
TxLinux: Using and Managing Hardware Transactional
Memory in an Operating System

Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E. Ramadan,
Aditya Bhandari, and Emmett Witchel

Department of Computer Sciences, University of Texas at Austin
{rossbach,osh,porterde,ramadan,bhandari,witchel}@cs.utexas.edu

ABSTRACT
TxLinux is a variant of Linux that is the first operating system to
use hardware transactional memory (HTM) as a synchronization
primitive, and the first to manage HTM in the scheduler. This paper
describes and measures TxLinux and discusses two innovations in
detail: cooperation between locks and transactions, and the integra-
tion of transactions with the OS scheduler. Mixing locks and trans-
actions requires a new primitive, cooperative transactional spin-
locks (cxspinlocks) that allow locks and transactions to protect the
same data while maintaining the advantages of both synchroniza-
tion primitives. Cxspinlocks allow the system to attempt execution
of critical regions with transactions and automatically roll back to
use locking if the region performs I/O. Integrating the scheduler
with HTM eliminates priority inversion. On a series of real-world
benchmarks TxLinux has similar performance to Linux, exposing
concurrency with as many as 32 concurrent threads on 32 CPUs in
the same critical region.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: [Parallel Architecture]; D.4.1
[Operating Systems]: [Process Management]; D.1.3 [Programming
Techniques]: [Concurrent Programming]

General Terms
Design, Performance

Keywords
Transactional Memory, Operating Systems, Optimistic Concurrency,
Synchronization, MetaTM, TxLinux

1. INTRODUCTION
Small-scale chip multiprocessors (CMP) are currently the norm,

and all major processor manufacturers plan to scale the number of
cores on a chip in coming years, possibly to thousands of nodes.
Programming these systems is a challenge, and transactional mem-
ory has gained attention as a technique to reduce parallel program-
ming complexity while maintaining the performance of fine-grained

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07,October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

locking code. Achieving scalable operating system performance
with locks and current synchronization options for systems with
over a thousand cores comes at a significant programming and code
maintenance cost. Transactional memory can help the operating
system maintain high performance while reducing coding complex-
ity.

Transactional memory is a programming model that makes con-
current programming easier. A programmer delimits the regions
of code that access shared data and the system executes these re-
gions atomically and in isolation, buffering the results of individual
instructions, and restarting execution if isolation is violated. The
result is a serializable schedule of atomic transactions. The pro-
grammer benefits in several ways. Because there are fewer pro-
gram states, reasoning about the atomic execution of large sec-
tions of code is simplified. The performance of optimistic exe-
cution comes at no additional effort. Because the system enforces
atomicity for the programmer, the burden of reasoning about par-
tial failures is lifted as well. Moreover, transactions do not suffer
many of the well-known challenges associated with lock-based par-
allel programming, such as susceptibility to deadlock and lack of
composability. Hardware transactional memory (HTM) provides
an efficient hardware implementation of transactional memory that
is appropriate for use in an OS.

General purpose operating systems can benefit from the simpli-
fied programming of hardware transactional memory, but transac-
tions cannot simply replace or eliminate locks for several reasons.
Proposed HTM designs have limitations that prohibit transactions
in certain scenarios such as performing I/O. In a large legacy sys-
tem there are practical difficulties in converting every instance of
locking to use transactions, and any partial conversion will require
the co-existence of locks and transactions. Finally, transactions are
an optimistic primitive which perform well when critical regions
do not interfere with each other, while more conservative primi-
tives like locks usually perform better for highly contended critical
sections.

We introduce thecxspinlock(cooperative transactional spinlock),
a primitive that allows locks and transactions to work together to
protect the same data while maintaining both of their advantages.
Current transactional memory proposals require every execution of
a critical section to be protected by either a lock or a transaction,
while cxspinlocks allow a critical region to sometimes be protected
by a lock and sometimes by a transaction. Also in contranst to
current transactional memory designs, cxspinlocks allow different
critical regions that access the same data structure to be protected
by a transaction or by a conventional lock.

Cxspinlocks enable a novel way of managing I/O within a trans-
action—the system dynamically and automatically chooses between
locks and transactions. A thread can execute a critical region in a

Appears in SOSP 2007

transaction, and if the hardware detects that the thread is attempting
an I/O operation (e.g., a write to an I/O port), the hardware prevents
the I/O request from issuing and transfers control to the cxspin-
lock implementation. The cxspinlock will ensure that the thread
re-executes the critical region exclusively, blocking other transac-
tional and non-transactional threads. Finally, cxspinlocks provide a
convenient API for converting lock-based code to use transactions.

Transactions enable the solution to the long-standing problem of
priority inversion due to locks. We demonstrate the modifications
necessary in the TxLinux scheduler and the transactional memory
hardware to nearly eliminate priority and policy inversion. More-
over, the OS can improve its scheduling algorithms to help man-
age high contention by leveraging a thread’s transaction history to
calculate the thread’s dynamic priority or deschedule conflicting
threads.

This paper makes the following contributions.
1. A novel mechanism for cooperation between transactional

and lock-based synchronization of a critical region. The co-
operative transactional spinlock (cxspinlock) can be called
from a transactional or non-transactional thread, and it favors
the greater parallelism enabled by transactions.

2. A novel mechanism for handling I/O within transactions that
allows a transaction that performs I/O to automatically restart
execution and acquire a conventional lock.

3. An HTM mechanism to nearly eliminate priority inversion,
and OS scheduling techniques that use information from HTM
to increase system throughput.

4. Insights and measurements from converting an operating sys-
tem to use hardware transactional memory as a synchroniza-
tion primitive.

This paper provides an HTM primer (Section 2), motivates trans-
actions in the OS, describes the HTM model, and explains the basic
issues with adding transactions to OS code (Section 3). Section 4
explains cxspinlocks and how they are used to tolerate I/O in trans-
actions. Section 5 discusses the differences in user and kernel trans-
actional programming models. Section 6 discusses the scheduler
modification that nearly eliminate priority inversion and that use
information from HTM to increase system throughput. Section 7
contains the insights and measurements of TxLinux. We discuss
related work in Section 8, concluding with Section 9.

2. TRANSACTIONAL MEMORY PRIMER
This section provides background on hardware transactional mem-

ory. Operating systems, along with most multi-threaded applica-
tions, make heavy use of different primitives to synchronize access
to memory and other resources. Traditional primitives include spin-
locks and semaphores.

Hardware transactional memory is useful as a replacement for
polling synchronization primitives such as spinlocks and sequence
locks [41]. It eliminates lock variables and the coherence cache
misses they generate, and simply specifies code regions that exe-
cute atomically and in isolation. The system provides a globally
consistent order for transactions and reverts state changes done in a
transaction if the transaction does not commit. Threads that do not
attempt conflicting memory accesses can execute the same transac-
tion concurrently, which benefits performance scalability.

Transactions are modular; a thread executing a transaction can
call into a module that starts another transaction. The second trans-
actionnestsinside the first. All patterns of transaction nesting are
free from deadlock and livelock. While there are different nesting
semantics explored in the literature [32, 36, 37], flat nesting is the
simplest. Under flat nesting, the data from all nested transactions
are flattened into one big transaction.

The instructions added to the ISA to support HTM are shown in
Table 1. These instructions are specific to our HTM implementa-
tion (MetaTM), but they illustrate the general principles of HTM.
Thexbegin andxend primitives start and end a transaction. Start-
ing a transaction causes the hardware to buffer all memory reads
and writes until the transaction ends successfully (commits) and
the updates are atomically made visible to the rest of the system.

A transactionalconflict occurs when the write-set of one trans-
action intersects with the union of the read-set and write-set of an-
other transaction. The read(write)-set is defined as the set of ad-
dresses read(written) by a transaction. Such a conflict compromises
the isolation of the transaction, so only one transaction may pro-
ceed. This safety property is calledconflict serializability, and it
is the most efficient method for a transactional system to provide
provable isolation [15].

The hardware/software logic that determines which of two con-
flicting transactions may proceed is called thecontention manager.
Due to performance constraints, some level of contention manage-
ment usually happens in hardware, but complicated and rare cases
can be handled in software. The losing thread in a conflict will dis-
card all of its buffered changes and restart execution at thexbegin.
The approach to contention management may be complicated by
asymmetric conflicts, which is a conflict where a nontransactional
memory operation conflicts a transactional one, andcomplex con-
flicts, where an operation causes a conflict that involves more than
two transactions (e.g. a write to a location that has been read by
many readers).

In order to make programming with transactions easy, modern

Primitive Definition
xbegin Instruction to begin a transaction.
xend Instruction to commit a transaction.
xrestart Instruction to restart a transaction
xgettxid Instruction to get the current transaction iden-

tifier, which is 0 if there is no currently active
transaction.

xpush Instruction to save transaction state and sus-
pend current transaction. Used on receiving
an interrupt.

xpop Instruction to restore previously saved trans-
action state and continuexpushed transaction.
Used on an interrupt return.

xtest If the value of the variable equals the argu-
ment, enter the variable into the transaction
read-set (if a transaction exists) and return
true. Otherwise, return false.

xcas A compare and swap instruction that subjects
non-transactional threads to contention man-
ager policy.

Conflict One transactional thread writes an address that
is read or written by another transactional
thread.

Asymmetric
conflict

A non-transactional thread reads(writes) an
address written(read or written) by a transac-
tional thread.

Contention Multiple threads attempt to acquire the same
resource e.g., access to a particular data struc-
ture.

Transaction
status word

Encodes information about the current trans-
action, including reason for most recent
restart. Returned fromxbegin.

Table 1: Hardware transactional memory concepts in
MetaTM.

HTM designs do not place limits on the size of the data contained
in a transaction. Dealing with transactions that overflow the hard-
ware state is calledvirtualizing transactions. There are many tech-
niques for virtualization in the recent literature, including using di-
rect hardware support [44], OS page-based data structures [9, 10],
or a backup software transactional memory system [11,25,49]. It is
unknown how prevalent large transactions will be, but even if they
are rare, the belief in the architecture community is that they need
to be supported in order to provide a good programming model.

3. HTM IN AN OS
This section motivates the need for HTM within an OS, and de-

scribes our hardware model, called MetaTM. The section then dis-
cusses the basic strategy for and challenges of converting Linux
synchronization primitives to use HTM.

3.1 OS benefits from HTM
Synchronization makes OS programming and maintenance dif-

ficult. In one comprehensive study of Linux bugs [8], 346 of 1025
bugs (34%) involved synchronization, and another study [13] found
4 confirmed and 8 unconfirmed deadlock bugs in the Linux 2.5
kernel. The complexity of synchronization is evident in the Linux
source filemm/filemap.c that has a 50 line comment on the top
of the file describing the lock ordering used in the file. The com-
ment describes locks used at a calling depth of 4 from functions
in the file. Moreover, locking is not modular; a component must
know about the locks taken by another component in order to avoid
deadlock. Locking has many other known disadvantages such as
priority inversion, convoys, lack of composability, and failure to
scale with problem size and complexity. [20,51]

Transactional memory is more modular than locks, easing code
maintenance and reducing the likelihood of bugs. Transactions also
provide performance scalability allowing multiple, non-interfering
threads to concurrently execute in a critical section. Modularity and
concurrency thus guide many of the innovations in TxLinux.

