchy of princi-
pals. When a kernel thread forks off a new thread, it can initialize
the new thread with a subset of its capabilities. Similarly, when a
thread enters a security region, the thread retains only the subset of
its capabilities specified by the region. In general, when a new prin-
cipal is created, its capabilities are a subset of its immediate parent,
which the VM and OS enforce.

The passing of all inter-thread and inter-process capabilities is
mediated by the kernel, specifically with the write capability

kernel call. This system call checks that the labels of the sender and
receiver allow communication.

Removing tags and capabilities. The Laminar VM is responsi-
ble for correctly setting thread labels and capabilities inside secu-

rity regions. When a thread enters a security region, the VM first
makes sure that the thread has sufficient capabilities to enter the re-
gion. If it does, the VM sets the labels and capabilities of the thread
to equal those specified by the security region. Similarly, when the
thread exits the security region, the VM restores the labels and ca-
pabilities it had just before it entered the region. On exiting a nested
security region, the VM restores the labels and capabilities of the
thread to those of the parent security region.

The Laminar language API provides a method, remove-
Capability, that removes a thread’s capability in the VM,
which then calls the drop capability system call to notify
the kernel. The removeCapability method takes an argument,
global, that allows the user to specify whether the capability
should be dropped only for the scope of the security region or
permanently (i.e., globally). Globally dropped capabilities are not
restored to the parent when the thread exits a security region. The
VM uses the set task label system call to change the label of
a thread at the beginning and end of a security region. This func-
tion has no user API; it is called solely by the VM at the entry and
exit of security regions. Laminar does not allow security regions
to change their labels, because the VM relies on labels staying the
same throughout lexically scoped regions to prevent leaks through
local variables, as discussed in Section 5.1. To change labels in the
middle of a security region, a thread may begin a nested security
region.

Consider an example when a thread only has the a+ capability
and starts a security region with secrecy label {S(a)}. The Laminar
VM will set the label of the thread as {S(a)} when the security
region begins. When the security region ends, the thread must drop
the secrecy label, even if it does not have the a− capability. To
allow the thread to drop {S(a)}, the VM contains a thread, that
is trusted by the OS, which runs code with a special integrity tag
called tcb. Using the drop label tcb system call, this trusted
thread may drop all current labels for a thread without having the
appropriate capabilities.

A single, high-integrity thread in the VM limits exposure to
bugs because the OS enforces that only the thread with the tcb tag
may drop labels within a single address space. The VM cannot drop
the labels on other applications. Only a small, auditable portion of
the VM is trusted to run with this special label.

Capability persistence and revocation. Capability persistence
and revocation are always issues for capability-based systems, and
Laminar does not innovate any solutions. However, its use of capa-
bilities is simple and stylized. The OS stores the persistent capabil-
ities for each user in a file. On login, the OS gives the login shell all
of the user’s persistent capabilities, just as it gives the shell access
to the controlling terminal. If a user wishes to revoke access to a
resource for which she has already shared a capability, she must al-
locate a new capability and relabel the data. Because tags are drawn
from a 64-bit address space, tag exhaustion is not a concern.

4.5 Labeling data

Data objects are labeled as part of their allocation to avoid races
between creation and labeling. The VM labels objects allocated
within a security region with the label of that region. The create -

labeled and mkdir labeled kernel calls create labeled files
and directories. Other system resources use the label of their creat-
ing thread.

Like most other DIFC systems, Laminar uses immutable labels.
To change a label, the user must copy the data object. Dynamic
relabeling in a multithreaded environment requires additional syn-
chronization to ensure that a label check on a data-object and its
subsequent use by principal A are atomic with respect to the relabel
by principal B. Without atomicity, an information flow rule may be
violated. For example, A checks the label, B changes the label to be



more secret, B writes secret data, and then A uses the data. Atomic
relabeling can prevent this unauthorized flow from B to A. Instead,
Laminar uses immutable labels to avoid extra synchronization.

4.6 Compatibility challenges

Although Laminar is designed to be incrementally deployed, some
implementation techniques are incompatible with any DIFC sys-
tem. For instance, a library might memoize results without regard
for labels. If a function memoized its result in a security region with
one label, a later call with a different label may attempt to return
the memoized value. Because the memoized result is secret, the at-
tempt to return it will be prevented by the system. Such code must
be modified to work in any DIFC system.

