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As GPU hardware becomes increasingly general-purpose, it is quickly outgrowing the traditional, constrained
GPU-as-coprocessor programming model. This article advocates for extending standard operating system
services and abstractions to GPUs in order to facilitate program development and enable harmonious in-
tegration of GPUs in computing systems. As an example, we describe the design and implementation of
GPUfs, a software layer which provides operating system support for accessing host files directly from GPU
programs. GPUfs provides a POSIX-like API, exploits GPU parallelism for efficiency, and optimizes GPU file
access by extending the host CPU’s buffer cache into GPU memory. Our experiments, based on a set of real
benchmarks adapted to use our file system, demonstrate the feasibility and benefits of the GPUfs approach.
For example, a self-contained GPU program that searches for a set of strings throughout the Linux kernel
source tree runs over seven times faster than on an eight-core CPU.
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1. INTRODUCTION

Due to their impressive price/performance and performance/watt curves, GPUs have
become the processor of choice for many types of intensively parallel computations
from data mining to molecular dynamics simulations [NVI]. As GPUs have matured
and acquired increasingly general-purpose processing capabilities, a richer and more
powerful set of languages, tools, and computational algorithms have evolved to make
use of GPU hardware.

Unfortunately, GPU programming models are still almost entirely lacking core
system abstractions, like files and sockets, that CPU programmers have taken for
granted for decades. Today’s GPU is a bit of an idiot savant: it is capable of amazing
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computational feats when spoon-fed with the right data and micromanaged by ap-
plication code on the host CPU, but it is incapable of initiating even the simplest
system interactions for itself, such as reading an input file from a disk. The traditional
coprocessor-style GPU programming model requires developers to explicitly manage
GPU I/O on the host CPU, which increases the design complexity and code size of even
simple GPU programs that require file access. While programmers can explicitly opti-
mize CPU-GPU interactions, these optimizations are not portable to new generations
of hardware, affect software modularity and make it hard to maintain functionality
and performance.

Drawing an analogy to previrtual memory days, applications often managed their
own address spaces efficiently using manual overlays, but this complex and fragile
overlay programming ultimately proved not worth the effort. Similarly, GPU program-
mers today face many of the same challenges CPU application developers did a half-
century ago – particularly the constant reimplementation of system abstractions such
as data movement and management operations. As GPUs are quickly evolving toward
general high-performance processors useful for a wide variety of massively parallel,
throughput-oriented tasks, we believe GPU programming should reap the same bene-
fits from the file system abstraction enjoyed by CPU programmers.

We propose GPUfs, an infrastructure that exposes the file system API to GPU pro-
grams, bringing the convenience and power of file systems to GPU developers. GPUfs
offers compute-intensive applications a convenience well-established in the CPU con-
text: to be largely oblivious to where data is located–whether on disk, in main memory,
in a GPU’s local memory, or replicated across several GPUs or other coprocessors. Fur-
ther, GPUfs lets the OS optimize data access locality across independently developed
GPU compute modules, using application-transparent caching and data replication,
much like a traditional OS’s buffer cache optimizes access locality across multiprocess
computation pipelines. A unified file API interface abstracts away the low-level de-
tails of different GPU hardware architectures and their complex interdevice memory
consistency models, improving code and performance portability. GPUfs expands the
appeal of GPU programming by offering familiar, well-established data manipulation
interfaces instead of proprietary GPU APIs. Finally, GPUfs allows GPU code to be self-
sufficient, by simplifying or eliminating the complex CPU support code traditionally
required to feed data to GPU computations.

Two key GPU characteristics make developing OS abstractions for GPUs challeng-
ing – massive data parallelism, and independent memory systems. GPUs are optimized
for data parallel processing, where the same program operates on many different parts
of the input data. GPU programs typically use tens of thousands of lightweight threads
running similar or identical code with little control-flow variation. Conventional OS
services, such as the POSIX file system API, were not built with such an execution
environment in mind. In GPUfs, we had to adapt both the API semantics and the
implementation to support such massive parallelism, allowing thousands of threads to
efficiently invoke open, close, read, or write calls simultaneously.

To feed their voracious appetites for data, high-end GPUs usually have their own
DRAM storage. A massively parallel memory interface to this DRAM offers high band-
width for local access by GPU code, but GPU access to system memory is an order of
magnitude slower, because it requires communication over the bandwidth-constrained,
higher latency PCI Express bus. In the increasingly common case of systems with mul-
tiple discrete GPUs–standard in Apple’s new Mac Pro, for example – each GPU has its
own local memory, and accessing a GPU’s own memory can be an order of magnitude
more efficient than accessing a sibling GPU’s memory. GPUs thus exhibit a particularly
extreme nonuniform memory access (NUMA) property, making it performance-critical
to optimize for access locality in data placement and reuse across CPU and GPU
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memories. GPUfs distributes its buffer cache across all CPU and GPU memories to
efficiently enable idioms like process pipelines that read and write files from the same
or different processors.

We evaluate a prototype implementation of GPUfs on an x86 PC with four NVIDIA
GPUs, using several microbenchmarks and two realistic I/O intensive applications. All
the presented GPUfs workloads are implemented entirely in the GPU kernel without
CPU-side application code. In sequential file access benchmarks, a trivial 16-line GPU
kernel using GPUfs outperforms a simple GPU implementation with manual data
transfer by up to 40%, and comes within 5% of a hand-optimized double-buffering
implementation. A matrix multiply benchmark illustrates how GPUfs easily enables
access to datasets larger than the GPU’s physical memory, performs faster than the
manual double-buffering typical in current GPU code, and is about 2× smaller in code
size. Another matrix product benchmark demonstrates the performance benefits of the
GPU buffer cache, improving performance by over 2× on average when the input data is
reused. Two parallel data analysis applications, prioritized image matching and string
search, highlight the ability of GPUfs to support irregular workloads in which parallel
threads open and access dynamically selected files of varying size and composition.

This article makes the following main contributions.

(1) The first POSIX-like file system API we are aware of for GPU programs, with
semantics modified to be appropriate for the data-parallel GPU programming
environment.

(2) A design and implementation of a generic software-only buffer cache mechanism
for GPUs, employing a lock-free traversal algorithm for parallel efficiency.

(3) A proof-of-concept implementation of GPUfs on NVIDIA Kepler GPUs, supporting
multi-GPU systems.

(4) A quantitative evaluation of a GPU file system that identifies sensitive perfor-
mance parameters such as page size, and evaluates efficiency relative to hand-coded
solutions.

The next section provides an overview of the GPU architecture. Next, we highlight
the main GPU programming challenges caused by the lack of file access abstractions
on GPUs. We then explain and justify the design choices that we made while build-
ing GPUfs, followed by the implementation details of GPUfs on NVIDIA FERMI and
KEPLER GPUs. We evaluate the GPUfs prototype implementation in Section 6, sum-
marize related work, and finally discuss applicability of GPUfs ideas in emerging
software and hardware systems.

2. GPU ARCHITECTURE OVERVIEW

We provide a simplified overview of the GPU software/hardware model, highlighting
properties that are particularly relevant to GPUfs. We use NVIDIA CUDA terminology
because we implement GPUfs on NVIDIA GPUs, but most other GPUs that support
the cross-platform OpenCL standard [Khronos Group] share the same concepts.

Hardware Model. GPUs are parallel processors which expose programmers to hi-
erarchically structured hardware parallelism, as depicted in Figure 1. At the highest
level, GPUs are similar to CPU shared-memory multicores. GPUs support coarse-grain
task-level parallelism via concurrent execution of different tasks on different powerful
cores, called multiprocessors (MP). Each MP features several wide, single instruction
multiple data (SIMD) vector units comprised of individual lightweight processing ele-
ments called CUDA cores (e.g., 32 CUDA cores per SIMD unit). Similar to CPU vector
hardware, MPs expose fine-grain data-level parallelism, allowing the same instruction
to concurrently process multiple data items.
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Fig. 1. Hierarchical hardware parallelism in a GPU.

The main architectural difference between CPUs and GPUs lies in the way GPUs
execute parallel code. A single GPU program, termed a kernel (unrelated to an op-
erating system kernel) comprises tens of thousands of individual threads. Each GPU
thread forms a basic sequential unit of execution. Unlike CPU threads, which usually
run, exclusively occupy one CPU core each, hundreds of GPU threads are concurrently
scheduled to run on each MP. At any point, a single CUDA core is executing only a
single GPU thread (marked in blue in the figure), but the hardware scheduler mul-
tiplexes many of them onto a single core to maximize hardware utilization. When a
running thread gets stalled, while waiting on a slow memory access, for example, the
hardware restarts another thread that is ready for execution. The switching between
the threads is highly efficient because the hardware maintains the execution state,
or context, of all threads, and not only those actively executing. Thus, the scheduler
restarts the thread by simply switching to its context. This type of parallelism, some-
times called thread-level parallelism or simultaneous multithreading (SMT) [Tullsen
et al. 1996], is essential to achieving high hardware utilization and performance in
GPUs.

In order to amortize instruction fetch and execution overheads, a hardware scheduler
manages threads in small groups called warps (32 threads in NVIDIA GPUs), executing
all threads in a warp in lockstep on the same SIMD unit.

Software Model. A GPU program looks like an ordinary sequential program, but it is
executed by all GPU threads. The hardware supplies each thread with a unique identi-
fier allowing different threads to select different data and control paths. GPU programs
can be implemented in plain C++/C or Fortran with only few restrictions and minor lan-
guage extensions. The programming model closely matches the hierarchy of parallelism
in the hardware. Threads in a GPU kernel are subdivided into threadblocks – static
groups of up to two thousand threads which may communicate, share state and synchro-
nize efficiently, enabling coordinated data processing within a threadblock. A thread-
block is a course-grain unit of execution that matches the task-level parallelism support
in the hardware: all threads in a single threadblock are scheduled and executed at once
on a single MP. To draw analogy with CPUs, if we think of a GPU kernel as a single
CPU process, then a threadblock is analogous to a CPU thread.