3.2 MetaTM, our HTM model
MetaTM looks like a standard cache-coherent shared memory

multiprocessor (SMP) or chip multiprocessor (CMP), and it uses
the cache-coherence mechanism to provide transactional memory.
The design is similar to LogTM [35] and has been published previ-
ously [45]. The architectural interface is listed in Table 1.

We call a kernel thread that has started a transaction atransac-
tional thread, while a thread that is not executing a transaction is a
non-transactional thread.

Conflict detection in MetaTM is eager: the first memory access
that causes a conflict also causes one of the transactions to restart.
MetaTM useseagerversion management [35]—newly written mem-
ory values are stored in place, and the old values are copied to an
undo log managed by the processor.

To facilitate interrupt handling, MetaTM supports multiple ac-
tive transactions for a single thread of control [32, 46]. A thread
can stop a current transaction usingxpushand restore it usingxpop
(see Table 1). The ability to save and restore transactions in LIFO
order allows interrupt handlers in TxLinux to use transactions [45].
An interrupt handler executes anxpush to suspend any current run-
ning transaction, leaving the handler free to use transactions itself.

In some HTM proposals, atransaction status wordis used to
communicate information to the current thread about its transac-
tional state [4, 44]. In MetaTM, the transaction status word is re-
turned as a result ofxbegin. The status word indicates whether this
is the first execution of a transaction or the transaction has restarted.
If the transaction has restarted, the status word indicates the reason

s p i n _ l o c k (& l−> l i s t _ l o c k) ;
o f f s e t = l−>c o l o u r _ n e x t ;
i f (++ l −>c o l o u r _ n e x t >= cachep−>c o l o u r)

l −>c o l o u r _ n e x t = 0 ;
s p i n _ u n l o c k (& l−> l i s t _ l o c k) ;
i f (! (ob jp = kmem_getpages (cachep , f l a g s ,

node id))) go to f a i l e d ;
s p i n _ l o c k (& l−> l i s t _ l o c k) ;
l i s t _ a d d _ t a i l (& s labp−> l i s t ,&(l −>s l a b s _ f r e e)) ;
s p i n _ u n l o c k (& l−> l i s t _ l o c k) ;
xbegin ;
o f f s e t = l−>c o l o u r _ n e x t ;
i f (++ l −>c o l o u r _ n e x t >= cachep−>c o l o u r)

l −>c o l o u r _ n e x t = 0 ;
xend ;
i f (! (ob jp = kmem_getpages (cachep , f l a g s ,

node id))) go to f a i l e d ;
xbegin ;
l i s t _ a d d _ t a i l (& s labp−> l i s t ,&(l −>s l a b s _ f r e e)) ;
xend ;

Figure 1: A simplified example of fine-grained locking from the
Linux function cache_grow in mm/slab.c, and its transac-
tional equivalent.

for the restart, such as restart due to a conflict, or manual restart
from thexrestart instruction. Threads that execute anxrestart may
also set user-defined codes to communicate more detailed informa-
tion about the reason for the restart when the transaction resumes.

MetaTM supports only flat nesting. Because most transactions
in TxLinux are short, averaging 51 instructions (449 cycles), the
benefit of closed-nested transactions [37,39] is small. Cxspinlocks
(Section 4) and thexpush andxpop instructions provide most of
the functionality, e.g. handling I/O, that is provided in other systems
by open-nested transactions or other forms of suspending transac-
tional context [7,36,56].

3.3 Using transactions in the OS
Many OSes and other large concurrent programs have required

great programmer effort to make locks fine-grained—i.e., they only
protect the minimum possible data. Figure 1 shows an example
from Linux where a list lock in the kernel memory allocator is
dropped for the work done inkmem_getpages. kmem_get-
pages does not acquire the list lock, so it would be correct for the
code to hold it while calling the function. The lock is released and
re-acquired to increase concurrency; many kernel threads can call
kmem_getpages concurrently. One of the big features from the
transition from the Linux 2.4 series to the 2.6 series is the reduced
use of the big kernel lock, a single large lock that creates a serial
bottleneck in the 2.4 series.

Figure 1 shows the conversion of lock-based code to use hard-
ware memory transactions, using thexbegin and xend instruc-
tions. In this example, the same lock protects disjoint but related
data, preventing different threads from executing these two critical
sections concurrently. Transactions allow such concurrency, and
concurrency leads to performance scalability.

Keeping lock-based critical sections short is important for scal-
able performance and it benefits kernel response latency, but trans-
actional regions do not need to be as short as lock-based critical
regions to achieve the same performance. Because only a single
thread can be in a locked critical section while every other thread
must wait, minimizing critical section size is paramount when us-
ing locks. By contrast, transactions allow all threads into a crit-
ical section, where (depending on the memory cells they access)
they can safely execute in parallel–reducing the need to make them
short. Because larger critical regions are easier to reason about and

maintain, transactions can require less engineering effort for simi-
lar performance.

As the code in Figure 1 makes clear, one of the most straight-
forward ways to introduce transactions into the kernel is to convert
lock acquire and release to transaction start and end. Spinlocks are
held for short instruction sequences in Linux. Spinlocks are rarely
held while a process sleeps, though this does happen if the process
takes a page fault with a lock held. There are over 2,000 static
instances of spinlocks in the Linux kernel, and most of the trans-
actions in TxLinux result from converted spinlocks. TxLinux also
converts reader/writer spinlock variants to transactions.

Atomic instructions, like the x86 locked compare and exchange
instruction, guarantee that a single read-modify-write operation will
be atomically committed: these are safely subsumed by transac-
tions, and indeed are currently implemented using a mechanism
that is similar to that used in for HTM [24].

Sequence locks (seqlocks) are a form of software transaction in
the current Linux kernel. Readers loop reading the seqlock counter
at the start of the loop, performing any read of the data structure
that they need, and then read the seqlock counter at the end of the
loop. If the counter values match, the read loop exits. Writers lock
each other out and they increment the counter both before they start
updating the data and after they end. Readers fail if they read an
odd counter value as it means a writer was doing an update con-
current with their reading. TxLinux converts seqlocks to transac-
tions. Because transactions restart on conflict, TxLinux eliminates
the instruction overhead of the software retry loop and enables par-
allel execution of writers (though programmers usually optimize
seqlocks to have mostly single writers).

There are several challenges that prevent rote conversion of a
lock-based operating system like Linux to use transactions, includ-
ing semantic abuse of lock functions and obscure control flow [46].
These issues are discussed in detail in Section 5.1.

4. COOPERATIVE TRANSACTIONAL
LOCKING

In order to ensure isolation, HTM systems must be able to roll
back the effects of a transaction that has lost a conflict. However,
because HTM can only roll back processor state and the contents of
physical memory, there are operations that are difficult to perform
as a part of a transaction. For example, the effects of I/O cannot be
rolled back, and executing I/O operations as part of a transaction
can break the atomicity and isolation that transactional systems are
designed to guarantee. This is known as the “output commit prob-
lem” [12]. Critical sections protected by locks will not restart and
so may freely perform I/O.

In order to allow both transactions and conventional locks in the
operating system, we propose a synchronization API that affords
their seamless integration. Our API is called cooperative transac-
tional spinlocks, orcxspinlocks. Cxspinlocks allow different execu-
tions of a single critical section to be synchronized with either locks
or transactions. This freedom enables the concurrency of transac-
tions when possible and enforces the safety of locks when neces-
sary. Locking may be used for I/O, for protection of data structures
read by hardware (e.g., the page table), or for high-contention ac-
cess paths to particular data structures (where the performance of
transactions might suffer from excessive restarts). The cxspinlock
API also provides a simple upgrade path to let the kernel use trans-
actions in place of existing synchronization.

Cxspinlocks are necessary for the kernel only; they allow the
user programming model to remain simple. Users do not need them
because they cannot directly access I/O devices in Linux. Blocking

Non-Transactional Transactional
spin_-
lock

Critical region
locked. Thread
always gets exclusive
access, kicks any
transactional thread
out of the critical
region, though the
transactional thread
can then reenter.

Critical region
transactional. Only
one transactional
thread enters at a time
because of conflicts
on the lock variable.
No good way to
perform I/O in critical
region.

cx_ex-
clusive

Critical region
locked. Thread defers
to contention
manager to decide if
it can preempt
transactional threads
in the critical region.

Revert outer
transaction to use
mutual exclusion.

cx_-
opti-
mistic

Critical region is transactional, with
multiple transactional threads in critical
region. If a thread requires mutual
exclusion, the transaction restarts and
reverts tocx_exclusive.

Table 2: Summary of what happens when various lock types
are called from transactional and non-transactional threads.

direct user access to devices is a common OS design decision that
allows the OS to safely multiplex devices among non-cooperative
user programs. Sophisticated user programs that want transactions
and locks to coexist can use cxspinlocks, but it is not required.

4.1 Problems using spinlocks within
transactions

Using conventional Linux spinlocks within transactions is pos-
sible and will maintain mutual exclusion. However, this approach
loses the concurrency of transactions and lacks fairness. If a non-
transactional thread holds a lock, a transactional thread will spin
until the lock is released. If a transactional thread acquires a tradi-
tional lock, it writes to the lock variable, adding the lock to the
transaction’s write-set. If another thread, either transactional or
non-transactional, tries to enter the critical section, it must read
the lock variable. This will cause a conflict, and one thread must
restart. If the reading thread is transactional, the contention man-
ager will choose one thread to restart. If the reading thread is non-
transactional, then this is an asymmetric conflict that must be de-
cided in favor of the non-transactional thread and the transactional
thread will restart. The progress of transactional treads is unfairly
throttled by non-transactional threads. Conventional spinlocks pre-
vent multiple transactional threads from executing a critical region
concurrently, even if it were safe to do so. A transactional thread
that acquires a spinlock can restart, therefore it cannot perform I/O.

Cxspinlocks allow a single critical region to be safely protected
by either a lock or a transaction. A non-transactional thread can
perform I/O inside a protected critical section without concern for
undoing operations on a restart. Many transactional threads can
simultaneously enter critical sections protecting the same shared
data, improving performance. Simple return codes in MetaTM al-
low the choice between locks and transactions to be made dynami-
cally, simplifying programmer reasoning.