4.7 Trusted computing base

To implement Laminar, we added approximately 2, 000 lines of
code to Jikes RVM,1 a 1, 000 line Linux security module, and 500
lines of modifications to the Linux kernel. This relatively small
amount of code means that Laminar can be easily audited.

We rely on the standardization of the VM and the OS as the basis
of Laminar’s trust. In addition to trusting the base VM, Laminar
requires that the VM correctly inserts the appropriate read and write
instrumentations called barriers for all accesses and optimizes them
correctly. Read and write barrier insertion is localized and standard
in many VMs. In Linux, Laminar assumes that the kernel has the
proper hooks to call into Linux security modules (LSM). Because
many projects rely on LSMs, the Linux code base is under constant
audit to make sure all necessary calls are made.

5. Implementation

This section describes our implementation of Laminar, which mod-
ifies Jikes RVM and the Linux operating system to provide DIFC.

5.1 JVM support

We implement Laminar’s trusted VM in Jikes RVM 3.0.0,1 a high-
performance Java-in-Java virtual machine [1]. Our implementa-
tion of Laminar is publicly available on the Jikes RVM Research
Archive.2 As of August 2008, Jikes RVM’s performance compared
well with commercial VMs: the same average performance as Sun
HotSpot 1.5; and 15–20% worse than Sun HotSpot 1.6, JRockit,
and J9 1.93.All subsequent uses of the term JVM refer to the
Laminar-enhanced version of Jikes RVM.

The JVM controls information flow by ensuring that all program
access to labeled data occur in security regions. The JVM adds
instrumentation called barriers at every object read and write; these
barriers check at run time that accesses conform to the DIFC rules
in Section 3.

Starting a security region. When a thread starts a security re-
gion, the JVM checks whether it has the capabilities to initialize
the security region with the specified labels and capabilities, as de-
scribed in Section 4.3.2. Thread capabilities are stored in the ker-
nel. The JVM then caches a copy of the current capabilities of each
thread to make the checks efficient inside the security region.

Restricting information flow for locals and statics. The JVM
enforces information flow control for accesses to three types of
application data: locals, which reside on the stack and in registers;
objects, which reside in the heap; and statics, which reside in a
global table.

Because the lifetime of local variables is typically short, and
tracking their labels would be expensive, our prototype restricts the

1 http://www.jikesrvm.org
2 http://www.jikesrvm.org/Research+Archive
3 http://jikesrvm.anu.edu.au/ dacapo/

programming model. Laminar statically (during JIT compilation)
enforces the following restrictions on local variables: (1) a local
variable written inside a security region may not later be read
outside that security region if the region has secrecy labels, and
(2) a local variable already written outside a security region may
not be read inside the region if the region has integrity labels.
Because a security region’s labels are dynamic, for simplicity our
implementation requires both properties for every security region.
An important exception to these restrictions is that local variables
that are references may be dereferenced; however the references
themselves may not be read or written (e.g., obj.f is allowed, but
if (obj == null) is not). These accesses to the referenced
object is checked by read and write barriers, which are discussed
below.

The Laminar prototype implementation requires that a security
region be in its own method to simplify static checking of these
restrictions. Thus, the JVM only needs to ensure statically that any
method security region (1) does not return a value if the region has
security labels, (2) takes only reference-type parameters, and (3)
does not read or write the values of its parameters (dereferencing
its parameters is allowed). However, our prototype implementation
does not currently check these rules but instead requires programs
to adhere to them. A production implementation of Laminar could
decouple security regions from methods by enforcing local variable
restrictions as part of bytecode verification.

The JVM restricts information flow to and from static variables.
The Laminar prototype implementation prevents security regions
with secrecy labels from writing static variables, and prevents re-
gions with integrity labels from reading statics. Compiler-inserted
barriers at each access inside a security region enforce these restric-
tions. A production implementation could support labeling statics
with modest overhead because static accesses are relatively infre-
quent compared to field and array element accesses. The applica-
tions in Section 7 do not need labeled static variables.