An application enqueues all threadblocks comprising a kernel into a global hardware
queue on a GPU. The number of threadblocks in each kernel ranges from tens to hun-
dreds, and typically exceeds the number of MPs, leaving some threadblocks waiting
in the hardware queue until resources become available. Oversubscribing the MPs fa-
cilitates load balancing and portability across GPU systems with different number of
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MPs. Once a threadblock has been dispatched to an MP, it occupies the resources of that
MP until all of the threadblock’s threads terminate. Most importantly, a threadblock
cannot be preempted in favor of another threadblock waiting for execution in the global
hardware queue. The hardware executes different threadblocks in an arbitrary, nonde-
terministic order. Therefore, threadblocks generally may not have data dependencies,
because such dependencies could lead to deadlock.

System Integration Model. Discrete GPUs are peripheral devices connected to the
host system via an internal PCI Express (PCIe) bus. They feature their own physical
memory on the device itself. The GPU’s bandwidth to local memory is an order of
magnitude higher – over 30× in current systems – than the PCIe bandwidth to the
memory on the host. Discrete GPU memory has a separate address space that cannot
be directly referenced by CPU programs. Moving the data in and out of GPU memory
efficiently requires direct memory access (DMA).

Currently, GPUs are programmed as peripheral devices: they are slave processors
that must be managed by a CPU application which uses the GPU to offload specific
computations. The CPU application prepares the input data for GPU processing, in-
vokes the kernel on the GPU, and then obtains the results from GPU memory after the
kernel terminates. All these operations use GPU-specific APIs, which offer a rich set
of functions covering various aspects of memory and execution state management. For
example, there are about 50 different memory management functions in the CUDA
API [NVIDIA 2013]. As a result, managing GPU computations in GPU-accelerated
programs entails significant design and implementation complexity.

3. GPU PROGRAMMING CHALLENGES

Despite their popularity in high-performance scientific computing, GPUs remain un-
derutilized in commodity systems. The list of 200 popular general-purpose GPU ap-
plications recently published by NVIDIA [NVI] has no mention of GPU-accelerated
desktop services, such as real-time virus scanning, text search, or data encryption,
although GPU algorithms for encryption and pattern matching are well known and
provide significant speedups [HPL; Han et al. 2010]. We believe that enabling GPUs
to access host resources directly, via familiar system abstractions such as files, will
hasten GPU integration in widely deployed software systems.

GPUs currently require application developers to build complicated CPU-side code
to manage access to the host’s network and storage. If an input to a GPU task is stored
in a file, for example, the CPU-side code handles system-level I/O issues, such as how
much of the file to read into system memory, how to overlap data access with GPU
execution, and how to optimize the size of memory transfer buffers. This code dra-
matically complicates the design and implementation of GPU-accelerated programs,
turning application development into a low-level systems programming task.

Operating systems have historically been instrumental in eliminating or hiding this
complexity from ordinary CPU-based application development. GPUfs is intended to
do the same for GPU programs.

Consider an application that searches a set of files for text patterns. It is trivial
to speed up this task using multicore CPUs, for example, by scanning different files
in parallel on different cores. Algorithmically, this task is also a good candidate for
acceleration on GPUs, given the speedups already demonstrated for GPU pattern-
matching algorithms [HPL].

Using GPUs presents several system-level challenges, however.
Complex Low-Level Data Management Code. Since GPU code cannot directly access

files, CPU code must assist in reading the file data and managing data transfers to the
GPU. Thus, a substantial part of an overall GPU program is actually CPU-based code
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needed to “spoon-feed” the GPU. This CPU-based code needs to understand low-level
GPU details and performance characteristics to allocate GPU memory and manage
data transfers efficiently.

No Overlap between Data Transfer and Computations. Unlike in CPUs, where oper-
ating systems use threads and device interrupts to overlap data processing and I/O,
GPU code traditionally requires all input to be transferred in full to local GPU memory
before processing starts. Further, the application cannot easily retrieve partial output
from GPU memory until the GPU kernel terminates. Optimized GPU software alle-
viates these performance problems via pipelining: they split inputs and outputs into
smaller chunks, and asynchronously invoke the kernel on one chunk, while simultane-
ously transferring the next input chunk to the GPU, and the prior output chunk from
the GPU. While effective, pipelining often complicates the algorithm and its implemen-
tation significantly.

Bounded Input/Output Size. If a file’s contents are too large to fit into an input
buffer in GPU memory, the application must split the input and process it in smaller
chunks, tying the algorithm to low-level hardware details. The size of any output buffer
for a GPU program’s results must be specified when the program starts, not when
it generates its output, further complicating algorithms that produce unpredictable
amounts of output. To prevent running out of buffer space, a common practice is to
allocate overly large buffers, making inefficient use of GPU memory.

No Support for Data Reuse. A CPU application deallocates all of its GPU-side memory
buffers that hold file contents when it terminates. For example, the pattern matching
application might read (and not modify) many input files, but when it is invoked again,
the files are read again from CPU memory or disk. In contrast, CPU applications rely
on the operating system’s buffer cache to transparently protect them from expensive
redundant reads.

No Support for Data-Dependent Accesses. A program’s inputs can depend on its exe-
cution history. For example, a program might search for a string in an HTML file and
in any file referenced by the HTML file. The list of files that must be searched is only
known during execution because it depends on the link structure within the HTML
files themselves. A CPU implementation might read the next input file the moment it
encounters a reference to it. In GPU code, however, the file reading logic occurs on the
CPU separately from the GPU-based processing code. The application’s CPU and GPU
code must therefore coordinate explicitly on which files to read next.

GPUfs aims to alleviate these challenges. It exposes a single file system shared across
all processors in the system and accessible via standard familiar API, thereby simpli-
fying GPU development and facilitating integration of GPU programs into complex
software systems.

4. DESIGN

We describe the GPUfs API and file system semantics, focusing on the similarities and
differences from the standard APIs used in CPU programs, and the properties of GPUs
that motivate these design choices.

Figure 2 illustrates the architecture of GPUfs. CPU programs are unchanged, but
GPU programs can access the host’s file system via a GPUfs library linked into the
application’s GPU code. The GPUfs library works with the host OS on the CPU to
coordinate the file system’s namespace and data.

There are three essential properties of discrete GPUs that make designing GPUfs
challenging: massive hardware parallelism, fast, separate physical memory, and
nonpreemptive hardware scheduling. We first summarize their implications on the
design of GPUfs in Table I, with the detailed analysis in the rest of this section.
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Fig. 2. GPUfs architecture.

Table I. Implications of the GPU Hardware Characteristics on the GPUfs Design

GPU hardware
Behavior on CPU characteristics GPUfs design implications

Buffer cache Caches file contents in
CPU memory to hide
disk access latency

Separate physical
memory

Caches file contents in GPU
memory to hide accesses to
disks and CPU memory

Data consistency Strong consistency: file
writes are immediately
visible to all processes

Slow CPU-GPU
communications

Close-to-open consistency:
file writes are immediately
visible to all GPU threads,
but require explicit close
and open to be visible on
another processor

Cache replacement
algorithm

Approximate LRU invoked
asynchronously and
periodically in a
background thread

Nonpreemptive
hardware
scheduling

Synchronous and fast but
inaccurate

API call granularity File APIs are called
independently in every
thread

Data-parallel
lock-step
execution of
threads in a
warp

File APIs are invoked
collaboratively by all
threads in the same warp

File descriptors Each descriptor is
associated with a file
pointer

Massive data
parallelism

No file pointers at an OS
level, but library supports
per-warp or
per-threadblock local file
descriptors

4.1. Buffer Cache for GPUs

Operating systems strive to minimize slow disk accesses by introducing a buffer cache,
which stores file contents in memory when file data is first accessed. The OS serves sub-
sequent accesses directly from the buffer cache, thereby improving performance trans-
parently to applications. Moreover, buffer cache enables whole-system performance
optimizations such as read-ahead, data transfer scheduling, asynchronous writes, and
data reuse across process boundaries.

Imagine a GPU program accessing a file. Even if the file data is resident in the CPU
buffer cache, it must be transferred from CPU memory to the local GPU memory for
every program access. However, GPUs provide far more bandwidth and lower laten-
cies to access local GPU memory than to access the main CPU memory. For GPUfs
performance, it is therefore critical to extend the buffer cache into GPUs by caching
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Fig. 3. Close-to-open data consistency in GPUfs.

file contents in GPU memory. In multiprocessor, multi-GPU systems the buffer cache
spans multiple GPUs and serves as an abstraction hiding the low-level details of the
shared I/O subsystem.

Data Consistency Model. One important design decision is the choice of a cache
consistency model, which determines how and when file updates performed by one
processor are observed by other processors in a system. For example, if a file is cached
by one GPU and then changed by another GPU or a CPU, the cached data becomes stale,
and must be refreshed by a consistency mechanism. Strong consistency models (e.g.,
sequential consistency) permit no or little disparity in the order different processors
can observe updates. For example, in Linux, file writes executed by one process become
immediately visible to all other processes running on the same machine. On the other
hand, the popular NFS distributed file system [NFS] provides no such guarantee if
processes are running on different machines. In general, distributed file systems tend
to provide weaker consistency than local file systems, because weaker consistency
permits less frequent data synchronization among caches, and is thus more efficient in
systems with higher communication costs.

GPUfs is a local file system in the sense that it is used by processors in the same
physical machine. However, the disparity between the bandwidth from the GPU to
system memory and to local GPU memory, makes the system more similar to a dis-
tributed environment with slow communication network rather than a tightly coupled
local environment.