4.2 Cooperative transactional spinlocks
Cooperative transactional spinlocks (cxspinlocks) are a locking

primitive that allows a critical section to be protected both by a
transaction or by mutually exclusive locks. Cxspinlocks do not

require hardware support beyond our simple model, and ensure a
set of behaviors that allow both transactional and non-transactional
code to correctly use the same critical section while maintaining
fairness and high concurrency:

• Multiple transactional threads may enter a single critical sec-
tion without conflicting when on the lock variable. A non-
transactional thread will exclude both transactional and other
non-transactional threads from entering the critical section.

• Transactional threads poll the cxspinlock without restarting
their transaction. This is especially important for acquiring
nested cxspinlocks where the thread will have done transac-
tional work before the attempted acquire.

• Non-transactional threads acquire the cxspinlock using an in-
struction (xcas) that is arbitrated by the transactional con-
tention manager. The contention manager can implement
many kinds of policies favoring transactional threads, non-
transactional threads, readers, writers, etc.

Cxspinlocks are acquired using two functions:cx_exclusive
andcx_optimistic. Both functions take a lock address as an
argument. Table 2 summarizes the semantics of these functions
as well as traditional spinlock functions.cx_optimistic is a
drop-in replacement for spinlocks and is safe for almost all locking
done in the Linux kernel (the exceptions are a few low-level page
table locks and locks whose ownership is passed between threads,
such as that protecting the run queue).cx_optimistic opti-
mistically attempts to protect a critical section using transactions.
If a code path within the critical section protected bycx_opti-
mistic requires mutual exclusion, then the transaction restarts
and acquires the lock exclusively.

Unlike in pure transactional programming, critical regions pro-
tected bycx_optimistic do not necessarily execute in isola-
tion. A code path within the critical section may forcecx_opti-
mistic to revert to locking, which allows other threads to see
intermediate updates as execution progress through the critical re-
gion.

Control paths that will always require mutual exclusion (e.g.,
those that always perform I/O) can be optimized withcx_exclu-
sive. Other paths that access the same data structure may execute
transactionally usingcx_optimistic. Allowing different crit-
ical regions to synchronize with a mix ofcx_optimistic and
cx_exclusive assures the maximum concurrency while main-
taining safety. Table 3 shows a simplified state transition diagram
for cxspinlocks, with the transitions between the three conceptual
states of free, exclusive and transactional.

4.3 Implementing cxspinlocks
Cxspinlocks are identical in data layout to conventional Linux

spinlocks, they occupy a single signed byte. Non-transactional
threads lock the spinlock in order to exclude other threads from en-
tering the critical section. Transactional threads make sure the lock
is unlocked before entering the critical section. They also make
sure the lock variable is in their read set. Any non-transactional
thread that acquires the lock will write the lock variable causing
a conflict that will restart any transactional threads in the critical
region, removing them from the critical region.

Cxspinlocks use the transaction status word to pass information
about transaction restarts to the beginning of a transaction.cx_-
optimistic uses the status word to determine whether the crit-
ical section may be protected by a transaction or should revert to
mutual exclusion.

4.3.1 cx_optimistic
Figure 2 shows howcx_optimistic starts a transaction that

waits for non-transactional threads. A transaction is started with

vo id c x _ o p t i m i s t i c (l ock) {
s t a t u s = xbegin ;
/ / Use mutua l e x c l u s i o n i f r e q u i r e d
i f (s t a t u s == NEED_EXCLUSIVE) {

xend ;
/ / x r e s t a r t f o r c l o s e d n e s t i n g
i f (g e t t x i d) x r e s t a r t (NEED_EXCLUSIVE) ;
e l s e c x _ e x c l u s i v e (l ock) ;
r e t u r n ;

}
/ / Sp in w a i t i n g f o r l ock t o be f r e e (==1)
wh i le (x t e s t (lock , 1)==0) ; / / s p i n
d i s a b l e _ i n t e r r u p t s () ;

}
vo id c x _ e x c l u s i v e (l ock) {

/ / Only f o r non− t r a n s a c t i o n a l t h r e a d s
i f (x g e t t x i d) x r e s t a r t (NEED_EXCLUSIVE) ;
wh i l e (1) {

/ / Sp in w a i t i n g f o r l ock t o be f r e e
wh i le (∗ l o ck != 1) ; / / s p i n
d i s a b l e _ i n t e r r u p t s () ;
/ / Acqu i re l ock by s e t t i n g i t t o 0
/ / C o n t e n t i o n manager a r b i t r a t e s lock
i f (xcas(lock , 1 , 0)) b reak ;
e n a b l e _ i n t e r r u p t s () ;

}
}
vo id cx_end (l ock) {

i f (x g e t t x i d) {
xend ;

} e l s e {
∗ l o ck = 1 ;

}
e n a b l e _ i n t e r r u p t s () ;

}

Figure 2: Functions for acquiring cxspinlocks with either
transactions, or mutual exclusion. Just as current Linux pro-
grammers choose between locking routines that disable inter-
rupts from those that do not, there are versions ofcx_opti-
mistic and cx_exclusive that disable interrupts (shown),
and ones that do not (simply remove the interrupt manipula-
tion lines in the above code).

xbegin. The returned status word is checked to determine whether
this transaction has restarted because mutual exclusion is required.
If so, the critical section is entered exclusively, usingcx_exclu-
sive. If mutual exclusion is not required, the thread waits for the
spinlock to be unlocked, indicating there are zero non-transactional
threads in the critical section. Any number of transactional threads
can enter an unlocked critical section concurrently. The transaction
hardware ensures isolation.

The code that polls the lock usesxtest to avoid adding the lock
variable into its read set if the lock remains locked. A simple load
would add the variable into the read set no matter the state of the
lock. Putting a locked lock into the read set of a transaction ensures
a transaction restart when the lock is unlocked. These restarts can
harm performance, especially for nested calls tocx_optimis-
tic. Note that some architectures have an instruction to reduce
power consumption during lock polling (e.g.,pauseon x86), and
such an instruction would reduce the power consumed by the CPU
in the cxspinlock polling loops.

The code shows interrupts being disabled before returning from
cx_optimistic. All of the code in Figure 2 disables interrupts,
corresponding to thespin_lock_irq functions in Linux. The
programmer chooses between versions of cxspinlock functions that
disable or do not disable interrupts, just as she currently chooses be-
tween versions of spinlock functions that disable or do not disable

Event
State

cx_exclusive cx_atomic cx_unlock I/O during
transaction

Sfree AC: thread proceeds.
NS:Sexcl

AC: thread pro-
ceeds.
NS:Stxnl

(invalid) (invalid)

Stxnl AC: thread waits.||
AC: restart txns,
thread proceeds. NS:
Sexcl

AC: thread pro-
ceeds

CN: no other threads. NS:Sfree ||
CN: waiting nontx threads.
AC: release one. NS:Sexcl

AC: restart transac-
tion
NS:Sexclusive

Sexcl AC: thread waits. AC: thread waits. CN: no waiting threads. NS:Sfree ||

CN: waiting exclusive threads. AC: release one exclusive thread.||

CN: waiting atomic threads. AC: release all atomic. NS:Stxnl

(ok)

Table 3: Simplified conceptual state transition table for cxspinlocks, when acquired from non-transactional threads. Cell format is:
CN=precondition, AC=action taken„ NS=next state. Alternatives are separated by vertical bars. The initial state isSfree.

interrupts. The disabling interrupts case is shown as it is more gen-
eral. Simply eliminate the interrupt manipulation code to obtain the
simpler case.

4.3.2 cx_exclusive
Programmers usecx_exclusive to protect a critical section

using true mutual exclusion (Figure 2). First,cx_exclusive
usesxgettxid to detect an active transaction. If there is an active
transaction, that transaction must also be made exclusive. The code
issuesxrestart with a status codeNEED_EXCLUSIVE to transfer
control to the outermost transaction (started bycx_optimis-
tic) indicating that exclusion is required.

If there is no active transaction, the non-transactional thread en-
ters the critical section by locking the cxspinlock as a traditional
Linux test and test and set spinlock. The spinlock ensures that only
one non-transactional thread may enter the critical section. The
code spins waiting for the lock value to become 1, indicating the
lock is free. Then interrupts are disabled, and the non-transactional
thread attempts to grab the lock with thexcas instruction. If the
thread is successful, it returns with the lock held and interrupts dis-
abled. If it is unsuccessful, it renables interrupts and retries (mim-
icking the current way Linux spins for a lock with interrupts en-
abled).

The xcas instruction lets the contention manager set policy for
a lock, favoring transactional threads, mutually exclusive threads,
readers, writers, high priority threads, etc. Many of the locking
primitives in Linux favor readers or writers to differing degrees
and careful programmer control of who is favored improves perfor-
mance. When a non-transactional thread tries to obtain a lock, the
contention manager can decide that the thread should wait for any
current readers, and it will refuse to give the lock to the writer until
the current readers are done. A CPU manufacturer can decide that
all compare and swap instructions participate in contention man-
agement in order to avoid adding a new instruction to the ISA. One
of the key features of cxspinlocks is fairness between transactional
and non-transactional threads, which requires a non-transactional
primitive that is subject to contention manager policy.

4.3.3 Handling I/O in transactions
Combined with basic hardware-provided information about cur-

rent transactions, cooperative transactional spinlocks provide a sim-
ple software solution for performing I/O within a transaction. The
operating system may initiate either memory-mapped or port I/O.
MetaTM detects I/O initiated by the processor. In the case of port
I/O, the processor can easily detect the use of I/O instructions.
Memory regions mapped to I/O devices must already be indicated
to the processor by marking them as uncacheable (e.g. through
MTRRs or the page table on recent Pentium processors). The pro-
cessor may assume that accesses to uncacheable memory regions
represents memory-mapped I/O. If MetaTM detects I/O during an

active transaction, the port or memory access is cancelled before
the operation can affect the hardware. The current transaction sta-
tus is set toNEED_EXCLUSIVE to inform the caller that mutual
exclusion is required, and the transaction is restarted.

The cxspinlock API does not inter-operate well with simple trans-
actions started withxbegin without checking the return code. A
transaction started withxbegincan call a cxspinlock function which
might require exclusion. If the initialxbegindoes not check the re-
turn code, an infinite loop is possible. The kernel can only call
xbegin when it knows that the critical region will never require a
cxspinlock, but we hope cxspinlocks are efficient enough to obviate
the need for nakedxbegins.

5. USER VS. KERNEL TRANSACTIONAL
PROGRAMMING MODEL

One of the guiding principles of the TxLinux design is that pro-
viding a simple programming model for user programs is more im-
portant than the programming model for the operating system. We
believe operating system implementors need the benefits of trans-
actional memory, but the kernel programming environment has al-
ways been harsher terrain than user-level.