Supporting information flow for objects. The JVM tracks in-
formation flow for objects that live in the heap. At allocation time,
objects may be assigned secrecy and integrity labels that are im-
mutable. By default, objects allocated inside security regions are
assigned the labels of the region at the allocation point. The pro-
gram may specify alternate labels, as long as they conform to DIFC
rules. To change an object’s labels, our implementation provides an
API call, copyAndLabel, that clones an object with specified la-
bels. The label change must conform to the label change rule (Sec-
tion 3). The JVM allocates labeled objects into a separate labeled
object space in the heap, allowing instrumentation to quickly check
whether an object is labeled. We modify the allocator to add two
words to each object’s header, which point to secrecy and integrity
labels.

Our implementation encapsulates labels into immutable, opaque
objects of type Labels that support operations such as is-

SubsetOf() and union(). For efficiency, Labels objects
may be shared by objects, security regions, and threads because
they are immutable; mutating operations such as union() return
a new object, if needed. Internally, Labels uses a sorted array of
64-bit integers to hold tags. Because Labels is opaque, applica-
tions cannot observe the individual values of the tags, so they can
read and use labels without creating a covert channel.

The JVM’s compiler inserts read and write barriers [6] (instru-
mentation at every operation) into application code to enforce DIFC
rules. Inside security regions, the compiler inserts barriers at la-
beled object allocation (before the constructor call) to set the labels
and check that they conform to DIFC rules. It inserts barriers at ev-
ery read from and write to an object field or array element. Inside
security regions, barriers load the accessed objects’ secrecy and in-
tegrity Labels and check that they conform to the current secu-



// credentials = {S(s1,s2),I(),C(s1
−,s2

−)}
// credentialsNew = {S(),I(),C(s1

−,s2
−)}

// newLabel = {S(),I()}
[L1] secure(credentials){
[L2] int m1 = student1.marks;

[L3] int m2 = student2.marks;

[L4] MyObject obj = new MyObject(m1+m2);

[L5] secure(credentialsNew){
[L6] ret.val = Laminar.copyAndLabel(obj, newLabel);

... }

Figure 7. Example code to read the marks of two students.
The student1 and student2 objects are labeled. The object
credentials contains the secrecy, integrity, and capabilities sets with
which the security region is initialized.

rity region’s labels and capabilities. Outside security regions, read
and write barriers check that the accessed objects are unlabeled (or
equivalently, have the empty label). The compiler inserts barriers
inside security regions at static accesses to verify that static reads
(writes) occur only in regions without integrity (secrecy) labels.

The compiler inserts different barriers at an access depending
on whether the access occurs inside or outside a security region.
Choosing the right barrier at compile time can be difficult because
a method may be called by code inside of and outside of a security
region. In our prototype implementation, when a method first ex-
ecutes and the compiler compiles it, the compiler checks whether
the thread is in a security region and inserts barriers accordingly.
(Subsequent recompilation at higher optimization levels reuses this
decision.) This approach, which we call static barriers, fails if a
method is called from both within and without a security region.
Thus, we also support a configuration where the compiler adds dy-
namic barriers that check whether the current thread is in a security
region or not, and then execute the correct barrier. A production im-
plementation would use cloning to compile two versions of meth-
ods executed from both contexts; the same approach is used in prior
work on software transactional memory [20]. Static barriers add the
same overhead that cloning would achieve.

Because object labels are immutable and security regions cannot
change their labels, repeated barriers and checks on the same object
are redundant. We implement an intraprocedural, flow-sensitive
data-flow analysis that identifies redundant barriers and removes
them. A read (or write) barrier is redundant if the object has been
read (written), or if the object was allocated, along every incoming
path. Although the optimization is intraprocedural, the compiler
already inlines small and hot methods, increasing the scope of
redundancy elimination.