GPUfs therefore implements a weak consistency model (close-to-open consistency),
similar to the Andrew file system (AFS [Howard et al. 1988]) and modern versions
of NFS [NFS]. Once a file’s content is cached on a GPU, its threads can read and
write the file locally without further communication with other processors—even if the
host and/or other GPUs concurrently read and/or modify that file. GPUfs guarantees
that local file changes propagate to other processors when the file is closed on the
modifying processor first, and subsequently opened on other processors. In the example
in Figure 3, GPU2 writes two different values to a file. However, GPU1 will see only
“1” and may not see “2”, because close-to-open consistency permits to postpone the
updates to other processors operating on the same file instead of propagating them as
they happen.

For the GPU threads running on the same GPU, GPUfs provides strong consistency,
which guarantees that file updates are immediately visible to all the threads in that
GPU. If a file is mapped using mmap, however, GPUfs naturally inherits the consistency
model implemented by the hardware.

Concurrent Nonoverlapping Writes to the Same File. In the potentially common sit-
uation in which a parallel task is executing on several GPUs and CPUs in one system,
the same file may be write-shared among all executing processors. Concurrent tasks
typically write into different parts of the file: that is, to the particular range each task is
assigned to produce. While traditional implementations of close-to-open semantics like
AFS leave the results of concurrent writes undefined, GPUfs is designed to properly
handle concurrent writes to disjoint file regions.
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Supporting concurrent disjoint writes requires solving the well-known problem of
false sharing, in this case of buffer cache pages among different GPUs. False shar-
ing arises because GPUfs uses large pages in its buffer cache. The pages are larger
than CPU standard pages to allow efficient data transfers over PCIe bus and amortize
management overhead. False sharing occurs when different processors write to differ-
ent file offsets that are close enough to be mapped to the same page. Two writers who
write to the same page end up caching two partially modified versions of that page.
Writing back both pages in full results in a lost write—only the last writer’s data is
present and the first writer’s data is lost. A proper implementation must merge the
writes. GPUfs applies a classic diff-and-merge technique [Amza et al. 1996] to deter-
mine which specific portions of a page were modified on a given GPU when propagating
those modifications to the host.

An important common case is write-once file access, where GPU application threads
produce a new output file without ever reading it or overwriting already-written data.
To avoid the costs of data transfers in this case, GPUfs attaches special semantics to
files an application opens in a new (O_GWRONCE) open mode. GPUfs never reads pages
of such files from the host into the GPU cache. Instead, when the GPU propagates
locally written pages back to the host, the merge operation can be optimized to a
byte-by-byte OR of the current and the new versions of the page. These semantics
imply that concurrent writes by multiple GPUs are guaranteed to merge correctly
only if threads write only once to disjoint file areas. We believe these constraints are
consistent with common practices in file-producing data parallel applications, and thus
place reasonable semantic demands on applications in order to enable important data
movement optimizations.

Buffer Cache Management. CPUs handle buffer cache management tasks in dae-
mon threads, keeping costly activities such as flushing modified (dirty) pages out of an
application’s performance path. GPUs unfortunately have a scheduling-related weak-
ness that makes daemon threads inefficient. GPU threadblocks are nonpreemptive,
so a daemon would require its own permanently running threadblock. This dedicated
threadblock could be either an independent, constantly running GPU kernel, or it
could be part of each GPU application. The former approach reduces performance by
permanently consuming a portion of GPU hardware resources, thereby reducing the
performance of all GPU applications including those not using GPUfs; whereas the
latter violates the correctness of GPU applications that rely on the availability of a
specific number of threadblocks for execution (e.g., by causing deadlock).

Alternatively, offloading all of the GPU cache management functionality to a CPU
daemon is impractical on existing hardware due to the lack of atomic operations over
a PCIe bus.1 This limitation precludes the use of efficient one-side communication pro-
tocols. A CPU cannot reliably lock and copy a page from GPU memory, for example,
without GPU code being involved in acknowledging that the page has been locked. Con-
sequently, our design uses a less efficient message-passing protocol for synchronization.

Organizing GPUfs without daemon threads has important design consequences, such
as the need to optimize the page replacement algorithm for speed. GPUfs performs
page replacement as a part of regular file operations such as write, with the GPUfs
code hijacking the calling thread to perform the operation. The call is often on the
critical path, so reducing the latency of the replacement algorithm is important. It is
unclear, however, how to implement standard replacement mechanisms, such as the
clock algorithm [Effelsberg and Haerder 1984], because they require periodic scanning

1The PCIe 3.0 standard includes atomics, but implementation is optional and we know of no hardware
currently supporting it.
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of all pages in use. Performing the scan as a part of the file system operations is
aperiodic and expensive. Instead, the GPUfs prototype implements a simple heuristic
that evicts a page with the oldest allocation time. While it works well for streaming
workloads, the best replacement policy across diverse workloads is an area for future
work.

Although GPUfs must invoke the replacement algorithm synchronously, writing
modified pages from the GPU memory back to the CPU can be done asynchronously.
GPUfs enqueues writeback of dirty pages in a ring buffer which it shares with the CPU
so the CPU can asynchronously complete the transfer. The GPU produces dirty pages,
enqueues them into the ring buffer, and the CPU dequeues them and copies them. This
single producer, single consumer pattern does not require atomic operations.

4.2. GPUfs API

It is not obvious whether the traditional single-thread CPU API semantics is necessary
or even appropriate for massively parallel GPU programs. Consider a program with
multiple threads accessing the same file. On a CPU, each thread that opens a file,
obtains its own file descriptor, and accesses the file independently of other threads.
The same semantics on a GPU would result in tens of thousands of file descriptors, one
for each GPU thread. But such semantics are likely to be of little use to programmers,
because they do not match GPU’s data-parallel programming idioms and hardware
execution model.

Our key observation is that GPU and CPU threads have very different properties,
and thus are used in different ways in programs.

A Single GPU Thread Is Slow. GPUs are fast when running many threads, but
drastically slower when running only one. for example, multiplying a vector by a scalar
in a single thread is about two orders of magnitude slower on C2070 TESLA GPU
than on Xeon L5630 CPU. Hence, GPUs invoke thousands of threads to achieve high
throughput.

Threads in a Warp Execute in Lockstep. Even though according to the programming
model GPU threads are independent, the hardware executes threads in SIMD groups,
or warps (see Section 2 for detailed discussion). The threads in the same warp are
executed in lockstep. Thus, processing is efficient when all threads in a warp follow the
same code paths, but highly inefficient if they follow divergent paths: all the threads
must explore all possible divergent paths together, masking instructions applicable
only to some threads at every execution step. Similarly, memory hardware is optimized
for a warp-strided access pattern in which all the warp threads jointly access a single
aligned memory block: the hardware coalesces multiple accesses into a single large
memory transaction to maximize memory throughput.

As a result, GPU programs are typically designed to execute a task collaboratively
in a group of threads, such as a warp or a threadblock, rather than in each thread
separately, and per-thread APIs would not fit in this design pattern. Furthermore, per-
thread file API calls would be highly inefficient: their implementations are control-flow
heavy, they require synchronization on globally shared data structures, for example,
a buffer cache, and they often involve large memory copies between system and user
buffers, as in write and read. Therefore, if GPUfs allowed API calls at thread gran-
ularity, the threads would quickly encounter divergent control and data paths within
GPUfs, resulting in hardware serialization and inefficiency in the GPUfs layer.

Consequently, GPUfs requires applications to invoke the file system API at warp—
rather than thread—granularity. All application threads in a warp must invoke the
same GPUfs call, with the same arguments, at the same point in application code.
These collaborative calls together comprise one logical GPUfs operation. The warp
granularity of the API allows the GPUfs implementation to parallelize the handling
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of API calls across threads in the invoking warp—parallelizing file table search oper-
ations, for example. Our current implementation supports even more course-grained
per-threadblock granularity, which, in fact, we found to be more efficient than per-warp
calls, and sufficient for the GPUfs applications we implemented.

Layered API Design. File descriptors in GPUfs are global to a GPU kernel, just as
they are global to a CPU process. Each GPU open returns a distinct file descriptor that
must be closed with close. The benefit of this design is that a file descriptor can be
initialized once, and then reused by all other GPU threads to save the overhead of CPU
file system accesses. Unfortunately, implementing such globally shared objects on a
GPU is a nontrivial task due to the lack of GPU-wide barriers and subtleties of the
GPU memory model.

GPUfs balances programmer convenience with implementation efficiency by layering
its API. The open call on the GPU is wrapped into a library function gopen that returns
the same file descriptor when given the same file name argument. GPUfs reference
counts these files, so a gopen on an already-open file just increments the file’s open
count without CPU communication. In our experiments with GPUfs we found gopen to
be much more convenient to use than the low-level GPU open call. It is also generally
more efficient than an open call because it does not need to contact the CPU.

Similarly, at the lowest level, GPUfs removes the file pointer from the global file
descriptor data structure to prevent its update from becoming a serializing bottleneck.
It implements a subset of POSIX file system functionality, for example by providing
the pread and pwrite as system calls, which take an explicit file offset parameter.
At a higher level, however, GPUfs provides programmer convenience, such as per-
threadblock or per-warp file pointers. Thus a programmer can choose to program to the
low-level pread interface, or she can initialize a local file offset and make calls to the
more familiar read interface. This division of labor is somewhat similar to the division
on the CPU between system calls like read and C library functions like fread.

File Mapping. GPUfs allows GPU threads to map portions of files directly into local
GPU memory via gmmap/gmunmap. As with traditional mmap, file mapping offers two ben-
efits: the convenience to applications of not having to allocate a buffer and separately
read data into it, and opportunities for the system to improve performance by avoiding
unnecessary data copying.

Full-featured memory mapping functionality requires software programmable hard-
ware virtual memory, which current GPUs lack. Even in future GPUs that may offer
such control, we expect performance considerations to render traditional mmap seman-
tics impractical in data parallel contexts. GPU hardware shares control plane logic,
including memory management, across compute units running thousands of threads
at once. Thus, any translation change has global impact, likely requiring synchroniza-
tion too expensive for fine-grained use within individual threads.