Cxspinlocks sacrifice some generality and some benefits of trans-
actions in order to successfully integrate transactions with locking.
But fighting the battle of lock ordering in the kernel means not hav-
ing to fight it at user level. Cxspinlocks have additional benefits in
that the kernel can use best-effort transactional hardware without
virtualization. If a cxspinlock overflows the transactional hardware
limits, it is restarted in exclusive (lock) mode. This allows the OS
to virtualize user-level transactions without the recursive problem
of virtualizing its own transactions (though TxLinux does not yet
do this).

This section discusses various tradeoffs made by TxLinux re-
garding its programming model. It first discusses the effort required
to modify Linux to use transactions. It then talks about system calls
in user-level transactions, and concludes with a frank discussion of
some of the problems of cxspinlocks.

5.1 Converting Linux to TxLinux
We converted Linux to use transactions as a synchronization mech-

anism twice. The first time was an ad-hoc process that consisted of
using our information about highly contented locks to replace those
locks with transactions. The biggest hurdle in this ad-hoc process is
critical regions that perform I/O. These regions cannot be protected
by simple transactions. The process of identifying locks, convert-
ing and testing them was time-consuming and difficult. Ultimately
we converted about 30% of the dynamic calls to locking functions
to use transactions. This required effort from five developers over
the course of nearly a year. 5,500 lines of kernel source were added
and 2,000 were modified in 265 files.

The first conversion of locks to transactions discovered several
uses (or abuses) of locks that are not amenable to transactions [46].
One example is the run queue lock which is locked in one process
context and released after the context switch in a different process
context. Another example is one of the locks that protects the page
table. Because the page table is read by hardware and affects pro-
cessor state that is not rolled back by MetaTM (the TLB), it is not
clear how to deal with a write to the page table in a transaction.
These locks were not converted to use transactions.

The second conversion of Linux to use transaction used the cxspin-
lock API. This conversion required two months of effort by a sin-
gle developer. Most of this time was spent working out the proper
hardware support. Spinlocks are transparently replaced by calls
to cx_optimistic, requiring the addition of a single 390 line
source file. The difficult locks in the kernel, like the run queue
lock, are converted to usecx_exclusive. These modifications
require 86 lines in 7 files.

5.2 Decoupling I/O from system calls
The issues of I/O in a transaction and a system call in a trans-

action are often conflated by the current literature [36, 56]. This
conflation has harmed the programming model. System calls made
within a user transaction are not isolated, and several proposals for-
bid the OS from starting a transaction if it is called from a user-level
transaction [36, 56]. We believe that the operating system, as a
performance-critical parallel program with extremely complicated
synchronization, should be able to benefit from transactional mem-
ory [45].

Most system calls, even those that change state visible to other
processes, do not actually change the state of I/O devices. Creating
and writing a file in the file system changes kernel data structures,
but it does not (necessarily) write anything to disk. If TxLinux
can buffer in memory the effect of system calls initiated by a user
transaction, then it can decouple I/O from system calls. For file
systems that do perform synchronous disk writes, a transactional
interface to the file system is required (an interface already present
in Linux’s ext3 and Windows’ NTFS [34,53]).

The task of decoupling I/O from system calls reduces to mak-
ing sure enough system resources are available for a user-initiated
sequence of system calls to complete having updated only mem-
ory. To achieve this, the OS might need to free system resources,
e.g., creating more free memory by writing back data from the disk
cache that is unrelated to the current transaction. In order to free up
resources, the kernelxpushes the current transaction, and performs
the I/O outside of the transactional context. Enough information
must leak out of the transaction to let the kernel learn the type and
amount of resources that must be made available.

If the kernel cannot free enough resources to perform a user-
initiated sequence of system calls using only memory, then it kills
the user process. Transaction virtualization is important for hard-
ware limits like cache size, but MetaTM cannot support a transac-
tion whose updates are larger than available memory.

By decoupling I/O from system calls, the kernel provides the full
transactional programming model even to user-level critical regions
that may modify device state. As a result, the user is able to retain
a simpler transactional programming model.

The kernel is able to provide other features necessary for a com-
plete transactional programming model, such as rollback and strong
isolation of system calls. The current conventional wisdom in the
design of transactional systems is that rollback of system calls can
be handled at user level, and that strong isolation is not needed
for system calls [4, 19, 36, 56]. However, sequences of common
system calls such asmmap can be impossible to roll back at user

level [23]. These proposals do not necessarily maintain isolation
between transactional and non-transactional threads, or even among
transactional threads. The degree to which this is necessary for
a successful programming model and the difficulty of achieving
strong isolation is an area of future work.

5.3 Problems with cxspinlocks
Allowing a critical section to be protected by both locks and

transactions brings the concurrency of transactions to code which
previously would have been incompatible, such as critical regions
that occasionally perform I/O. However, this cooperation also rein-
troduces some of the problems that transactions are intended to
solve.

Like spinlocks, cxspinlocks can enforce mutual exclusion for
non-transactional threads. A poor locking discipline can lead to
deadlock, a problem that would normally solved by transactions.
While this is unfortunate, deadlock is also a possibility for ad-
vanced transaction models that allow open nesting [36]. Cxspin-
locks that are unlikely to require mutual exclusion can use a single
global lock. Using a single, global lock simplifies programming
with cxspinlocks without compromising performance because the
critical region would mostly (or completely) use transactions.

In addition, there are situations that could deadlock using a com-
bination of transactions and spinlocks that would not deadlock us-
ing only transactions. This problem arises because of the nature of
flat nesting. A thread may be transactional, and then both enter and
leave another transactional critical section, such as one protected
by cx_optimistic. This sub-transaction will be flat nested.
Even after the thread leaves this critical section, the data read and
written during the nested transaction will remain a part of the outer
transaction’s data set.

Suppose threadt1 begins a transaction, and during the transac-
tion enters and leaves the critical section protected bycxspina,
thus starting and completing a nested transaction. Non-transactional
threadt2 begins on another processor and acquires (by locking)
cxspinb, and then attempts to lockcxspina. Under certain con-
tention management policies,t1 will always win the conflict on
the lockcxspina, so t2 must wait fort1 to complete its transac-
tion, even thought1 has already left the associated critical section.
t1 then attempts to enter a critical section protected bycxspinb,
which is locked byt2. t1 must now wait fort2, which is waiting on
t1, and no progress is made. If the critical sections in this example
were protected only by locking, then deadlock would not occur;t1
would release its lock oncxspina as soon as it left the associated
critical section, and thus would not hold more than one lock simul-
taneously. Such situations require more convoluted execution paths
than traditional deadlock, and so might be easier to avoid with static
checking tools.

Transactional memory is supposed to make the programmer’s
life easier, but by allowing transactions to cooperate with locks, it
appears to be making the programmer’s life more difficult. How-
ever, spinlocks can be converted tocx_optimistic with little
effort. The resultant code should be easier to maintain because
a cxspinlock can be held for longer code regions than a spinlock
without compromising performance. Cxspinlocks that are rarely
held exclusive can be merged to use smaller numbers of lock vari-
ables, further simplifying maintenance. Our experience with Tx-
Linux has convinced us that some data structures can be greatly
simplified with transactional memory. However, no synchroniza-
tion primitive is so powerful that it makes high-performance paral-
lel programming easy.

6. SCHEDULING IN TxLinux
This section first describes how MetaTM allows the OS to com-

municate its scheduling priorities to the hardware conflict manger,
so the hardware does not subvert OS scheduling priorities or policy.
Then it discusses how the scheduler should be modified to decrease
the amount of work wasted by transactional conflicts.

6.1 Priority and policy inversion
Locks can invert OS scheduling priority, resulting in a higher-

priority thread waiting for a lower-priority thread. Some OSes, like
Solaris [33], have mechanisms to deal with priority inversion such
as priority inheritance, wherein a waiting thread temporarily do-
nates its priority to the thread holding the lock. Recent versions
of RT Linux implement priority inheritance as well [47]. Priority
inheritance is complicated, and while the technique can shorten the
length of priority inversion, it cannot eliminate it; moreover, it re-
quires conversion of busy-waiting primitives such as spinlocks into
blocking primitives such as mutexes. Conversion to mutexes pro-
vides an upper bound on latency in the face of priority inversion,
but it slows down response time overall, and does not eliminate the
problem.

The contention manager of an HTM system can nearly eradi-
cate priority inversion. The contention manager is invoked when
the write-set of one transaction intersects the union of the read and
write-set of another transaction. If the contention manager resolves
this conflict in favor of the thread with higher OS scheduling prior-
ity, then transactions will not experience priority inversion.

However, one fact that has escaped many hardware researchers
(though not all [35]) is that simple hardware contention manage-
ment policies can invert the OS scheduling priority. HTM researchers
have focused on simple hardware contention management that is
guaranteed free from deadlock and livelock, e.g., timestamp, the
oldest transaction wins [43]. The timestamp policy does not dead-
lock or livelock because timestamps are not refreshed during trans-
actional restarts—a transaction will eventually become the oldest
in the system, and it will succeed. But if a process with higher
OS scheduler priority can start a transaction after a process with
lower priority starts one and those transactions conflict, the times-
tamp policy will allow the lower priority process to continue if a
violation occurs, and the higher priority process will be forced to
restart.

Locks and transactions can invert not only scheduling priority,
but scheduling policy as well. OSes that support soft real-time pro-
cesses, like Linux, allow real-time threads to synchronize with non-
real-time threads. Such synchronization can causepolicy inversion
where a real-time thread waits for a non-real-time thread. Policy
inversion is more serious than priority inversion. Real-time pro-
cesses are not just regular processes with higher priority, the OS
scheduler treats them differently (e.g., if a real-time process ex-
ists, it will always be scheduled before a non-real-time process).
Just as with priority inversion, many contention management poli-
cies bring the policy inversion of locks into the domain of trans-
actions. A contention manager that respects OS scheduling policy
can largely eliminate policy inversion.

6.2 Contention management using
OS priority

To eliminate priority and policy inversion, MetaTM provides an
interface for the OS to communicate scheduling priority and policy
to the hardware contention manager (as suggested in the abstract
by others [35, 46]). MetaTM implements a novel contention man-
agement policy calledos_prio. Theos_priopolicy is a hybrid of
three contention management policies. The first prefers the trans-

action with the greatest scheduling value to the OS. Given the small
number of scheduling priority values, ties in conflict priority will
not be rare, soos_prionext employsSizeMatters[45], because that
policy has been shown give good performance for low hardware
complexity. If the transaction sizes are equal, thenos_prioemploys
timestamp.

TxLinux encodes a process’ dynamic scheduling priority and
scheduling policy into a single integer called theconflict priority,
which it communicates it to the hardware by writing a register dur-
ing the process of scheduling the process. The register can only be
written by the OS so user code cannot change the value. For in-
stance, the scheduling policy might be encoded in the upper bits of
the conflict priority and the scheduling priority in the lower bits. An
8-bit value is sufficient to record the policies and priority values of
Linux processes. Upon detecting a conflict, theos_priocontention
manager favors the transaction whose conflict priority value is the
largest.