Example. The example illustrated in Figure 7 computes the sum
of the marks obtained by two different students. The student1
and student2 objects are labeled and have different secrecy val-
ues associated with them. The object credentials contains a
set of labels and capabilities. If the capabilities and labels inside
credentials do not conform to the current thread’s capabil-
ities, then the program terminates at L1. Once the security re-
gion starts, the thread’s current labels become those present in
credentials. Lines L2 and L3 are reads of labeled objects
that will result in an error if the flow from student1.marks

or student2.marks to the thread in the security region is not
allowed. In line L4, the JVM allocates object obj with the labels
present in credentials. The programmer can write to the ref-
erence obj because it is used only inside the security region. In
line L6, the thread attempts to change the labels of the object in-
side a nested security region. The JVM allows this change because
the thread has the required capabilities. Note that the inner security
region has empty secrecy label.

5.2 OS support

We have implemented support for DIFC in Linux version 2.6.22.6
as a Linux Security Module (LSM) [27]. LSM provides hooks into
the kernel to allow custom authorization rules. We also added a set
of system calls to manage labels and capabilities (Figure 2). Some
LSM-based systems, such as SELinux [15], manage access control
settings through a custom filesystem similar to proc. This method
is isomorphic to adding new system calls. The Laminar security
module contains about 1,000 lines of code, and about 500 lines of
modifications to the kernel to support the new system calls.

Tags, labels, and capabilities. Tags are represented by 64-bit in-
tegers and allocated via the alloc tag() system call. Labels and
capabilities are stored in the opaque security field of the appropriate
Linux objects (task struct, inode, file, etc.). Secrecy and
integrity labels for files are persistently stored in the file’s extended
attributes. Most of the standard local filesystems for Linux support
extended attributes, including ext2, ext3, xfs, and reiserfs.

Files. Using LSM, Laminar intercepts inode and file ac-
cesses, which are used to perform operations on unopened files and
file handles (including sockets and pipes), respectively. The Lam-
inar security hooks perform a straightforward check of the rules
listed in Section 3.2. The label of an inode protects its contents
and its metadata, except for the name and label, which are protected
by the label of the parent directory.

In a typical filesystem tree, secrecy increases from the root to the
leaves. Creating labeled files in a DIFC system is tricky because
it involves writing a new entry in a parent directory, which can
disclose secret information. For example, we disallow a principal
with secrecy label {S(a)} from creating a file with secrecy label
{S(a)} in an unlabeled directory, because it can leak information
through the file name. Instead, the principal should pre-create the
file before tainting itself with the secrecy label.

More formally, we allow a principal with non-empty labels
{Sp, Ip} to create a labeled file or directory with labels {Sf , If}
if: (1) Sp ⊂ Sf and If ⊆ Ip; (2) the principal has capabilities to
acquire labels {Sp, Ip}; and (3) the principal can write to the parent
directory with its current label. This approach prevents information
leaks during file creation while maintaining a usable interface.

Applying integrity labels to a filesystem tree is more complex
than secrecy. The intuitive reason for integrity labels on directories
is to prevent an attacker from tricking a program into opening the
wrong file, for instance using symbolic links. The practical diffi-
culty with integrity for directories is that a task with integrity label
IA cannot read any files or directories without this label, poten-
tially including /. If system directories, such as /home, have the
union of all integrity labels, then an administrator cannot add home
directories for new users without being given the integrity labels
of all existing users. Flume solves this problem by providing a flat
namespace that applications can use to store data with integrity la-
bels.

Applying integrity labels to a traditional Unix directory struc-
ture brings out a fundamental design tension in DIFC OS’s, be-
tween usability and minimizing trust in the administrator. Lami-
nar finds a middle ground by labeling system directories (e.g., /,
/etc, /home) with a system administrator integrity label when
the system is installed. A user may choose to trust the system ad-
ministrator’s integrity label and read absolute paths to files, or she
may eschew trust in the system administrator by exclusively open-
ing relative paths. In the worst case, she creates her own chroot
environment. Simple relative paths were sufficient for all of the case
studies in this paper. Laminar’s approach supports incremental de-
ployability by allowing users to choose whether to trust the system
administrator at the cost of extra work for stronger integrity guar-
antees.
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Figure 8. Laminar VM overhead on programs without security regions.