GPUfs therefore offers a more relaxed alternative to gmmap, permitting more effi-
cient implementation in a data parallel context by avoiding frequent translation up-
dates. There is no guarantee that gmmap will map the entire file region the application
requests—instead it may map only a prefix of the requested region, and return the size
of the successfully mapped prefix. Further, gmmap is not guaranteed ever to succeed
when the application requests a mapping at a particular address: that is, MMAP_FIXED
may not work. Finally, gmmap does not guarantee that the mapping will have only the
requested permissions: mapping a read-only file may return a pointer to read/write
memory, and GPUfs trusts the GPU kernel not to modify that memory.

These looser semantics ultimately increase efficiency by allowing GPUfs to give the
application pointers directly into GPU-local buffer cache pages, residing in the same
address space (and protection domain) as the application’s GPU code.
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4.3. Failure Semantics

GPUfs has failure semantics similar to the CPU page cache: on GPU failure, file updates
not yet committed to disk may be lost. From the application’s perspective, successful
completion of gfsync or gmsync (GPUfs analogues of fsync and msync) ensures that data
has been written to the host buffer cache. Note that successful completion of close does
not guarantee that the data has been written to disk, or even to the CPU page cache,
as the transfers might be performed asynchronously.

Unfortunately, GPU failures are more frequent than CPU failures and have severe
implications. In existing systems, a GPU program failure—such as an invalid memory
access or assertion failure—may require restarting the GPU card, thus losing all GPU
memory state. As GPUs continue to become more general-purpose, we expect GPU
hardware to gain more resilience to software failures.

4.4. Resource Overheads

Operating systems are known to compete with user programs for hardware resources
such as caches [Soares and Stumm 2010], and are often blamed for decreased per-
formance in high-performance computing environments. GPUfs is a system software
co-resident with GPU programs, but it is less intrusive than a complete OS in that it has
no active, continuously running components on the GPU. GPUfs by design imposes no
overhead on GPU kernels that use no file system functionality. We deliberately avoided
design alternatives involving “daemon” threads: that is, persistent GPU threads dedi-
cated to file system management, such as paging or CPU-GPU synchronization. While
enabling more efficient implementation of the file system layer, such threads would
violate this “pay-as-you-go” design principle.

GPUfs necessarily adds some overheads, however, in the form of memory consump-
tion, increased program instruction footprint, and use of GPU hardware registers.
We expect the relative effect of these overheads on performance to decrease with fu-
ture hardware generations, which will provide larger memory, larger register files, and
larger instruction caches. And despite the cost, we find GPUfs to have good performance
in useful application scenarios (Section 6).

5. IMPLEMENTATION

This section describes our GPUfs prototype for NVIDIA, FERMI, and KEPLER GPUs.
We first outline the prototype’s structure and how it implements these API, then explore
implementation details and challenges. We cover buffer cache management, GPU-CPU
communication, file consistency management, and limitations of the current prototype.
Some of these implementation choices are likely to be affected by future GPU evolu-
tion, but we feel that most considerations discussed here will remain relevant. For
simplicity, our current implementation supports parallel invocation of the GPUfs API
only at threadblock and not warp granularity. GPUfs calls represent an implicit syn-
chronization barrier, and must be called at the same point with the same parameters
from all threads in a threadblock.

Most of GPUfs is a GPU-side library linked with application code. The CPU-side
portion runs as a user-level thread in the host application, giving it access to the
application’s CUDA context.

Figure 4 shows the three main software layers comprising GPUfs, their location in
the overall software stack shown on the right and indicated by different colors, and the
type of memory the relevant data structures are located in shown on the left.

The top layer is the core of GPUfs, which runs in the context of the application’s GPU
kernels and maintains its data structures in GPU memory. This layer implements the
GPUfs API, tracks open file state, and implements the buffer cache and paging.
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Fig. 4. Main GPUfs software layers and their location in the software stack and physical memory.

Table II. GPUfs API

API Explanation
gread/gwrite Reads and writes always supply explicit file offsets, as in pread and pwrite.
gopen/gclose Open and close files in the namespace of a single threadblock. Multiple concurrent

open requests to open or close the same file are coalesced into one open/close.
gfsync Synchronously write back to the host all dirty file pages that are currently neither

memory-mapped nor being accessed concurrently via gread or gwrite calls.
gmmap/gmunmap A relaxed form of mmap that avoids double copies in gread/gwrite. Imposes API

constraints discussed in Section 4.2.
gmsync Write back a specific dirty page to the host. The application must coordinate calls to

sync with updates by other threadblocks.
gunlink Remove a file. Files unlinked on the GPU have their local buffer space reclaimed

immediately.
gfstat Retrieve file metadata. File size reflects file size at the time of the first gopen call

that opened this file on the host.
gftruncate Truncate a file to a given size, and reclaim any relevant pages from the buffer cache.

The communication layer manages GPU-CPU communications, and naturally spans
the CPU and GPU components. Data structures shared between the GPU and CPU are
stored in write-shared CPU memory accessible to both devices. This layer implements
a GPU-CPU Remote Procedure Call (RPC) infrastructure, to be detailed in Section 5.3.

Finally, the GPUfs consistency layer is an OS kernel module running on the host
CPU, which manages consistency between the host OS’s CPU buffer cache and the GPU
buffer caches, according to the file consistency model described above in Section 4.

The GPUfs file system is inspired by the Linux file system and buffer cache. We now
examine its function in more detail.

5.1. File System Operations

Table II summarizes the GPUfs API.

Open and Close. GPUfs keeps track of open and recently closed files in several tables.
Each open file has an entry in the open file table. This table holds a pointer to a radix
tree indexing the file’s pages. For each file, the table stores several file parameters,
including the pathname and the CPU file descriptor used for data requests handled
by the CPU. Finally, each entry stores a reference count of the number of threadblocks
holding the file open.

When a file is closed its pages are retained in GPU memory until they are reclaimed
for caching other data. The closed file table maintains pointers to the caches of closed
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Fig. 5. Functional diagram of a call to pread. Color scheme is the same as Figure 4.

files, and is a hash table indexed by file inode number in the CPU file system. Because
of GPU hardware thread scheduling, files can appear to be closed while still in use by
threadblocks that have yet to be scheduled. To optimize for this case and to support
data reuse in and across kernels, gopen checks the closed file table first, and moves the
file cache back to the open file table.

If a file was changed, close enqueues all the file’s dirty pages to a write queue.
The CPU then asynchronously fetches the pages from the queue and flushes them to
the disk. The write queue is implemented as a lock-free ring buffer with the CPU as
a consumer and the GPU as a producer. Single-producer/consumer ring buffer does
not require atomic operations and thus works correctly over PCIe-2 bus that does not
support interdevice atomics.

Reads and Writes. Reads and writes work as expected, first checking the cache for
the relevant block, and forwarding requests to the CPU and allocating cache space
as necessary. Figure 5 shows a functional summary of pread’s operation. Reads and
writes exploit the GPU’s fine-grain parallelism by using many threads to copy data or
initialize pages to zero collaboratively. Reference counts protect pages during memory
transfers.

When write completes, each thread issues a memory fence to ensure that updates
reach GPU memory, in case the GPU buffer cache needs to write the page back to the
CPU. Otherwise, due to the GPU’s weak memory consistency model, the data paged
back via a DMA from the GPU memory might be left inconsistent because the writes
might remain buffered in the GPU’s L1 cache.

File Management Operations. File management operations such as gunlink and
gftruncate each generate an RPC to the CPU to request the respective operation
on the host. They also reclaim the file page cache on the GPU if necessary.
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Fig. 6. Buffer cache data structures. Pages occupied with data are marked blue.

5.2. GPU Buffer Cache

Pages, Page Frames and Page Table. GPUfs manages file content at the granularity
of a buffer cache page. This page size is configurable, though performance considera-
tions typically dictate page sizes larger than OS-managed pages on the host CPU—for
example, 256KB, since GPU code often parallelizes the processing of a page across
many threads in a threadblock (on the order of 256 threads). The ideal page size de-
pends on empirical considerations explored further in Section 6. For efficiency, GPUfs
pre-allocates pages in a large contiguous memory array, which we call the raw data
array.

As in Linux, each page has an associated pframe structure holding metadata for that
page, for example, the size of the actual data in the page, dirty status, and others. Unlike
Linux, pframes contain some file-related information, such as a unique file identifier
used for lock-free traversal, and the page’s offset in the file, because in GPUfs all pages
are backed by a host OS file. We chose to eliminate additional layers of indirection
where possible to speed up the access to the data.

Pframes are allocated in an array separate from the pages themselves, but the ith
pframe in this array holds metadata for the ith page in the raw data array, making
it easy to translate in both directions, as needed in operations such as gmunmap and
gmsync.

Per-File Buffer Cache. The buffer cache keeps replicas of previously accessed file
content for later reuse. For simplicity the GPUfs buffer cache is per-file, not per-block
device as in Linux, but future GPU support for direct access to storage devices may
motivate reconsideration of this decision.

We depict main buffer cache data structures in Figure 6. A dynamic radix tree indexes
each file’s buffer cache, enabling efficient page lookups given a file offset. Last-level
nodes in the tree hold an array of fpage structures, each with a reference to a cor-
responding pframe. The fpages manage concurrent access to the respective pframes:
each holds a read/write reference count and a spinlock, together preventing concur-
rent access by mutually exclusive operations such as initialization, read/write access,
and paging out. The fpages are allocated not by reference, but by value within radix
tree nodes. We use in-place data structures to avoid pointer traversal and minimize

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 1, Publication date: February 2014.



1:16 M. Silberstein et al.

memory allocations, even though all dynamic memory is managed by GPUfs via special
allocators.

Buffer Cache Management. GPUfs implements a FIFO policy by tracking allocation
of last-level radix tree nodes. Newly allocated nodes are placed at the head of a doubly
linked list. The node allocation time is a reasonable proxy for the allocation time of the
individual pages referred by that node, because these pages are often initialized and
accessed together by parallel threads. When a thread needs to evict pages from the
buffer cache, it performs a lock-free traversal of this list to reclaim a desired number
of pages from a particular file.