The os_priopolicy is free from deadlock and livelock because
the conflict priority is computed before thexbegin instruction is
executed, and the OS never changes the conflict priority during the
lifetime of the transaction. When priorities are equal,os_priode-
faults toSizeMatters, which defaults totimestampwhen read-write
set sizes are equal. Hence, the tuple(conflict priority, size, age)
induces a total order, making theos_priopolicy free of deadlock
and livelock.

A transaction’s conflict priority cannot change during an active
transaction, but the process can be descheduled and rescheduled
with a different dynamic priority value. Because the conflict prior-
ity and dynamic scheduling priority can differ, priority inversion is
still possible withos_prio, but this case is very rare (and in fact
does not actually occur in any of our experiments).

Priority inversions can also occur due toasymmetric conflicts,
which are cases where a memory operation in a non-transactional
thread conflicts with data in a transaction thread. MetaTM always
decides such conflicts in favor of the non-transaction operation:
simply NACK’ing the non-transactional memory operation can re-
sult in unbounded latency for the memory operation, lost timer
interrupts as well as other sensitive interrupt-related state. If the
non-transactional thread has lower process priority than the trans-
actional one, a priority inversion will occur and there is no way for
MetaTM to prevent the inversion because the contention manager
is not involved. This problem will occur in any HTM using strong
isolation [5, 29], since strong isolation requires a consistent pol-
icy with respect to asymmetric conflict (non-transactional threads
always win or always lose). Fortunately, such conflicts are rare be-
cause properly synchronized programs rarely access the same data
from a transactional and non-transactional context.

6.3 Transaction-aware scheduling
The presence of hardware transactions in a system provides an

opportunity for the operating system’s scheduler to take advantage
of processes’ transaction state to mitigate the effects of high con-
tention. When making scheduling decisions or assigning dynamic
priority, the current transaction state is relevant: if the current pro-
cess has work invested in an active transaction, the system may
wish to re-schedule that process again sooner to reduce the like-
lihood that contention will cause that work to be lost to restart.
If a process’ transactions restart repeatedly, it may make sense to
make scheduling decisions that make future contention less likely.
A scheduler that accounts for the impact of transaction state on sys-
tem throughput can make better scheduling decisions and improve
overall performance.

In order to ensure that scheduling and transactions do not work

at cross-purposes, MetaTM provides mechanisms for the OS to
query the hardware and communicate transaction state to the OS;
TxLinux supports a modified scheduler that takes this information
into account when making scheduling decisions. Useful informa-
tion about transactions includes the the existence of any currently
active transactions, number of recent restarts, cycles spent back-
ing, and the size of the transaction read and write set. MetaTM
uses the transaction status word [44] to determine the status of the
current transaction (none, active, stalled, overflowed). Hardware
counters (one per CPU) provide a saturating count of the number
of restarts. Each CPU maintains the hardware timestamp of when
the last transaction began (to implement thetimestampcontention
policy). A register holds the current transaction’s size, and another
holds the cumulative number of cycles the current transaction has
backed off if it has restarted. These registers are written by the
transactional hardware and potentially reset by the OS scheduler
when it reads them. Using this information, the scheduler dynam-
ically adjusts priority or deschedules processes likely to cause re-
peated restarts.

6.4 Scheduler details
The scheduler in TxLinux is the default Linux scheduler with

the following modifications. Using the mechanisms described in
the previous section, the TxLinux scheduler maintains a per-thread
transactional profile, which tracks restarts and backoff cycles. Av-
erages for profile attributes, such as “high restarts” or “high backoff
cycles” are maintained using exponentially moving averages, and
in general, profile attributes are reset after every examination. The
per-thread transaction profiles are the fundamental building block
used to enable transaction-aware dynamic priority, and conflict-
reactive descheduling.

6.4.1 Dynamic priority based on HTM state
The scheduler uses a routine calledeffective_prio to cal-

culate a dynamic priority for a process whenever the process is
transferred from the active to the expired array, indicating it has
used up its quantum. Any process with an active transaction is re-
warded with a priority boost. Otherwise, processes with high restart
rates (a tendency to conflict) are penalized, while large transactions
are rewarded.

6.4.2 Conflict-reactive descheduling
The TxLinux scheduler attempts to deschedule a thread that is

wasting work due to restarts as quickly as possible. When the timer
interrupt calls thescheduler_tick() function, if the current
thread’s transaction profile indicates a high probability that signif-
icant work will be wasted in the current quantum due to restarts
from conflict, that thread is descheduled, with the caveat that a
suitable replacement candidate thread must be available to run in-
stead. A suitable replacement must be within 5 priority levels (to
preserve the scheduler guarantees), and must also not be likely to
waste work due to conflicts. Multiple criteria are used to predict
situations where a thread may be profitably descheduled. If the av-
erage backoff cycles for transactions in the current process exceeds
the cost of a context switch (a threshold determined empirically av-
eraging measured context switch times over our benchmarks), we
predict that descheduling the thread will be profitable. Similarly,
if the process has had a high restart rate (3x its average in our im-
plementation) during the previous timer interval, the process is a
candidate for rescheduling.

7. EVALUATION
This section presents detailed measurements of TxLinux. The

experiments show that the performance of transactions is generally
good for 16 and 32 CPUs, though we did uncover one performance
pathology. For 32 cores, the kernel spends less than 12% of its time
synchronizing, so the opportunity to improve performance with
synchronization primitives is limited at this scale. Using cxspin-
locks to add transactions to the kernel (Section 5.1) removes the
primary reasons to eschew transactions in the kernel—the engineer-
ing effort to add them and their incompatibility with I/O.

Priority inversion is a common occurrence in the Linux kernel
for our benchmarks, and TxLinux’s ability to nearly eliminate it is
an encouraging result for transactional programming. The ability
of the scheduler to use transaction state information has little abil-
ity to affect performance for the workloads we studied. We find
that scheduler effort is best directed at avoiding transactional per-
formance pathologies.

7.1 Experimental setup
TxLinux is based on Linux 2.6.16, and MetaTM is implemented

as a hardware module in the Simics [30] 3.0.17 machine simula-
tor. The architecture is x86, with between 4 and 32 processors.
The model assumes 1 instruction per cycle, as Simics only allows
a constant IPC, and 1 is a reasonable choice for a moderate super-
scalar implementation. Level 1 caches are both 16 KB with 4-way
associativity, 64-byte cache lines, 1-cycle cache hit and a 16-cycle
cache miss penalty. The L1 data caches contain both transactional
and non-transactional data. Second level caches are 4 MB, 8-way
associative, with 64-byte cache lines and a 200 cycle miss penalty
to main memory. Cache coherence is maintained with a MESI
snooping protocol, and the main memory is a single shared 1GB.
This configuration is typical for an SMP, and reasonably approxi-
mates a CMP.

The disk device models PCI bandwidth limitations, DMA data
transfer, and has a fixed 5.5ms access latency. Simics models the
timing for a tigon3 gigabit network interface card that supports
DMA data transfer, with an Ethernet link that has a fixed 0.1ms
latency. All of the runs are scripted, with no user interaction.

MetaTM uses word-granularity conflict detection, exponential
backoff on conflict, and theSizeMatterscontention management
policy [45]. Simics uses execution-based simulation, which allows
the choices made by the OS and hardware (e.g., scheduling deci-
sions and contention management) to feed back into the simulation
and change thread orderings and application behaviors. This pro-
vides more realistic modeling.

Multi-threaded workloads tend to have variable performance, in
the sense that a small change to the thread schedule can introduce
noticeable jitter into execution time. To compensate for this vari-
ability, we pseudo-randomly perturb cache miss timings in order to
sample from the space of reasonable thread interleavings. We use
the statistical approach of Alameldeen and Wood [2] to produce
confidence intervals from the perturbed runs.

The workloads we use are described in Table 5, and are charac-
terized in terms of user, system, I/O wait, and idle time in figure 3.
They are real-life, large applications that exercise the kernel in re-
alistic scenarios. Some of them fix the amount of work, usually at
32 threads, and some scale the amount of work with the processor
count. The benchmarks do not execute any transactions at user-
level: all transactions occur in the kernel. Since the kernel is using
HTM, our experiments measure the behavior of the kernel being
exercised by these workloads. The benchmarkbonnie++ is run
with a zero latency disk because its performance with disk latency
is highly dependent on block layout. Removing the disk delay al-

Benchmark Characterization

0

2

4

6

8

10

12
L

in
u

x
-1

6
c
p

u

L
in

u
x
-3

2
c
p

u

L
in

u
x
-1

6
c
p

u

L
in

u
x
-3

2
c
p

u

L
in

u
x
-1

6
c
p

u

L
in

u
x
-3

2
c
p

u

L
in

u
x
-1

6
c
p

u

L
in

u
x
-3

2
c
p

u

L
in

u
x
-1

6
c
p

u

L
in

u
x
-3

2
c
p

u

L
in

u
x
-1

6
c
p

u

L
in

u
x
-3

2
c
p

u

pmake bonnie++ mab find config dpunish

s
e

c
o

n
d

s

 idle

 iowait

 user

 system

Figure 3: User, system, I/O wait, and idle time for all bench-
marks for 16 and 32 CPUs, characterized using unmodified
Linux.

slab allocator Kernel memory allocator with extensive use of
fine-grained locking.

dentry cache Locks protecting the directory entry cache,
accessed on pathname lookup and file
create/delete.

RCU Transactions used in place of spinlocks in the
Read-Copy-Update implementation

struct Protects private, shared, and nonlinear
address_space mappings within an address space

(i_mmap_lock).
zoned page Physical memory zone descriptor and active/
frame allocator inactive lists synchronized with transactions.

Includes ZONE_HIGHMEM locks.
timekeeping Sequence lock protecting the xtime variable
architecture
memory Lock protecting a list that contains all process

descriptors list process memory descriptors
(mmlist_lock)

VFS file objects Protects accesses to lists of open files.
(files_lock)

noncontiguous protects a doubly linked list of physically non-
memory areas contiguous memory areas. (vmlist_lock)

Table 4: Subsystems from the Linux 2.6.16 kernel altered to use
transactions instead of locks (TxLinux-SS). Subsystem names
correspond directly to index entries in Bovet and Cesati [6].

lows our analysis to focus on the CPU portion of the workload,
independent from the file system layout.

As mentioned in Section 5.1, we performed two conversions of
Linux to TxLinux. The first conversion (called the subsystem (SS)
kernel, or TxLinux-SS) was done by hand on the spinlocks in sub-
systems shown in Table 4. The second (called the cxspinlocks
(CX) kernel, or TxLixux-CX) converted nearly all spinlocks to use
cx_optimistic. For both conversions, all sequence locks are
converted to use transactions, and some reader/writer spinlocks are
converted.