Pipes. Laminar mediates inter-process communication (IPC)
over pipes by labeling the inode associated with the pipe message
buffer. A process may read or write to a pipe so long as its labels are
compatible with the label of the pipe. Message delivery over a pipe
in Laminar is unreliable. An error code due to an incorrect label or
a full pipe buffer can leak information, so messages that cannot be
delivered are silently dropped. Unreliable pipes are common in OS
DIFC implementations [12, 26].

Reads from a pipe in Laminar must be nonblocking to prevent
illegal information flow. Standard pipes deliver an EOF to readers
when a writer exits. When the exiting process does not have appro-
priate write labels, sending an EOF violates DIFC rules. Thus, reads
should be non-blocking and readers cannot depend on an explicit
EOF if the writer can change labels. In the common case where
all applications in a pipeline have the same label, traditional Unix
pipe behavior can be approximated with a timeout. Using pipes in
programs with heterogeneous, dynamic labels may require modifi-
cation for a DIFC environment.

6. Laminar overhead

This section reports the overhead of Laminar’s subsystems. The
performance loss on Java benchmarks without security regions is
6% or 17%, depending on whether the dynamic compiler compiles
separate versions of methods called both from inside and outside
security regions. The Laminar OS incurs an overhead of less than
8% on lmbench. All experiments, including those in the next
section, were conducted on a machine with a quad-core Intel Xeon
2.83 GHz processor. All experiments configure Jikes RVM to run
on two cores. All results are normalized to values obtained on
unmodified Linux 2.6.22 and Jikes RVM 3.0.0.

6.1 JVM overhead

Figure 8 shows the overhead of our Laminar-enabled JVM for the
DaCapo benchmarks [5] and a fixed-workload version of SPEC-
jbb2000 called pseudojbb [24]. Each experiment executes two
iterations of the benchmark: the first includes compilation, and the
second disables compilation and runs only the application. We re-
port the running time of the second iteration. Because compilation
decisions are nondeterministic, running times vary, so we execute
10 trials of each experiment and take the median.

The darker bar shows the overhead of dynamic barriers, which
check dynamically if they are in a security region. Dynamic barriers
add 17% overhead on average. The lighter bar is the overhead of
using static barriers, 6% on average. As discussed in Section 5.1,
a mature implementation of Laminar would use method cloning
and eliminate all dynamic barriers. Because method cloning has
comparable overheads to static barriers, code outside of a security
region is expected to have an average overhead of 6%.

We also measure compilation time and find that, on average,
static barriers double it, and dynamic barriers triple it. However,
compilation time is not our primary concern, especially for long-
running programs. For these benchmarks, compilation time ac-

Benchmark Linux Laminar % Overhead

stat 0.92 0.94 2.0
fork 96.40 97.00 0.6
exec 300.00 302.00 0.6
0k file create 6.29 6.56 4.0
0k file delete 2.54 2.68 6.0
mmap latency 6,877.00 7,035.00 2.0
prot fault 0.24 0.26 7.0
null I/O 0.13 0.17 31.0

Table 2. Execution time in microseconds of several lmbench OS mi-
crobenchmarks, and overhead incurred by using Laminar. Lower is better.

counts for just 8-12% of running time on average, making barrier
compilation’s effect on run time comparable to barriers’ effect on
application execution time. The overhead is high in large part be-
cause we instruct the compiler to inline the barriers aggressively,
which bloats the code and slows downstream optimizations. To
lower compilation time without increasing run time substantially,
an implementation could choose to inline less aggressively.

6.2 OS overhead

We use the lmbench [16] suite of benchmarks to measure the
overheads imposed on unlabeled applications when running on
Laminar OS. A selection of the results is presented in Table 2.

In general, the overhead of the Laminar OS modifications are
less than 8%, which is similar to previously reported overheads
for Linux security modules [27]. The only performance outlier is
the “null I/O” benchmark, which has an overhead of 31%. This
benchmark represents the worst case for Laminar in that the system
call being measured does little work to amortize the cost of the label
check. For the sake of comparison, Flume adds a factor of 4-35×
to the latency of system calls relative to unmodified Linux [12].

7. Application case studies

This section describes four case study applications and how we
retrofit them with DIFC security policies. Table 3 summarizes the
details of the applications. Figure 9 shows the overhead of running
the modified version with Laminar. The retrofitted applications
implement more powerful security policies than their unmodified
counterparts, and all modifications are at most 10% of the source.