To choose the file whose pages will be reclaimed, GPUfs uses a policy similar to
Linux’s. GPUfs first looks at closed files, which are not in use so their content can
be evicted with lower performance penalty for the running application. Furthermore,
their pages are more likely to be clean, so they can be reclaimed without GPU-CPU
communication. GPUfs then looks for pages from read-only open files, and as a last
resort chooses pages from writable open files.

Lock-Free Buffer Cache Access. The buffer cache radix tree is a major contention
point among threads accessing the same file. These accesses must be synchronized to
avoid data races, such as concurrent attempts to initialize pages belonging to the same
intermediate node, or node deletion due to page reclamation, which may be performed
concurrently with page lookup.

GPUfs uses lock-free reads and locked updates, similar to Linux’s seqlocks
[Hemminger 2002]. Updates maintain the radix-tree invariants used by readers, and
all fields are initialized before a new node becomes visible to readers. Reads can fail,
in which case they retry. GPUfs retries once without locking, then locks on its third
attempt. To check that the page found is correct, GPUfs assigns a unique identifier to
each radix tree during initialization, then propagates this identifier to every page ref-
erenced by the tree. This identifier, combined with the page offset, uniquely identifies
the page.

The paging algorithm also uses lock-free reads on a doubly linked list used as a FIFO
queue.

5.3. GPU-CPU Remote Procedure Call

GPUfs implements an RPC protocol to coordinate data transfers between a CPU and
a GPU. The GPU serves as a client that issues requests to a file server running on the
host CPU. This GPU-as-client design contrasts with the traditional GPU-as-coprocessor
programming model, reversing the roles of CPU and GPU.

The challenge of implementing an efficient RPC protocol lies in the CPU/GPU mem-
ory consistency model. GPU consistency models are tailored to the bulk-synchronous
GPU programming model, where GPU-CPU communications traditionally occur only
at kernel invocation boundaries and not while the kernel is running. Except at these
points, CPU/GPU consistency is not guaranteed. Our RPC system is thus not cur-
rently portable to all GPUs, but relies on hardware providing the following consistency
features.

(1) GPU-CPU memory fences. GPU file read and write requests must be delivered
to the CPU while the GPU kernel is running. This is only possible if consistent
updates of the CPU-GPU write-shared memory can be enforced in both directions.

(2) GPU cache bypass. To allow consistent reads of GPU memory from the running
GPU kernel, after this memory has been updated by CPU-initiated DMA transfers,
GPU reads must either invalidate or bypass the GPU’s L1 and L2 caches.
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The latest stable version 1.2 of the OpenCL standard [Khronos Group], and conse-
quently AMD’s discrete GPUs, currently do not support these features.2 Only NVIDIA
GPUs currently satisfy all of our requirements.

Challenges due to Hardware Constraints. RPC implementation is complicated by the
lack of atomic operations over the PCIe bus. The new PCIe-III standard includes atom-
ics, but implementation is optional and we know of no hardware currently supporting it.

This limitation precludes the use of efficient one-side communication protocols, as
discussed in Section 4.1. A CPU cannot reliably lock and copy a page from GPU memory,
for example, without GPU code being involved in acknowledging that the page has
been locked. Consequently, the current implementation must resort to a less efficient
message-passing protocol for synchronization.

Today’s GPUs also lack a signal-like mechanism accessible to applications, to notify
a host CPU process of events originating on the GPU. The current API offers the
CPU only coarse-grained notifications when entire GPU kernels or memory transfers
complete, and do not allow code within a GPU kernel to send notifications. The CPU
must therefore poll the GPU-CPU shared memory region continuously to detect RPC
requests from the GPU.

RPC Protocol Implementation. GPU-CPU communications in GPUfs follow a syn-
chronous client-server protocol, where the GPU sends requests to the CPU and waits
for the CPU to acknowledge the request’s completion. The RPC request channel is a
FIFO queue in write-shared memory, which the CPU polls for requests. Each GPU in
the system has a separate RPC request queue, managed exclusively by the GPU that
owns that queue.

The GPU uses its request queue only to send commands: when the GPU issues a bulk
transfer request such as a bulk data read or write, the CPU initiates a DMA-based bulk
data transfer directly to or from the respective GPU buffer cache pages, using source
or destination pointers supplied by GPU code. The CPU then notifies the GPU when
the transfer completes.

The RPC queue usually contains multiple concurrent requests that, in principle, CPU
code could handle in parallel. Our implementation uses a single-threaded, event-based
design on the host to restrict the GPU-related CPU load to one CPU, simplify synchro-
nization, and to avoid overwhelming the disk subsystem with concurrent requests. Our
implementation thus currently orders file accesses, but data transfers to and from the
GPU use multiple asynchronous CPU-GPU channels to utilize full-duplex DMA and
overlap GPU-CPU transfers with disk accesses and GPU execution.

5.4. File Consistency Management

The current prototype implements the locality-optimized file consistency model de-
scribed in Section 4, though currently only for the common cases of files opened in
either read-only (O_RDONLY) or write-once mode (O_GWRONCE, see Section 4.2). The GPUfs
prototype does not yet implement the diff-and-merge protocol required to support gen-
eral write-sharing, and thus currently supports only one writer processor per file at a
time.

If a GPU is caching the contents of a closed file, this cache must be invalidated if the
file is opened for write or unlinked by another GPU or CPU. GPUfs propagates such
invalidations lazily, if and when the GPU caching this stale data later reopens the file.
We call this strategy lazy because closing a file on one GPU or CPU does not actively
push an invalidation to other GPUs caching the file. The GPUfs API currently offers no

2OpenCL 2.0 formalizes inter-processor memory consistency model and enables more forms of synchroniza-
tion, but which architectures will support that and their performance costs is yet to be known.
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direct way to push changes made on one GPU to another GPU, except when the latter
reopens the file. Supporting such invalidations without PCI atomics would require
GPUs to run daemon threads waiting for such an invalidation signal, an overhead we
wish to avoid (see Section 5.2).

GPUfs uses WRAPFS [Zadok and Bădulescu 1999], a stackable passthru file system,
on the CPU to implement file consistency. WRAPFS is a Linux module that introduces
a thin software layer on top of any file system, enabling interposition on calls to the
underlying file system. We modified WRAPFS to implement our consistency protocol,
enabling seamless integration of GPUfs with unmodified CPU programs. The CPU-
side GPUfs daemon communicates with this modified WRAPFS module via a special
character device. This device is used solely to update and query file state to implement
file consistency, and provides no access to actual file content, thereby leaving the host
OS’s file access policies uncompromised. We do not currently protect against denial-of-
service by misbehaved applications via buffer cache invalidation, however.

In principle, the consistency protocol could be implemented in user space without
kernel module, and use the last file modification time to determine the staleness state of
the data cached on a GPU. In order to be correct, however, such an implementation must
disallow asynchronous writebacks of dirty blocks from the GPU to prevent violation of
the close-to-open data consistency.

5.5. Implementation Limitations

We think of GPUfs as GPU system-level code, but modern GPUs do not support a
publicly documented privileged mode. Therefore, GPUfs cannot run in privileged mode
on the GPU, and our GPUfs prototype is a library linked with the application. However,
the library is structured in two layers, with the top layer intended to remain a library.
The bottom layer would execute in privileged mode when GPUs add such a capability.
We believe that GPU vendors will eventually provide some combination of software
and hardware support for executive-level software, for example, to explicitly manage
memory permissions across multiple GPU kernels.

GPUs contain hardware translation and protection mechanisms that prevent GPU
kernels launched by one CPU process from accessing the GPU memory of kernels
launched by other processes. Today’s GPUs do not offer software interfaces to control
this memory protection hardware, however.3 A GPUfs instance can therefore serve
only a single CPU process, and GPUfs cannot share state across GPU invocations by
different host processes. For the same reason, GPUfs cannot protect the contents of
its GPU buffer caches from corruption by the application it serves. Such features may
become feasible once GPU vendors offer appropriate interfaces.

GPUfs does preserve file access protection at the host OS level, however. The host
OS prevents a GPUfs application from opening host files the application doesn’t have
permission to access, and it denies writes of dirty blocks back to the host file system if
the GPUfs application has opened the file read-only.

6. EVALUATION

We evaluate GPUfs on a SuperMicro server system featuring two 4-core Intel Xeon
L5630 CPUs at 2.13GHz with 12MB L3 cache per CPU, and four NVIDIA TESLA
C2075 GPUs, each with 6GB of GDDR5 memory. We also used TESLA K20c GPU on
the same machine. We use Ubuntu Linux kernel 3.0.0-27, with CUDA SDK 5.0, GPU
driver 304.54. GPUfs is mounted atop a regular disk partition; the disk is a 500GB WDC

3NVIDIA CUDA recently added support for sharing GPU memory across CPU processes, but GPUfs does
not use it yet.
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WD5003, 7200RPM. The performance as reported by ‘hdparm -t -T’ is 6,600MB/s and
132MB/s for cached and disk reads, respectively.

We evaluate the system’s performance and utility with several microbenchmarks,
and also present two more realistic applications. For every data point, we report the
arithmetic mean of five executions after one warm up, unless stated otherwise. In all
experiments, we found the standard deviation of the results to be less than 1%.

One important property shared by all the test workloads is that their GPUfs im-
plementation required almost no CPU code: they were entirely implemented in the
GPU kernel. For all the workloads, the CPU code is identical, save the name of the
GPU kernel to invoke. This is a remarkable contrast with standard GPU development,
which always requires substantial CPU programming effort. From our experience, we
found it significantly easier to develop self-contained GPU programs, and believe that
self-contained GPU programming will enable broader adoption of GPUs.

6.1. Microbenchmarks

These microbenchmarks examine basic system performance and its sensitivity to sev-
eral important configuration parameters.