7.2 Synchronization performance
We measure the time wasted due to synchronization as a percent-

age of kernel execution time for Linux and TxLinux-SS. In Linux,
synchronization time is wasted spinning on locks. In TxLinux time

bonnie++ Simulates file system bottleneck activity on Squid
and INN servers stressing create/stat/unlink. 32
instances of:bonnie++ -d /var/local -n 1
Run with 0ms of disk delay.

configure Run several parallel instances of the configure script
for a large software package, one for each processor.

find Run 32 instances of thefind command, each in a
different directory, searching files from the Linux
2.6.16 kernel for a text string that is not found. Each
directory is 4.6–5.0MB and contains 333–751 files
and 144–254 directories.

MAB File system benchmark simulating a software devel-
opment workload. [40] Runs one instance per
processor of the Modified Andrew Benchmark,
without the compile phase.

pmake Runs make -j 2 * number_of_procs to compile 27
source files totaling 6,031 lines of code from the
libFLAC 1.1.2 source tree in parallel.

dpunish A locally developed micro-benchmark to stress
synchronization in VFS directory entry cache.
Parallel lookups and renames across multiple,
memory-based file systems.

Table 5: Benchmarks used to evaluate TxLinux.

Synchronization Characterization

0

2

4

6

8

10

12

14

16

L
in

u
x
-1

6
c
p

u

T
x
L

in
u

x
-1

6
c
p

u

L
in

u
x
-3

2
c
p

u

T
x
L

in
u

x
-3

2
c
p

u

L
in

u
x
-1

6
c
p

u

T
x
L

in
u

x
-1

6
c
p

u

T
x
L

in
u

x
-3

2
c
p

u

L
in

u
x
-1

6
c
p

u

T
x
L

in
u

x
-1

6
c
p

u

L
in

u
x
-3

2
c
p

u

T
x
L

in
u

x
-3

2
c
p

u

L
in

u
x
-1

6
c
p

u

T
x
L

in
u

x
-1

6
c
p

u

L
in

u
x
-3

2
c
p

u

T
x
L

in
u

x
-3

2
c
p

u

L
in

u
x
-1

6
c
p

u

T
x
L

in
u

x
-1

6
c
p

u

L
in

u
x
-3

2
c
p

u

L
in

u
x
-1

6
c
p

u

T
x
L

in
u

x
-1

6
c
p

u

L
in

u
x
-3

2
c
p

u

T
x
L

in
u

x
-3

2
c
p

u

pmake bonnie++ mab find config dpunish

p
e

rc
e

n
ta

g
e

 o
f

k
e

rn
e

l
ti

m
e

 s
p

e
n

t
s

y
n

c
h

ro
n

iz
in

g

aborts

spins

Figure 4: Time lost due to restarted transactions and acquir-
ing spin locks in 16 and 32 CPU experiments. For each bench-
mark, the first bar represents Linux and the second represents
the subsystem kernel TxLinux-SS. Time for TxLinux-SS is bro-
ken down into spinlock acquires and restarted transactions,
whereas synchronization time for Linux is only for spinlock ac-
quires.

is wasted spinning on locks and also restarting transactions. Fig-
ure 4 shows that both Linux and TxLinux spend from 1–14% of
their execution time synchronizing. For a 16 CPU configuration,
TxLinux-SS wastes an average of 57% less time synchronizing
than Linux does, and for 32 CPUs it wastes 1% more. Most of
this time savings is attributable to removing the cache misses for
the lock variable itself. We did not measure time spent spinning on
seqlocks, which biases the results in favor of Linux.

The data shows that as the number of CPUs increase, time wasted
synchronizing also increases. While HTM generally reduces the
time wasted to synchronization, it more than doubles the time lost
for bonnie++. This loss of performance is due primarily (90%)
to transactions that restart, back-off, but continue failing. Since

bonnie++ does substantial creation and deletion of small files in a
single directory, the resulting contention in file system code paths
results in pathological restart behavior in the functiondput, which
decrements the link count of the directory and manipulates a few
lists in which the directory entry appears. The fast-changing link-
count effectively starves a few transactions. Using back-off before
restart as a technique to handle such high contention may be insuf-
ficient for complex systems: the transaction system may need to
queue transactions that consistently do not complete. The remain-
ing 10% of the performance loss is attributable to large transac-
tions, which cause overflow of the transactional memory state from
the L1 cache and incur virtualization costs for conflict detection
and version management of the overflowed data. There are many
proposals to virtualize transactions that grow too large for hardware
resources, and our data indicates the importance of such schemes.
However, both of these issues inbonnie++ could be addressed in
TxLinux by usingcx_exclusive to protect the critical region
in dput that creates the transaction that has difficulty completing.

Our Simics hardware module measures the number of times a
spinlock was acquired, the number of cycles spent acquiring it, and
the number of times a process had to spin before acquiring a lock.
Spinlocks are “test and test&set” locks, so we count iterations of
the inner (test) and outer (test&set) loops separately.

Table 6 presents details on the locking behavior of Linux and
TxLinux, showing that TxLinux reduces lock contention more than
it eliminates calls to locking routines. It eliminates 37% of calls
to lock routines, 34% of the test loops and 50% of the test&set
loops. Reducing the number of test&set operations is important
because these operations use the coherence hardware, reducing sys-
tem throughput. TxLinux lowers lock contention by converting
some heavily contended locks to use cxspinlocks that allow mul-
tiple transactional threads into a critical region concurrently. An-
other interesting trend in Linux is that from 16 to 32 CPUs the
number of lock acquires does not increase substantially, but the
amount of spinning increases about 3×. This indicates that while
the amount of time spent in synchronization for 32 CPU configura-
tions is tolerable, lock-based synchronization overhead will be an
impediment to large system scalability.

7.3 Concurrency in TxLinux
In order to measure the degree of concurrency provided by trans-

actions compared to locking, each transactional thread upon en-
tering a critical section records the number of other transactional
threads in that critical section. Figure 5 shows a histogram of the
maximum concurrency for the critical sections used in many of the
benchmarks on 32 CPUs with the cxspinlock kernel. 67% of the
284 critical regions have more than a single thread executing at
once, indicating that even Linux’s highly tuned critical regions can
benefit from being executed in parallel. The critical region that has
32 threads in it at once is the sequence lock that reads the kernel tick
counter in the frequently executed functiondo_gettimeofday.
In Linux, this critical region is guarded by a sequence lock, so it
may also contain many concurrent threads. In TxLinux, however,
it is not necessary to reason about the type of accesses to protected
data. A single primitive adds concurrency for critical regions with
many readers.

Because Linux is optimized for low lock contention, and Tx-
Linux gets most of its transactions from converted locks, the av-
erage concurrency in critical regions is low. The amount of time
spent in critical regions is small compared to the total kernel exe-
cution time. If average transaction sizes grow to reflect TM’s ability
to achieve high concurrency with coarser-grained critical sections,
the average and maximum concurrency will increase.

Linux TxLinux
Acq TS T Acq TS T

bonnie++ 16 12,478 132 340,523 28% 20% 68%
config 16 16,087 62 49,432 31% 56% 33%
dpunish 16 9,626 35 18,406 51% 66% 32%

32 10,514 102 153,699 49% 39% 6%
find 16 2,912 72 34,553 39% 42% 14%

32 2,758 183 111,629 40% 52% 21%
mab 16 15,451 101 45,167 51% 81% 55%

32 15,871 146 96,370 50% 71% 39%
pmake 16 764 9 8,981 30% 38% 24%

32 1,004 24 35,341 25% 48% 18%

Table 6: Spinlock performance for unmodified Linux vs. the
subsystem kernel TxLinux-SS. Acq represents the number of
times the spinlock (a test and test&set lock) is acquired. T (test)
represents the number of times a processor spins on a cached
lock value, while TS (test&set) represents the outer loop where
the lock code performs a cache coherent locked decrement.
Linux measurements are in the thousands. TxLinux-SS mea-
surements are the percent reduction from Linux. For example,
for 16 CPU pmake,Linux performs 9,000 locked decrements in
the outer loops of spinlock acquisition, while TxLinux-SS per-
forms about 5,500 resulting in a38% reduction. 32 CPU data
for bonnie++and configwere not available.

Maximum Concurrency Across
Critical Sections (32 processor)

Maximum concurrency
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

C

rit
ic

al
 s

ec
tio

ns

95

78

41

18
10 8 8 13 6

2 4 1 1 1 1 2 1 1 2

Figure 5: Distribution of maximum concurrency across Tx-
Lixux-CX critical sections for the config, find, mab and pmake
benchmarks on 32 processors.

7.4 Cxspinlock performance and use
One of the main advantages of traditional spinlocks is their low

overhead for locking and unlocking. When acquiring an uncon-
tended lock, the body of thespin_lock function executes only
3 instructions, including 2 memory references. When acquiring a
spinlock that is already locked, only 9 instructions are executed in
addition to the time spent waiting. Unlocking a spinlock is usually
inlined, requiring just one instruction.

Acquiring a cxspinlock involves more complicated logic than a
normal spinlock, introducing some overhead in the number of in-
structions executed. Callingcx_optimistic to begin a transac-
tion for an uncontended critical section requires 21 instructions and
9 memory references. Usingcx_exclusive to enter an uncon-
tended critical section from a non-transactional thread requires 21
instructions and 8 memory references. In both cases, all references
except one are to stack variables. The x86 optimizes accesses to
stack variables, so these references contribute minimal additional
latency.

I/O in Transactional Critical Sections

Executions restarted for I/O (%)
0 10 20 30 40 50 60 70 80 90 100

C

rit
ic

al
 s

ec
tio

ns

6

26

121 112

Figure 6: Distribution across TxLixux-CX critical sections of
the percentage of executions that require restarts for I/O, mea-
sured with the config, find, mab and pmake benchmarks with
16 and 32 processors.

In practice, the performance of cxspinlocks is very near that of
traditional spinlocks. Averaging across all benchmarks, the intro-
duction of cxspinlocks results in kernel time slowdowns of 3.1%
and 2.8% for 16 and 32 CPUs respectively. By contrast, the sub-
system conversion of Linux to TxLinux does not use cxspinlocks:
for 16 CPUs, the subsystem kernel has a 2.0% slowdown on av-
erage (excludingbonnie++, whose pathologies were discussing in
section 7.2 this becomes a 0.9% speedup), and on 32 CPUs it gar-
ners a 2.0% speedup. In all cases the change in performance is
within the confidence interval of the measurement.