The figure breaks down the overhead of Laminar into four parts.
Start/end SR is the overhead of application modifications to support
DIFC, including the starting and ending of security regions and
other security operations, such as copyAndLabel. The Alloc
barriers configuration denotes the extra time for allocating labeled
objects and assigning their label sets. Static barriers is the overhead
from read and write barriers when the security context is known at
compile time. Finally, Dynamic barriers is the extra overhead from
barriers that check context at run time. We note that Gradesheet
and Battleship run correctly with static barriers, but Calendar and
FreeCS require dynamic barriers because some methods are called
from both inside and outside security regions. Method cloning
would obviate the need for dynamic barriers (Section 5.1).

In all our experiments, we disabled the GUI, as well as other
I/O and network-related operations so that the Laminar overheads
are not masked by them. Hence, the slowdown in deployed appli-
cations would be less than what is reported in our experiments. For
comparison, Flume [12] adds 34–43% slowdown on the MoinMoin
wiki application. Flume labels data at the granularity of an address
space, and cannot enforce DIFC rules on heterogeneously labeled
objects in the same address space.

7.1 GradeSheet

GradeSheet is a small program that manages the grades of stu-
dents [4]. It uses three types of principals: professors, TAs and stu-



Application LOC Protected
Data

LOC Added % time
in SRs

GradeSheet 900 Student grades 92 (10%) 6%
Battleship 1,700 Ship locations 95 (6%) 54%
Calendar 6,200 Schedules 290 (5%) 1%
FreeCS 22,000 Membership

properties
1,200 (6%) <1%

Table 3. Details of the various applications, including lines of code, the
data that needs to be secured, the lines of code that had to be added to secure
the application using Laminar and the fraction of time spent in security
regions.
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Figure 9. Overhead of executing applications retrofitted with Laminar.

Name Security Set

GradeCell(i,j) S={si}, I={pj}

Student(i) C={s+

i , s−i }

TA(j) C={
Si=n

i=1
s+

i , p+

j , p−j }

Professor C={
Si=n,j=m

i=1,j=1
(s+

i , s−i , p+

j , p−j )}

Table 4. The security sets associated with the principals and data objects
in GradeSheet. S, I and C stand for security, integrity and capability sets.

Student(i) and TA(j) refer to the ith student and jth teaching assistant,
respectively.

dents. The main data structure is a two-dimensional object array
GradeCell. The (i, j)th object of GradeCell stores the infor-
mation about student i and her marks in project j. A sample policy
states that (1) the professor can read/write any cell, (2) the TA can
read the marks of all students but only modify the ones related to
the project that she graded, and (3) students can only view their
own marks, but for any project.

Table 4 shows how this policy can be expressed by assigning
labels and capabilities to the data and the principals respectively.
Specifically, we guard the (i, j)th entry in the GradeCell with
the secrecy tag si and the integrity tag pj . Each student i has the
capability to add or remove si, so students can read their own
marks in any project. Each TA j has the capability to add tags si

and the integrity tag for the project that she graded (pj). This tag
ensures that TAs can read the marks of all students, but the integrity
constraint prevents them from modifying grades for projects that
they did not grade.

Interestingly, Laminar found an information leak in the original
policy. The policy allowed a student to calculate and read the
average marks in a project, which leaks information about the
marks of other students. After integration with Laminar, only the
professor is allowed to calculate the average and declassify it.

Our experiments measure the time taken by the server to process
queries from different users. The Laminar-enabled version has a
7% slowdown compared to the unmodified version.

7.2 Battleship

Battleship is a common board game played between two players.
Each player secretly places her ships on the grid in her board. Play

proceeds in rounds; in each round, a player shoots a location on the
opponent’s grid. The player who first sinks all the opponent’s ships
wins the game.