6.1.1. Sequential File Read. We first evaluate the effect of page size on sequential read
performance. The benchmark transfers a single 1.8 GB file, in three ways: (a) reading
data from the GPU kernel via GPUfs, (b) using the CUDA memory transfer API in
chunks the same size as a GPUfs page (CUDA pipeline), and (c) reading the whole file
in one chunk and transferring it to the GPU in one CUDA API call.

The GPU file reading kernel runs with 28 threadblocks (twice the number of active
multiprocessors in the GPU), where each threadblock maps pages from a contiguous
range in the file. Each threadblock maps one page at a time, until the total 64MB
of data is mapped. The number of map requests depends on the page size. The data
itself is not accessed, but the pages are fetched from the CPU page cache into the
GPU buffer cache. The threadblock then closes the file and exits. GPU file access is
not strictly sequential because the order of reads by different threadblock is nondeter-
ministic. We do not anticipate any measurable effect from these nonsequential reads,
however, because the file data is cached in CPU memory and fits in the GPU page
cache.

The CPU code uses pread to read each chunk of the file into pinned CPU memory
allocated with cudaHostMalloc, then issues an asynchronous cudaMemcpy to enqueue
a DMA transfer request for that chunk, then proceeds to the next chunk (except in
the whole file transfer case in which there is only one big chunk). Dividing the file into
chunks overlaps file access latency with DMA data transfers to the GPU. An alternative
implementation, which copies file content directly from the CPU page cache exposed
via mmap, performs worse because it prevents CUDA from optimizing DMA transactions
and forces cudaMemcpy to be synchronous.

The graph in Figure 7 shows read bandwidth for different page sizes. As expected,
small GPUfs pages (less than 64KB) result in low performance, and increasing page
size increases performance, with diminishing returns after 512 KB. Reading entire
files, a common practice among GPU programmers expecting larger transfers to amor-
tize data transfer overheads most effectively, is in fact less efficient than breaking
reads into chunks, as chunks allow overlap of pread from the CPU page cache with
PCI data transfer. Similar observations were made in Kato et al. [2012]. The CUDA
pipeline implementation appears to achieve the maximum possible file-to-GPU trans-
fer performance on this machine (because the CPU memory bandwidth and the PCIe
bandwidth are about the same).
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Fig. 7. Sequential read performance as a function of the page size. The red line is the maximum achievable
PCI bandwidth on this hardware configuration. Higher is better.

Fig. 8. Contribution of different factors to the file I/O performance as a function of the page size. Lower is
better.

GPUfs outperforms simple CUDA whole file reads at 64 KB pages and higher, and
achieves on average within 5% of the bandwidth of the hand-pipelined version, a cost
we consider to be a reasonable tradeoff for the convenience GPUfs offers.

Figure 8 breaks down the timing of the microbenchmark, by eliminating PCI data
transfer time while leaving only the RPC traffic, eliminating CPU file reads, and elim-
inating both. The graph shows latency, where lower is better.

Execution time with small pages is dominated by the DMA transfers, which copy
too little data per transaction, and by GPUfs API costs. I/O operations become fully
overlapped with GPUfs buffer cache code execution for pages larger than 64KB. We
see that total page cache access overhead (the rightmost labeled column) diminishes
proportionally to page size. This is because the total amount of memory mapped by
each threadblock is fixed while the page size changes, so the number of map requests
performed by each threadblock is reduced as the page size grows. For pages larger than
128K, the CPU page cache becomes the main bottleneck.
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Fig. 9. Random read/write performance as a function of page size. Higher is better.

6.1.2. Random File Read. This experiment shows the performance of random file access
for different page sizes. This kernel is invoked with 112 threadblocks, where each
threadblock reads 32 32KB data blocks from random offsets in a 1GB file, for a total
of 112 MB read. The kernel uses gread to read the data into a 32KB array allocated
in the GPU on-die scratchpad memory. Unlike gmmap, gread is not constrained in size
to a single cache page, hence it is more appropriate for accessing file data at random
offsets. Occasionally, different threadblocks may access the same page and fetch it from
the GPU buffer cache. Time measurements are an average over eight runs.

Figure 9 shows that as with sequential reads, small pages lead to bad performance,
but now large pages also lead to bad performance. Small pages fail to amortize trans-
fer costs, while large pages transfer too much data that is not actually read by the
application. 64KB achieves the best performance in this test.

We calculate effective throughput in this experiment assuming an ideal case of ex-
actly 112MB of data transferred. To support random accesses from GPU code with-
out GPUfs, a GPU program would typically transfer the whole 1GB and perform the
random accesses in GPU memory. Assuming the maximum observed throughput of
3100MB/s (see Figure 7), using only one tenth of the total 1GB of transferred data re-
sults in an effective random-access throughput of only 310 MB/s, comparable to GPUfs’s
worst performance using very large pages. Further, without GPUfs, random access to
files whose size exceeds the GPU’s physical memory is complex and inefficient in hand-
coded GPU programs, often requiring frequent, brief kernel invocations between each
random access. GPUfs eliminates from the application the design and implementation
complexity required to handle such cases efficiently.

In these experiments, a 128KB page size achieves a reasonable balance between
sequential and random access performance. The optimal page size in general depends
on application access pattern, however. In the current implementation, in which GPUfs
is deployed on a per-application basis, page size may easily be tailored to the particular
application’s access patterns if necessary.

6.1.3. Buffer Cache Access Performance. As the “GPUfs-lock-free” case in Figure 10
shows, GPUfs achieves 85–88% of raw memory access performance when accessing
files in the GPU buffer cache, for 128KB pages or larger. In this experiment, we invoke
112 threadblocks, each reading 64MB of data into the GPU’s on-die scratchpad memory
in chunks of 16KB. The baseline implementation reads data directly from the GPU’s
main memory, without using the GPUfs API. The GPUfs implementation reads data

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 1, Publication date: February 2014.



1:22 M. Silberstein et al.

Fig. 10. Buffer cache access performance with and without lock-free radix tree traversal, normalized by the
raw memory access time.

from the cached file via gread, passing to gread a direct pointer to the destination buffer
in scratchpad memory. The file is fully prefetched into the GPU page cache by another
previously invoked kernel, excluding PCI transfer time from the measurements. We
randomized the memory accesses so that every 16KB chunk is read from a different
file location, to cause nontrivial contention on the buffer cache data structure.

This workload mimics the behavior of linear algebra kernels, for example, which per-
form tiled operations on large matrices, prefetching data to be processed into scratchpad
memory.

We ran this experiment with a locked traversal of the buffer cache’s radix trees, for
comparison against our default lock-free implementation. As described in Section 5.2,
we normally use the lock-free traversal to access each page, resorting to locking only
in cases of high contention. When file data is fully resident in the buffer cache, GPUfs
locks the tree rarely, as confirmed later in Table III. As a result, Figure 10 shows that
the lock-free protocol performs nearly 3× better than the locked protocol across various
page sizes.

6.1.4. Matrix-Vector Product. We run a simple single-precision matrix-vector product
kernel to highlight two key benefits of the file system API: automatic data transfer
pipelining and code simplification.

This test reads an input matrix and vector from files, and writes the result to an
output file. We compare three implementations: one using GPUfs, one that explicitly
implements double buffering to overlap the PCI data transfer and the kernel execution
(CUDA naı̈ve in Figure 11), and an optimized version of the latter (CUDA optimized).
The GPUfs implementation does not call the CUDA host-side API, employing gmmap to
read the data in the kernel, gftruncate to truncate the output file at the start, gwrite to
write the output, and finally gclose to synchronize the data to disk. The GPUfs buffer
cache is sized to 2 GB, with 2MB pages. The “naı̈ve” version implements a simple
pipeline, splitting the file into four chunks and processing each chunk independently,
overlapping the file read, data transfer and kernel execution between them. Note that
the chunk size depends on the size of the input, which is convenient because every
GPU kernel invocation may use the same number of threads. The optimized version is
similar, but the chunk size is fixed at 70 MB and there are 16 independently processed
chunks. Similarly to the CUDA naı̈ve version, each chunk is processed separately, and
the file read, data transfer and kernel execution are overlapped between the chunks.
Both implementations run the same code for computing the inner-product.

We fix the input vector length to 128K elements, and vary the matrix size from a
few megabytes up to 11GB. The largest input does not fit in the GPU’s memory, and
barely fits into the CPU’s RAM. The GPUfs version requires no special treatment for
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Fig. 11. Matrix-vector product for large matrices.

this case, however. While this workload is entirely limited by the PCIe bus bandwidth,
and for the largest inputs by the disk bandwidth, it is representative of many kernels
that need to read data from disk as part of a large processing pipeline.

Figure 11 shows that the GPUfs-based implementation outperforms the double-
buffering implementation, achieving maximum PCI bandwidth equivalent to reading
sequential files (see Figure 7). The main reason for the performance benefit is that
the non-GPUfs code reads the input in large chunks (1GB each), which sometimes
causes slowdowns due spurious paging of the CPU buffer cache, stalling the CPU-GPU
transfer pipeline. GPUfs performs many shorter reads, due to the 2MB page size in
this experiment, and the performance irregularities are smoothed by the fine-grained
pipelining performed under the hood by the GPUfs’ RPC daemon.

When file size exceeds available CPU buffer cache (the last data point in the graph),
performance falls as the workload becomes disk bound. In this performance regime,
GPUfs outperforms both CUDA versions by a factor of 4. The pinned memory allocated
for large transfer buffers for the CUDA implementations competes with the CPU buffer
cache, slowing it down significantly.

On the other hand, we observe no slowdown for inputs exceeding the size of the GPU
buffer cache (larger than 2GB). The FIFO-like replacement policy employed by GPUfs
appears to offer adequate efficiency for such streaming workloads.

6.1.5. Matrix Product. Our matrix product program reads two matrices from two dif-
ferent files, multiplies them, and writes the result to a third file. We compare three
implementations: CUDA naı̈ve – the original CUDA SDK implementation with input,
output, and execution performed sequentially, CUDA pipelined – the SDK implementa-
tion but with data transfers to and from GPU memory overlapped between themselves
and with the kernel execution, and GPUfs, which accesses files from the GPU code.