To justify the increased complexity of cxspinlocks, there must
exist critical regions in the Linux kernel that require exclusion along
some but not all code paths. Figure 6 shows how often I/O is
performed in critical regions protected bycx_optimistic, re-
stricted to those critical regions that contain I/O along at least one
code path. Several critical regions perform I/O along a small per-
centage of dynamic code paths, and so may benefit fromcx_-
optimistic. The majority, however, perform I/O all or nearly
all of the time. These critical regions should be optimized by re-
placingcx_optimistic with cx_exclusive. Even in these
cases cxspinlocks enable additional concurrency, as there are locks
shared between critical regions that always perform I/O and criti-
cal regions that never perform I/O (e.g. the coarse lock protecting
the ide subsystem is sometimes used to protect device access and
is sometimes used to protect simple data structures). Critical re-
gions that do not contain I/O may execute concurrently, even when
they share data with critical regions that will always require mutual
exclusion.

Table 7 shows the amount of time wasted when restarting trans-
actions for I/O. In the current implementation of cxspinlocks, an
I/O operation can cause a number of transaction restarts equal to
the nesting depth when the I/O operation was executed. However,
the average nesting depth when executing I/O (shown in the Table)
operations is low, with no I/O nested at more than 3 levels. Our
config and MAB workloads perform a lot of I/O, and hence lose
the most time to I/O restarts. The time wasted restarting for I/O in
TxLinux is mostly time spent idle in Linux, because the I/O restart
happens right before suspending the last runnable process (all other
processes are blocked on I/O). The runtime of Linux and TxLinux
on these workloads is nearly identical.

7.5 Contention management using
OS priority

Figure 7 shows how frequently transactional priority inversion
occurs in TxLinux. In this case, priority inversion means that the
defaultSizeMatterscontention management policy [45] favors the
process with the lower OS scheduling priority (results for times-

I/O Origin (SS) Origin (CX)
Nest Waste sys intr sys intr

config 16 1.42 32.3% 46.3% 53.7% 49.6% 50.4%
32 1.36 36.3% 45.9% 54.0% 49.8% 50.2%

find 16 1.51 0.3% 74.8% 25.2% 68.6% 31.4%
32 1.39 2.8% 79.5% 20.5% 67.8% 32.2%

mab 16 1.36 13.7% 73.4% 26.6% 63.6% 36.4%
32 1.30 31.2% 73.2% 26.8% 63.8% 36.2%

pmake 16 1.51 0.3% 51.5% 48.4% 21.3% 78.7%
32 1.50 0.3% 48.6% 51.2% 15.1% 84.9%

Table 7: Cxspinlock usage in TxLinux. Nest is the average nest-
ing depth when I/O operations are executed in transactions.
Waste is the total time wasted due to restarting for I/O as a
percentage of kernel execution time. Sys/intr shows the per-
centage of all transactions that originated in system calls and
interrupts, respectively. Data is given for both the subsystem
and cxspinlocks kernel.

tamp are similar). Most benchmarks show that a significant per-
centage of transactional conflicts result in a priority inversion, with
the average 9.5% across all kernel and CPU configurations we tested.
While priority inversion tends to decrease with larger numbers of
processors, the trend is not strict. Thepmake andbonnie++
benchmarks show an increase with higher processor count for the
TxLinux-default (the unmodified Linux scheduler) and TxLinux-
sched (our modified scheduler) kernels respectively. The number
and distribution of transactional conflicts is chaotic, so changing
the number of processors can change the conflict behavior. Policy
inversion, where a non-real-time thread can be favored in a conflict
over a real-time thread, is much rarer: we found it to occur only in
our mab anddpunish benchmarks at rates of 0.01% and 0.02%
respectively. Our conflict management policy, os_prio, eliminates
both priority inversion and policy inversion entirely in our bench-
marks, at a cost in performance that is under 2.5% for TxLinux-
default and under 1% for TxLinux-sched .

The frequency with which naïve contention management vio-
lates OS scheduling priority argues strongly for a mechanism that
lets the OS participate in contention management, e.g., by commu-
nicating hints to the hardware.

7.6 Transaction-aware scheduling
The goal of transaction-aware scheduling (TxLinux-sched) is to

take advantage of the availability of transaction state information
from the hardware to increase performance, primarily by making
scheduling decisions that attempt to decrease lost work due to restarts.

Figure 7: Percentage of transaction restarts decided in favor of
a transaction started by the processor with lower process pri-
ority, resulting in “transactional” priority inversion. Results
shown are for all benchmarks, for 16 and 32 processors, Tx-
Linux-SS .

Figure 8: Restart cycles as a percentage of total execution time
for TxLinux-default (SS) with 16 and 32 cpus. The percentage
of restart cycles gives a theoretical upper bound on the perfor-
mance benefit achievable by a scheduling policy that attempts
to minimize restart waste.

4
cp

us

8
cp

us

16
 c

pu
s

0.76

0.81

0.86

0.91

0.96

1.01

Normalized Execution TimeTx−Linux−default
Tx−Linux−sched

Figure 9: Relative execution time for the pipeline micro-
benchmark for TxLinux-sched , TxLinux-default with 4, 8, and
16 cpus.

Figure 8 shows cycles spent restarting contending transactions as a
percentage of total execution time for all benchmarks, using Tx-
Linux-default (unmodified scheduler) and TxLinux-sched kernel
configurations. For most benchmarks, the opportunity to improve
performance by eliminating restarts is limited: on average, if savvy
scheduling were to eliminate all wasted restart cycles, the overall
performance gain for 16 and 32 cpus would be<1% (averaged
across all benchmarks), a statistically insignificant margin, given
the confidence intervals we are able to achieve with our simulation
environment. Empirically, TxLinux-sched execution time is within
1.5% of TxLinux-default for all benchmarks, providing neither a
consistent benefit, nor a consistent detriment to performance.

The TxLinux-sched policy attempts to deschedule threads that
are under significant contention, as indicated by the restart and
backoff profile for the thread. As a result, the ability of the pol-
icy to have a significant positive effect relies heavily on both the
presence of significant contention and the availability of threads at
a similar priority that are able to make progress when scheduled
in place of descheduled threads. While a scheduling policy that re-
duces restarts may have minimal impact where contention is low on
average, as it is in our benchmarks, it can have a more significant
impact in situations where contention is high, reacting to contention
to ameliorate extreme conditions in ways that are not possible with
traditional locks.

To test this hypothesis, we developed a micro-benchmark, called
pipleline, to simulate a multi-threaded application that has signifi-
cantly longer transactions and high contention than the critical re-

gions in TxLinux. The pipeline micro-benchmark consists of mul-
tiple threads (4× the number of processors) each working through
a set of 8 phases: the memory references made by the threads are
mostly distinct to the phase. If all threads are working in the same
phase, contention is very high, and it is unlikely that more than
one thread at a time can make progress, while execution can gener-
ally be overlapped safely for threads in different phases. Figure 9
shows normalized execution time for this micro-benchmark, for the
TxLinux-default and TxLinux-sched configurations. The TxLinux-
sched scheduler is able to improve performance by 8% and 6%
for 4 and 8 cpus respectively, while the benefit under 16 cpus is too
close to the confidence intervals to be significant. The total num-
ber of restarts and total restart cycles wasted are reduced by 20.3%
and 21.5% respectively on average, showing that transaction aware
scheduling can potentially help manage contention related patholo-
gies, while having no negative performance impact under low con-
tention.

8. RELATED WORK
Transactional memory has its roots in optimistic synchroniza-

tion [21,27] and optimistic database concurrency control [26]. Her-
lihy and Moss [22] gave one of the earliest designs for hardware
transactional memory. Rajwar and Goodman explored specula-
tive [42] or transactional [43] execution of critical sections, spark-
ing a renewal of interest in HTM. Their mechanisms for falling
back on locking primitives when a violation of isolation is detected
dynamically are similar to (though not as general as) the cxspinlock
primitive technique of first executing in a transactional context and
falling back to locking when I/O is detected.

Current work on HTMs has focused on the architectural mecha-
nisms that provide transactional memory [3,9,18,32,35,55], lang-
uage-level support for HTM [7,14], and transactional resource vir-
tualization [4, 10, 44, 56]. While several proposals for transaction
virtualization involve the OS [4, 9, 10], level of OS involvement
varies, and none of these proposals actually allow the OS itself
to use transactions for synchronization. This paper goes beyond
low-level architecture to address the systems issues that arise when
using HTM in an OS and discusses OS support for HTM.

Operating systems that make heavy use of non-blocking primi-
tives include Synthesis [31] and the Cache Kernel [16]. While non-
blocking techniques can eliminate deadlock and minimize interfer-
ence between scheduling and synchronization they require special-
ization of code and data structures, unlike the HTM techniques used
in TxLinux.

I/O in transactions.
Proposals for I/O in transactions fall into three basic camps: give

transactions an isolation escape hatch, delay the I/O until the trans-
action commits [17, 19], or guarantee that the thread performing
I/O will commit [3,4,18]. All of these strategies have serious draw-
backs.

Many HTM systems allow a transactional escape hatch known as
an open nested transaction [36–38]. An open nested transaction can
read the partial results of the current transaction and any changes it
makes, including I/O operations, are not isolated. The major draw-
back with open nested transactions is that if the enclosing transac-
tion restarts, the effect of the open-nested transaction must be un-
done by code provided by the programmer. The programmer effort
to write and maintain compensating code severely compromises the
utility of open-nested transactions. Efficient hardware implementa-
tions of open nesting introduce correctness conditions that restrict
the transactional programming model. These conditions are subtle
and easy to violate in common programming idioms [23].

Delaying I/O is not possible when the code performing the I/O
depends on its result, e.g., a device register read might return a sta-
tus word that the OS must interpret in order to finish the transaction.

Guaranteeing that a transaction will commit severely limits sched-
uler flexibility, and can, for long-running or highly contended trans-
actions, result in serial bottlenecks or deadlock. Non-transactional
threads on other processors which conflict the guaranteed thread
will be forced to retry or stall until the guaranteed thread commits
its work. This will likely lead to lost timer interrupts and deadlock
in the kernel.

Scheduling.
Carlstrom et al. [7] demonstrate a scheduler wherein the sched-

uler thread in a Java VM listens for conflicts on behalf of a yielded
thread. The technique requires a dedicated core for the scheduler
thread, which is very wasteful in an OS, and does not scale as there
is no bound on the size of transaction sets amassed by the scheduler.

Zilles [56] explores modifications to the OS that allow micro-
architectural events to modify task state and raise exceptions to in-
voke the scheduler, providing a mechanism for a thread involved
in a transactional conflict to deschedule itself. While the TxLinux
scheduler attempts to deschedule threads involved in multiple restarts,
the mechanism is entirely under the control of of the OS, while the
Zilles techniques puts the scheduler directly at the mercy of the
hardware.