We started with JavaBattle, which is a 1,700-line Battleship
program available on SourceForge. Each player Pi allocates a tag
pi and labels her board and the ships with it. The capability p−

i

is not given to anyone else, ensuring that only the player can
declassify the locations of her ships. In the original implementation,
players directly inspect the coordinates of a shot to determine
whether it hit or missed an opponent’s boat. Under Laminar, each
player sends her guess to her opponent, who then updates his board
inside a security region. The opponent then declassifies whether
the guess was a hit or a miss and sends that information back to the
first player. We had to add less than 100 lines of code to secure the
program to run with Laminar.

In our experiments, the game is played between computers on
a 15×15 grid without a GUI. Figure 9 shows that the secured
version adds 56% overhead with static barriers. The overhead is
high because the benchmark spends almost 54% of its time inside
security regions. In a deployed Battleship, which would display
the intermediate state of the board to the players, the overhead
would be significantly less. In an experiment where we display the
shot location after each move, the run time increases, and Laminar
overhead drops to 1%.

7.3 Calendar

Like in the examples from earlier in the paper, we modified the
k5nCal4 multithreaded desktop calendar to label all data struc-
tures and .ics files that store a user’s calendar information
with the user’s secrecy tag.All functions that access this data are
wrapped inside security regions, including a scheduler that finds
available meeting times for multiple users. In the original program,
a user could view the calendar of other users, a feature we disabled.

Our experiments measure the time to schedule a meeting, which
includes reading the labeled calendars of Bob and Alice, finding a
common meeting date, and then writing the date to another labeled
file that Alice can read. The scheduling code is executed in a thread
that has the capability to read data for both Alice and Bob, but
can only declassify Bob’s data. The output file is protected by the
label of Alice. Our experiment schedules 1,000 meetings. Figure 9
shows that the secured version of Calendar runs 14% slower than
unmodified Calendar.

We note that for Calendar, idle time was high when running
the DIFC version with two cores. We have not yet diagnosed this
issue. However, we found that the problem is specific to our Xeon
machine, so we report results for Calendar on a Core 2 Quad 2.4
GHz processor running our modified kernel.

7.4 FreeCS chat server

FreeCS is an open-source chat server written in Java5. Multiple
users connect to the server and communicate with each other.
FreeCS supports 47 commands, such as creating groups, inviting
other users, and changing the theme of the chat room. The original
security policy consists of an authorization framework that restricts
what commands can be used by a user. All these policies are written
in the form of if..then checks. These authorization checks are
actually checks on the role of a user. For example, a user who is
in the role of a VIP and has superuser power on a group can ban
another user in the group.

We improve the security code in FreeCS by labeling sensitive
data structures and accessing them inside security regions. We
made most of our modifications in two classes—Group and User.

4 http://k5ndesktopcal.sourceforge.net
5 http://freecs.sourceforge.net



With Laminar, we localized all security checks to these classes.
The abstraction of a role maps naturally onto integrity labels. For
example, we protect the banList data structure with two tags,
one that corresponds to the notion of VIP and the other for the
group’s superuser. Now, only users who have the add capability
for these two tags can use the ban command. We also changed
the authentication module to ensure that users are given the right
capabilities when they log in. Our experiments measure the time
to process requests from 4, 000 users, each invoking three different
commands. Laminar’s overhead is less than 1% (Figure 9).

7.5 Summary

The four case studies reveal a pattern in the way applications are
written. First, most applications have only a few key data struc-
tures that need to be secured, like the array of student grades in
GradeSheet or the playing boards in Battleship. Second, the inter-
face to access these data structures is quite narrow. For example,
InternalServer in GradeSheet and DataFile in Calendar
contain the functions used to access the important data. These ob-
servations support our hypothesis that only localized changes are
needed to retrofit DIFC onto many types of applications. Third,
most of the data structures require heterogeneous labeling—the sin-
gle data structure GradeCell has different labels corresponding
to different students. Heterogeneous labeling is impractical in OS-
based systems [12, 26, 28], since they support a single label on the
whole address space or require the programmer to map application
data structures onto labeled pages. The Laminar VM easily solves
this problem with fine-grain tracking of labels on the data structure,
for example, individual array elements and objects in GradeSheet.

8. Conclusion

Laminar is the first DIFC system to unify PL and OS mechanisms
for information flow control. It provides a natural programming
model to retrofit powerful and auditable security policies onto ex-
isting, complex, multithreaded programs.
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