We evaluate two scenarios: compute-intensive and cross-application data reuse. The
compute-intensive case evaluates GPUfs’s ability to overlap communication and com-
putation. Thus, the inputs are sized so GPU computation time is at least as long as
data transfer time. We generate inputs and outputs ranging from 1MB to 1GB by sys-
tematically doubling each dimension of the input matrices starting from 3,328×4096
by 4,096×256 to 106,492×4,096 by 4,096×2,048. We also evaluate the benefits of a
cross-application GPU buffer cache when an application is invoked multiple times
with different parameters but on the same data. Unfortunately, our prototype can-
not maintain its buffer cache in GPU memory across different CPU applications.
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Fig. 12. Relative speedup in matrix product benchmarks.

Consequently, we emulate data reuse by comparing execution time for a program that
reads its inputs from CPU buffer cache memory, and one that reads its inputs from
GPUfs’s buffer cache. Inputs range from 30MB to 1.5GB and the outputs from 1MB to
100MB, generated similarly to the compute-intensive benchmark.

We run these experiments on TESLA K20C NVIDIA GPU. Figure 12 shows the
relative performance of GPUfs and the naı̈ve and pipelined CUDA versions normal-
ized by the performance of the CUDA naı̈ve implementation. In the compute intensive
scenario GPUfs reaches throughput of 180GFLOP/s, and is on average more efficient
that the naı̈ve CUDA implementation, but falls short of the hand-tuned implemen-
tation. However, GPUfs is more efficient than the pipelined version if file contents is
reused—GPU-side cross-application data caching is capable to transparently improve
application performance.

6.2. Application Benchmarks

We now consider two more realistic I/O intensive workloads: image search, and a
“grep”-like search of text files. Both applications have highly data-dependent, un-
bounded working sets that dynamically change during computations. Such dynamic
data dependencies are challenging to handle in GPU programs without GPUfs.

6.2.1. Finding Approximately Matching Images. The first application’s input is a set of query
images and several image databases containing many small images. The goal is to
find which databases contain images matching the query images, where a match is
defined by a threshold on a similarity metric, in our case Euclidian distance. While
each image may be present in several databases, the databases must be scanned in a
predefined order and only the first match output for a given query image. This process
is representative of large-scale image registration tasks, for example, when processing
aerial photographs while attempting to find a matching image in a specific region first.

We can easily parallelize this problem by dynamically or statically splitting the input
images between the threadblocks. The databases or/and the input set may not fit in
GPU memory, however. Thus, the decision of which database to load and when must be
done at runtime depending on the outcome of prior matching attempts. For example, if
all the matching images are located at the beginning of the first database, the amount
of data to be transferred is much lower than simply transferring all of the databases
at once.

Without GPU access to the file system, the CPU must transfer the databases to the
GPU first. To avoid redundant PCI transfers, the CPU is likely to split the databases
into chunks, small enough so that the amount of redundant data transferred would
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Table III. Impact of the Buffer Cache Size on the Running Time and
Locking Behavior for the Image Search Workload. Locked access

count also includes unlocked retries.

Buffer Pages Lock-free Locked
cache size Time (s) reclaimed accesses accesses
2G 53 0 1,088,838 21,516
1G 69 11,509 547,819 574,463
0.5G 99 38,317 176,758 1,351,903

be negligible, but large enough to amortize the overheads of GPU invocation on each
chunk. This heuristic is not only suboptimal and introduces additional overheads, but
significantly complicates the code. Furthermore, before starting the kernel to process
the next chunk, all previously matched images must be removed from the input set,
requiring additional program logic to compact the input array.

GPUfs streamlines this task, making the implementation almost trivial and closely
following the design for CPU code. Both the OpenMP parallel CPU and GPUfs-based
versions of the program are about 130 ± 10 LOC, counting semicolons.4 The associated
CPU code for the GPU version is only a single line—the GPU kernel invocation.

In our synthetic workload, the images in the input and the databases are randomly
generated. Each image is represented as a 4K-element vector. The input contains
2,016 images, amounting to 31.5MB of raw data. We use three database files, of sizes
383, 357, and 400 MB, containing about 25,000 images each. The images from the
input are injected at random locations in the databases. We invoke the kernel with
28 threadblocks, 512 threads per threadblock.

We measure raw performance using a query set containing only images with no
matches in the databases, forcing all databases to be read completely. We flush the OS
page cache before each experiment. We set the GPU buffer cache size to 2GB, enough
to keep all databases in GPU memory. The GPU throughput achieved is 18GFLOP/s,
twice as fast as an 8-core CPU run using OpenMP.

Changing the Buffer Cache Size. We examine the effect of the buffer cache size on
program performance in Table III. Observe that as the amount of available memory
decreases, the ratio between lock-free and locked accesses drops due to the paging
algorithm’s attempts to free pages being used. Each threadblock runs independently
of the others, and may follow different execution paths, for example, accessing the
databases relevant to the set of input images it is processing. File access patterns
among different threadblocks quickly desynchronizes, a well-known effect in large-
scale parallel environments, requiring careful implementation and possibly redundant
work to avoid.

Finally, we evaluate our implementation’s scalability by splitting the query list
equally among up to 4 GPUs. We do not evaluate the diff-and-merge algorithm for
write-sharing, but the system interaction with the WRAPFS-based consistency dae-
mon is included (as is the case for all experiments presented in this section).

This set of experiments is performed with preliminary warmup in order to prefetch
the data into the CPU buffer cache and highlight the scaling capabilities of the system.
As confirmed in the experiments in Table IV, GPUfs shows near linear scaling with
increasing GPU count because of the lightweight consistency protocol. The first run
(“No match”) shows the performance of the more regular workload, for which GPUfs
shows ideal scaling. The second run is irregular because the number of exact matches
per processor is different, and static input partitioning does not scale as well in either

4We tried David Wheeler’s SLOCCount, but it fails to parse CUDA code.
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Table IV. Approximate Image Matching Performance. Speedup for
multi-GPU runs relative to a single GPU are given in parentheses.

#GPUs
Input CPUx8 1 2 3 4

No match 119s 53s 27s
(2.0×)

18s
(2.9×)

13s
(4.1×)

Exact match 100s 40s 21s
(1.9×)

14s
(2.9×)

11s
(3.6×)

the GPUfs or CPU versions. All 4 GPUs together outperform a single CPU execution
by about a factor of 9.

The benefits of dynamic database loading becomes apparent as we relax the matching
threshold, allowing searches to terminate earlier, and occasionally eliminating the need
to accesses lower-priority databases altogether. Runtime decreases as expected; in the
degenerate case, where images always match the first entry in the first database,
runtime falls by 400×—from 53 seconds to a minimum of 130ms—leaving only the
costs of initialization, invocation, and matching the query list with the first database
page.

6.2.2. Exact String Matching in Text Files. The last experiment is an implementation of a
constrained version of grep on a GPU. Given a dictionary and a set of text files, for each
word in the dictionary, the program determines how many times and in which files it
appears.

This application is conceptually similar to image matching, but with two key differ-
ences. The parallelization strategy is different because words are typically short (up
to 32 symbols), so each GPU thread is assigned one word, instead of one image per
threadblock in the previous case. Second, the output buffer becomes unbounded, so we
need to write the output frequently to flush the per-threadblock internal buffer.

This experiment counts the frequencies of modern English words in two datasets:
the works of William Shakespeare, and the Linux kernel source code. We search for
a specific dictionary of 58,000 modern English words,5 within the complete works of
Shakespeare as a single 6MB text file,6 and within the Linux 3.3.1 kernel source con-
taining about 33,000 files for 524MB in total. To simplify the parsing of the dictionary
file by a GPU, we reformat the dictionary to align every word on a 32-byte boundary;
none of the words in the dictionary exceed that length. The list of input files is itself
specified in a file.

Each threadblock opens one file at a time, then each thread searches for a subset of
the dictionary that it is allocated to match. Matched words are printed out together
with the file name and match count into an internal per-threadblock output buffer,
which is then periodically flushed into a global output file. Various text parsing and
formatted output tasks required us to implement limited GPU versions of the sprintf,
strtok, strlen, strcat functions not normally available to GPU code.

This workload puts extremely high pressure on GPUfs because most of the files are
fairly small (few kilobytes on average), leading to frequent calls to gopen and gclose.
Since the progress of each threadblock depends on the actual number of matching
words in its input subset, the number of concurrently open files eventually reaches the
number of concurrently running threadblocks.

As a point of reference we compared two other implementations: a simple CPU
program performing the same task on eight cores (using OpenMP), and a “vanilla” GPU
version implemented without GPUfs. Both implementations prefetch the contents of

5http://www.mieliestronk.com/wordlist.html.
6http://www.gutenberg.org/ebooks/100.
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Table V. GPU Exact String Match “grep -w” Performance

Input CPUx8 GPU-GPUfs GPU-vanilla
Linux source 6.07h 53m (6.8×) 50m (7.2×)
Shakespeare 292s 40s (7.3×) 40s (7.3×)
LOC (semicolon) 80 140 (+52) 178

the input files into a large memory buffer first, then do not read from the file system
during the matching phase.

The vanilla GPU version pre-allocates a large output buffer in the GPU memory
(5GB—all remaining GPU memory), but if it overflows, the GPU kernel crashes. In
general, our vanilla GPU version is more limited than the one using GPUfs because it
conservatively assumes that the inputs and outputs fit in the GPU’s physical memory.
Large file support would substantially complicate the implementation, whereas the
GPUfs-based version automatically supports arbitrarily large input files.