Process scheduling received early attention in operating systems,
invigorated with the arrival of multiprocessor systems [28,52]. Main-
stream operating systems such as Microsoft Windows [48], Linux [6]
and Solaris [33] implement sophisticated priority-based pre-emptive
schedulers, with different classes of priorities, and a variety of schedul-
ing techniques for each class. Bilge et. al. [1] explore hardware
support for priority inheritance using spinlocks. The approach uses
hardware to support priority inheritance which only provides an
upper bound on priority inversion, while this work takes advantage
of transactional hardware to avoid priority inversion before it oc-
curs. The Linux RT patch [47] supports priority inheritance to help
mitigate the effects of priority inversion: while our work also ad-
dresses priority inversion, the Linux RT patch implementation con-
verts spinlocks to mutexes, changing a busy-waiting primitive to a
blocking primitive, and relying on the scheduler to react to inher-
ited priority. By contrast, theos_priopolicy allows the contention
manager to nearly eliminate priority inversion without requiring the
primitive to block or involve the scheduler.

Software transactional memory.
Software transactional memory (STM) does not use hardware

support, and usually works at the language level. There has been
much recent work on efficient STM [14], but such work is only rel-
evant to HTM when the STM is used as an interface to a hybrid
system that tries to run small transactions in hardware, and larger
transactions in software, effectively virtualizing hardware transac-
tions with the STM [11, 25, 49]. Because an OS has heavy cross-
process memory sharing (including sharing stack memory), and it
must handle low-level architectural features, such as devices and
interrupts, it is a challenging workload for an STM.

The STM literature contains a rich set of contention manager im-
plementations [50]. It also contains work about cooperating locks
and transactions. With STM, a lock acquire is much faster than a
transaction start, so there are schemes for a Java virtual machine
to start guarding a critical section with a lock and then convert
to a software transaction if contention is high [54]. In this case
the tradeoff for STM is opposite those for HTM: lightly contended
transactions are more efficient than locks for HTM.

9. CONCLUSION
This paper is the first description of an operating system that uses

HTM as a synchronization primitive, and presents innovative tech-
niques for HTM-aware scheduling and cooperation between locks
and transactions. TxLinux demonstrates that HTM provides com-
parable performance to locks, and can simplify code while coex-
isting with other synchronization primitives in a modern OS. The
cxspinlock primitive enables a solution to the long-standing prob-
lem of I/O in transactions, and the API eases conversion from lock-
ing primitives to transactions significantly. Introduction of transac-
tions as a synchronization primitive in the OS reduces time wasted
synchronizing on average, but can cause pathologies that do not
occur with traditional locks under very high contention or when
critical sections are sufficiently large for the overhead of HTM vir-
tualization to become significant. HTM aware scheduling elimi-
nates priority inversion for all the workloads we investigate, and
enables better management of very high contention in ways that are
not possible with traditional locks. However, it is unable to have a
significant impact on the performance of workloads with normal
contention profiles.

10. ACKNOWLEDGEMENTS
We extend thanks to Prince Majahan and Jeff Napper for careful

reading of drafts, and to our shepherd Hank Levy for valuable feed-
back and suggestions. This research is supported by NSF CISE Re-
search Infrastructure Grant EIA-0303609 and NSF Career Award
0644205. Christopher J. Rossbach was awarded an SOSP student
travel scholarship, supported by Sun Microsystems, to present this
paper at the conference.

11. REFERENCES
[1] B. E. S. Akgul, V. J. M. III, H. Thane, and P. Kuacharoen.

Hardware support for priority inheritance.rtss, 00:246, 2003.
[2] A. Alameldeen and D. Wood. Variability in architectural

simulations of multi-threaded workloads. InHPCA, 2003.
[3] C. Anaian, K. Asanovic, B. Kuszmaul, C. Leiserson, and

S. Lie. Unbounded transactional memory. InHPCA, 2005.
[4] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin.

Making the fast case common and the uncommon case
simple in unbounded transactional memory. InISCA, 2007.

[5] C. Blundell, E. C. Lewis, and M. M. K. Martin.
Deconstructing transactions: The subtleties of atomicity. In
Fourth Annual Workshop on Duplicating, Deconstructing,
and Debunking. Jun 2005.

[6] D. Bovet and M. Cesati.Understanding the Linux Kernel.
OŔeilly Media, Inc., 3rd edition, 2005.

[7] B. Carlstrom, A. McDonald, H. Chafi, J. Chung,
C. Cao Minh, C. Kozyrakis, and K. Olukotun. The Atomos
transactional programming language. InPLDI, Jun 2006.

[8] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
emprical study of operating systems errors. InSOSP, 2001.

[9] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson,
M. V. Biesbrouck, G. Pokam, B. Calder, and O. Colavin.
Unbounded page-based transactional memory. In
ASPLOS-XII, 2006.

[10] J. Chung, C. Cao Minh, A. McDonald, H. Chafi, B. D.
Carlstrom, T. Skare, C. Kozyrakis, and K. Olukotun.
Tradeoffs in transactional memory virtualization. In
ASPLOS. ACM Press, Oct 2006.

[11] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. InASPLOS,
2006.

[12] E. Elnozahy, D. Johnson, and Y. Wang. A survey of
rollback-recovery protocols in message-passing systems,
1996.

[13] D. Enger and K. Ashcraft. Racer-X: Effective, static
detection of race conditions and deadlocks. InSOSP, 2003.

[14] A.-R. A.-T. et al. Compiler and runtime support for efficient
software transactional memory. InPLDI, Jun 2006.

[15] J. Gray and A. Reuter.Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 2nd edition, 1993.

[16] M. Greenwald and D. Cheriton. The synergy between
nonblocking synchronization and operating system structure.
In OSDI, 1996.

[17] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis,
B. Hertzberg, M. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun. Transactional memory coherence and
consistency. InISCA, June 2004.

[18] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and
consistency. InISCA, Jun 2004.

[19] T. Harris. Exceptions and side-effects in atomic blocks.Sci.
Comput. Program., 58(3):325–343, 2005.

[20] T. Harris, M. Herlihy, S. Marlow, and S. Peyton-Jones.
Composable memory transactions. InPPoPP, Jun 2005.

[21] M. Herlihy. Wait-free synchronization. InTOPLAS, 1991.
[22] M. Herlihy and J. E. Moss. Transactional memory:

Architectural support for lock-free data structures. InISCA,
May 1993.

[23] O. S. Hofmann, D. E. Porter, C. J. Rossbach, H. E. Ramadan,
and E. Witchel. Solving difficult HTM problems without
difficult hardware. InACM TRANSACT Workshop, 2007.

[24] Intel Corporation.IA-32 Intel Architecture Software
Developer’s Manuals, 2006.http://developer.
intel.com/design/processor/.

[25] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen.
Hybrid transactional memory. InPPoPP, 2006.

[26] H. Kung and J. T. Robinson. On optimistic methods of
concurrency control. InACM Transactions on Database
Systems 6(2), June 1981.

[27] L. Lamport. Concurrent reading and writing. In
Communications of the ACM, November 1977.

[28] B. W. Lampson. A scheduling philosophy for
multiprocessing systems.Communications of the ACM,
11(5), 1968.

[29] J. R. Larus and R. Rajwar.Transactional Memory. Morgan &
Claypool, 2006.

[30] P. Magnusson, M. Christianson, and J. E. et al. Simics: A full
system simulation platform. InIEEE Computer vol.35 no.2,
Feb 2002.

[31] H. Massalin and C. Pu. A lock-free multiprocessor OS
kernel. InOperating System Review 26(2), 1992.

[32] A. McDonald, J. Chung, B. Carlstrom, C. C.M., H. Chafi,
C. Kozyrakis, and K. Olukotun. Architectural semantics for
practical transactional memory. InISCA, Jun 2006.

[33] R. McDougall and J. Mauro.Solaris Internals. Prentice Hall,
2nd edition, 2006.

[34] Microsoft Corporation.Transactional NTFS (TxF), 2006.
http://msdn2.microsoft.com/en-us/
library/aa365456.aspx.

[35] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, , and
D. A. Wood. Logtm: Log-based transactional memory. In

HPCA, 2006.
[36] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill,

B. Liblit, M. M. Swift, and D. A. Wood. Supporting nested
transactional memory in logtm. InASPLOS-XII. 2006.

[37] E. Moss and T. Hosking. Nested transactional memory:
Model and preliminary architecture sketches. InSCOOL,
2005.

[38] J. E. B. Moss, N. D. Griffeth, and M. H. Graham. Abstraction
in recovery management.SIGMOD Rec., 15(2):72–83, 1986.

[39] J. E. B. Moss and A. L. Hosking. Nested transactional
memory: Model and architecture sketches. InIn Science of
Computer Programming, volume 63. Dec 2006.

[40] J. K. Ousterhout. Why aren’t operating systems getting faster
as fast as hardware? InUSENIX Summer, 1990.

[41] C. Pramode. Experiments with kernel 2.6 on a hyperthreaded
Pentium 4 LG.Linux Gazette, 2007.

[42] R. Rajwar and J. Goodman. Speculative lock elision:
Enabling highly concurrent multithreaded execution. In
MICRO, 2001.

[43] R. Rajwar and J. Goodman. Transactional lock-free
execution of lock-based programs. InASPLOS, 2002.

[44] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. InISCA. Jun 2005.

[45] H. Ramadan, C. Rossbach, D. Porter, O. Hofmann,
A. Bhandari, and E. Witchel. Evaluating transactional
memory tradeoffs with TxLinux. InISCA, 2007.

[46] H. Ramadan, C. Rossbach, and E. Witchel. The Linux
kernel: A challenging workload for transactional memory. In
Workshop on Transactional Memory Workloads, June 2006.

[47] S. Rostedt and D. V. Hart. Internals of the RT patch. InLinux
Symposium, 2007.

[48] M. Russinovich and D. Solomon.Microsoft Windows
Internals: Microsoft Windows Server(TM) 2003, Windows
XP, and Windows 2000. Microsoft Press, 4th edition, 2004.

[49] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson.
Architectural support for software transactional memory. In
MICRO, pages 185–196, 2006.

[50] W. N. Scherer III and M. L. Scott. Advanced contention
management for dynamic software transactional memory. In
PODC, 2005.

[51] H. Sutter and J. Larus. Software and the concurrency
revolution.Queue, 3(7):54–62, 2005.

[52] A. Tucker and A. Gupta. Process control and scheduling
issues for multiprogrammed shared-memory
multiprocessors. InSOSP, 1989.

[53] S. Tweedie. Journaling the Linux ext2fs filesystem. In
LinuxExpo ’98, 1998.

[54] A. Welc, A. L. Hosking, and S. Jagannathan. Transparently
reconciling transactions with locking for java
synchronization. InECOOP, Jul 2006.

[55] L. Yen, J. Bobba, , M. Marty, K. E. Moore, H. Volos, M. D.
Hill, , M. M. Swift, and D. A. Wood. Logtm-SE: Decoupling
hardware transactional memory from caches. InHPCA. Feb
2007.

[56] C. Zilles and L. Baugh. Extending hardware transactional
memory to support non-busy waiting and non-transactional
actions. InACM TRANSACT Workshop, Jun 2006.