We present the results (no warmup) in Table V. Even for such a file-system intensive
workload, a single GPU outperforms the 8-core CPU by 6.8×. The GPUfs version is
only 9% slower than the vanilla GPU implementation on the Linux kernel input, but
the two versions perform similarly on one large input file. The GPUfs-based code is
shorter than the vanilla version if we exclude string parsing and formatted output
functions (52 lines of code), which are not used in the vanilla version because they are
executed on a CPU as a part of a post-processing phase.

We emphasize, however, that no serious effort has been made to optimize either the
GPU or CPU version. The main point of this exercise is to highlight the utility of the
file system API on GPUs, which opens up new ways to explore the computing power of
these massively parallel processors.

7. RELATED WORK

To our knowledge GPUfs is the first extension of the file system abstraction to modern
GPU architectures. This work touches on many areas from classic OS design and
efficient lock-free synchronization to GPU architectures and programming techniques.

General-Purpose GPU Computing. The research community has focused consider-
able effort on the problem of providing a general-purpose programming interface to the
specialized hardware supported by GPUs (GPGPU). GPGPU computing frameworks
such as CUDA [NVIDIA], OpenCL [Khronos Group], and others [Bayoumi et al. 2009;
McCool and D’Amora 2006; Buck et al. 2004; Han and Abdelrahman 2009; Ueng et al.
2008] provide an expressive platform, but none provide any way for GPUs to use host
OS services in general, or file system access in particular.

I/O for GPUs. GPUDirect from NVIDIA allows GPUs to access certain storage and
network devices without the mediation of the host OS. This technology is exposed via
proprietary, low-level hardware-specific interfaces, and does not provide higher-level
abstractions, such as a file system API.

Other Hardware Architectures. The Cell processor [Kahle et al. 2005] pioneered the
integration of parallel accelerators into the OS, allowing system calls and file accesses
from its Synergistic Processor Elements (SPEs). The SPEs share the same die as the
main processor, offering a high bandwidth channel with memory performance more like
multicore SMPs than today’s discrete GPUs. Also, we are unaware of any published
work analyzing file system design tradeoffs or I/O intensive data parallel applications,
the focus of this article.

Intel’s Xeon-Phi [Intel Corporation 2012] is a PCIe-attached accelerator sharing the
NUMA characteristics of discrete GPUs, but built of more traditional CPU cores that
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can run a full OS such as Linux. To our knowledge Xeon-Phi does not expose the
host’s file system to software on the accelerator. We expect many aspects of GPUfs to
be relevant to Xeon-Phi systems, particularly the NUMA-driven need to maximize file
cache locality. Matsuo et al. [2012] presented a file system layer for Xeon-phi, providing
access to the host file system from the card. This design does not explore file I/O in
fine-grain data-parallel workloads, however, one of the main foci of our work.

Host OS Support for GPU Programming. Stuart et al. [2010] prototyped CPU-GPU
communication via RPC, enabling GPU software to make host system calls. GPUfs
includes such a mechanism, but focuses on coping with data parallelism and locality at
design level via its GPU buffer cache, to avoid redundant data transfers and GPU-CPU
interaction.

Hydra [Weinsberg et al. 2008] and PTask [Rossbach et al. 2011a] explore dataflow
frameworks for GPU programming, offering host CPU software an API with which
to compose GPU modules. GPUfs in contrast focuses on the complementary goal of
enhancing the API available to GPU code.

Kato et al. [2012] introduced a host OS driver for GPUs that facilitates the OS-
managed sharing of GPU resources, allowing different CPU processes to share GPU
memory for example. We hope to leverage this complementary functionality to enable
future cross-application file system support in GPUfs.

Simplifying Data Management in GPUs. The complexity of data management in
discrete GPUs is well recognized. Gelado et al. [2010] suggested ADSM, an asymmetric,
CPU-centric shared memory [Gelado et al. 2010]. ADSM emulates a unified address
space between CPUs and GPUs, alleviating management problems. Unlike GPUfs,
ADSM does not support communications with a running kernel, and also introduces
new accelerator-specific abstractions, which GPUfs avoids. Recently, Ji et al. [2013]
introduced RSVM, a GPU region-based virtual memory mechanism for GPU memory
management. Similarly to GPUfs, RSVM enables GPU kernels to access large datasets
potentially exceeding GPU physical memory size by automatically swapping data in
and out of GPU memory. RSVM, however, serves different purpose and does not provide
access to CPU files from GPUs. It also introduces new APIs for manipulating memory
regions in CPU and GPU code, whereas GPUfs strives to provide paging support largely
transparently to programmers. Yet, both approaches have their benefits and their
convergence is a subject of future research.

Heterogeneous and Multicore OS Design. A number of researchers considered the
general problem of building OSes for heterogeneous architectures. The Helios oper-
ating system [Nightingale et al. 2009] targets heterogeneous systems with multiple
programmable devices. However, Helios requires the processors to expose interfaces
to three basic hardware primitives: a timer, an interrupt controller, and the ability to
catch exceptions. These services are currently not available on most GPUs, making
Helios inapplicable to such architectures. Furthermore, Helios does not account for the
specifics of massively parallel SIMD architectures, as GPUfs does.

The Barrelfish OS [Baumann et al. 2009] treats the hardware as a network of inde-
pendent, heterogeneous cores communicating via RPC. Again, it is not clear if a GPU
could run Barrelfish directly. Philosophically, Barrelfish argues for a ground-up OS re-
design based on message passing. GPUfs takes a more pragmatic view of applications
interacting through the file system, keeping the host OS largely intact.

Lock-Free Algorithms. Lock-free algorithms are a well-known technique in paral-
lel programming [Herlihy and Shavit 2008]. Our algorithm was inspired by seqlocks
[Hemminger 2002] and read-copy update (RCU) [McKenney et al. 2002]. We are un-
aware of any prior radix tree designs with lock-free traversal available for GPUs.
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8. DISCUSSION

This article advocates for providing standard operating system services and abstrac-
tions on GPUs to facilitate their harmonious integration with the rest of the system,
which we believe is a key to their broader adoption now and in the future. We imple-
ment a file system for discrete GPUs to demonstrate the feasibility and value of this
goal on real GPU hardware. We focused initially on a file system layer because files
are among the most popular data management abstractions. We primarily targeted
discrete GPUs as they are among the most commonly deployed and most powerful
high-throughput processors, and their adoption is on the rise.

We now discuss how our work relates to other efforts to improve GPU programma-
bility, and analyze the applicability of our experience with GPUfs on discrete GPUs to
emerging high-throughput processor architectures.

8.1. GPU Productivity Efforts

Recent developments make it significantly easier to accelerate computations on GPUs
without even writing any GPU code. There are comprehensive STL-like libraries of
GPU-accelerated algorithms [THR], efficient domain-specific APIs [CUD], and offload-
ing compilers [Off] that parallelize and execute specially annotated loops on GPUs.
Complex heterogeneous application pipelines may be developed using data flow pro-
gramming frameworks, such as PTask [Rossbach et al. 2011a; Rossbach et al. 2011b]
and StartPU [Augonnet et al. 2011].

These and other projects focus on GPU development using the traditional co-
processor programming model, however, where a GPU task is a passive computational
function with well-defined inputs and outputs. As a result, applications not fitting this
pattern are cumbersome to implement, because GPU code cannot perform I/O calls
directly. Thus, all running GPU threads need to stop in order to execute the I/O call
on a CPU, or one must develop application-specific CPU code to handle a GPU’s I/O
requests asynchronously.

System-wide support for operating system services, as demonstrated by GPUfs, al-
leviates this basic constraint of the programming model, and could benefit many GPU
applications including those developed with the help of other GPU productivity tools.

8.2. Hardware Trends

Discrete GPUs are not only getting faster with each generation, but are also becom-
ing more programmable and flexible. Newer architectures enable GPUs to execute
functions that previously required CPU-side code. For example, NVIDIA Kepler GPUs
support nested parallelism in hardware, allowing invocation of new GPU kernels from
GPU code without stopping the running kernel first. Similarly, GPUs now provide di-
rect access to peripheral devices, such as storage and network adapters, eliminating
the CPU from the hardware data path. Future high throughput processors [Keckler
et al. 2011] are expected to enable more efficient sequential processing. These trends
reemphasize the need for high level services on GPUs themselves. Besides making
GPUs easier to program, these services will naturally exploit emerging hardware ca-
pabilities, and avoid performance and power penalties of switching between the CPU
and the GPU to perform I/O calls.

Intel’s Xeon-Phi is an extreme example of GPUs gaining more CPU-like capabili-
ties. Xeon-Phi shares many conceptual similarities with discrete GPUs, such as slow
sequential performance and fast local memory. However, it uses more traditional
CPU cores, and runs a full Linux operating system, providing a familiar execution
environment to the programs it executes. Xeon-Phi’s software architecture supports
standard operating system services. The current Xeon-Phi system stack, however, does
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not allow efficient access to host files and network, and programmers are encouraged to
follow a more traditional co-processor programming model as in GPUs. We believe that
support for accessing host resources by Xeon-Phi programs will soon be available, but
its exact design and performance characteristics remain to be seen. We expect many
aspects of GPUfs to be relevant to Xeon-Phi systems, particularly the NUMA-driven
need to maximize file cache locality.

Emerging hybrid processors combine both a GPU and a CPU on the same die. The
GPU and CPU share physical memory, but have separate address spaces. Newer
architectures, for example, AMD’s just-announced Kaveri processor, are expected to
add support for sharing a single virtual memory address space [hUM]. Communicating
through shared memory makes CPU-GPU data transfers unnecessary, providing a
much faster and easier way to exchange data between the processors. However, the
programming models for hybrid and discrete GPUs are largely the same, which means
that GPU programs executing on hybrid GPUs cannot directly access host resources.
Thus, we believe that portable and familiar operating system interfaces would be
useful for both discrete and hybrid GPUs. Of course, the availability of shared memory
between the CPU and the GPU opens up many optimization opportunities for how
the GPUs and CPUs interact. Regardless of where the engineering details end up, we
expect GPUfs’s design lessons to remain relevant for massively parallel API calls.
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