
Earp: Principled Storage, Sharing, and Protection for Mobile Apps

Yuanzhong Xu Tyler Hunt Youngjin Kwon Martin Georgiev
Vitaly Shmatikov† Emmett Witchel

The University of Texas at Austin †Cornell Tech

Abstract
Modern mobile apps need to store and share structured

data, but the coarse-grained access-control mechanisms in
existing mobile operating systems are inadequate to help
apps express and enforce their protection requirements.

We design, implement, and evaluate a prototype of
Earp, a new mobile platform that uses the relational model
as the unified OS-level abstraction for both storage and
inter-app services. Earp provides apps with structure-
aware, OS-enforced access control, bringing order and
protection to the Wild West of mobile data management.

1 Introduction

Modern mobile apps communicate and exchange data
with other apps almost as much as they communicate and
exchange data with the operating system. Many popular
apps now occupy essential places in the app “ecosystem”
and provide other apps with services, such as storage,
that have traditionally been the responsibility of the OS.
For example, an app may rely on Facebook to authenti-
cate users, Google Drive to store users’ data, WhatsApp
to send messages to other users, Twitter to publicly an-
nounce users’ activities, etc.

Traditionally, operating systems have provided abstrac-
tions and protection for storing and sharing data. The
data model in UNIX [34] is byte streams, stored in files
protected by owner ID and permission bits and accessed
via file descriptors. UNIX has a uniform access-control
model for both storage and inter-process communication:
users specify permissions on files, pipes, and sockets, and
the OS dynamically enforces these permissions.

Modern mobile platforms provide higher-level abstrac-
tions to manage structured data, and relational databases
have become the de facto hubs for apps’ internal data [40].
These abstractions, however, are realized as app-level li-
braries. Platform-level access control in Android and iOS
inherits UNIX’s coarse-grained model and has no visibil-
ity into the structure of apps’ data. Today, access control

in mobile platforms is a mixture of basic UNIX-style
mechanisms and ad hoc user-level checks spread through-
out different system utilities and inter-app services. Apps
present differing APIs with ad hoc access-control seman-
tics, different from those presented by the OS or other
apps. This leaves apps without a clear and consistent
model for managing and protecting access to users’ data
and leads to serious security and privacy vulnerabilities
(see §2).

In this paper, we explore the benefits and challenges of
using the relational model as the unified, platform-level
abstraction of structured data. We design, implement, and
evaluate a prototype of Earp, a new mobile platform that
uses this model for both storage and inter-app services,
and demonstrate that it provides a principled, expressive,
and efficient foundation for the data storage, data sharing,
and data protection needs of modern mobile apps.

Our contributions. First, we demonstrate how apps can
use the relational model not just to define data objects
and relationships, but also to specify access rights directly
as part of the data model. For example, an album may
contain multiple photos, each of which has textual tags;
the right to access an album confers the right to access
every photo in it and, indirectly, all tags of these photos.

Second, we propose a uniform, secure data-access ab-
straction and a new kind of reference monitor that has
visibility into the structure of apps’ data and can thus
enforce fine-grained, app-defined access-control policies.
This enables apps to adhere to the principle of least privi-
lege [36] and expose some, but not all, of users’ private
data to other apps. App developers are thus relieved of
the responsibility for writing error-prone access-control
code. The unifying data-access abstraction in Earp is a
subset descriptor. Subset descriptors are capability-like
handles that enable the holder to operate on some rows
and columns of a database, subject to restrictions defined
by the data owner. Our design preserves efficiency of both
querying and access control.

To appear in USENIX NSDI 2016. 1 / 16

Third, we implement and evaluate a prototype of Earp
based on Firefox OS, a browser-based mobile platform
where all apps are written in Web languages such as
HTML5 and JavaScript. Apps access data and system
resources via the trusted browser runtime, which acts as
the OS from the app’s viewpoint. The browser-based de-
sign enables Earp to conveniently add its data abstractions
and access-control protections to the platform layer while
maintaining support for legacy APIs.

Fourth, to demonstrate how apps benefit from Earp’s
structured access control, we adapt or convert several
essential utilities and apps. We show how local apps,
such as the photo manager, contacts manager, and email
client, can use Earp to impose fine-grained restrictions
on other apps’ access to their data—for example, elide
sensitive data fields, support private photos and albums,
filter contacts based on categories, or temporarily grant
access to an attachment file. We also show how remote
services, such as Google Drive and an Elgg-based social-
networking service, can implement local proxy apps that
use Earp to securely share data with other apps without
relying on protocols like OAuth.

We hope that by providing efficient, easy-to-use stor-
age, sharing, and protection mechanisms for structured
data, Earp raises the standards that app developers expect
from their mobile platforms and delivers frontier justice
to the insecure, ad hoc data management practices that
plague existing mobile apps.

2 Inadequacy of existing platforms

In today’s mobile ecosystem, many apps act as data “hubs.”
They store users’ data such as photos and contacts, make
this data available to other apps, and protect it from unau-
thorized access. The data in question is often quite com-
plex, involving multiple, inter-related objects—for ex-
ample, a photo gallery is a collection of photos, each of
which is tagged with user’s notes.

Inadequate protection for storage. Existing platforms
do not provide adequate support for mobile apps’ data
management. Without system abstractions for storing
and protecting data, app developers roll their own and
predictably end up compromising users’ privacy. For
example, Dropbox on Android stores all files in public
external storage, giving up all protection. WhatsApp on
iOS automatically saves received photos to the system’s
gallery. When the email app on Firefox OS invokes a
document viewer to open an attachment, the attachment
is copied to the SD card shared by all apps.

A systematic study [54] in 2013 discovered 2,150 An-
droid apps that unintentionally make users’ data—SMS
messages, private contacts, browsing history and book-
marks, call logs, and private information in instant mes-

saging and social apps (e.g., the most popular Chinese
social network, Sina Weibo)—available to any other app.

Inadequate protection for inter-app services. Ser-
vices and protocols that involve multiple apps have suf-
fered from serious security vulnerabilities and logic
bugs [27, 44, 48, 49, 51]. While vulnerabilities in indi-
vidual apps can be patched, the root cause of this sorry
state of affairs is the inadequacy of the protection mech-
anisms on the existing mobile platforms, which cannot
support the principle of least privilege [36].

Existing platforms provide limited facilities for sharing
data via inter-app services. Android apps can use content
providers to define background data-sharing services with
a database-like API, where data are located via URIs. An-
droid’s reference monitor enforces only coarse-grained
access control for content providers based on static per-
missions specified in app manifests [2]. Even though
permissions can be specified for particular URI paths,
they can only be used for static, coarse categories (e.g.,
images or audio in Media Content Provider) because it
is impossible to assign different permissions to dynam-
ically created objects, nor enforce custom policies for
different client apps. If a service app needs fine-grained
protection, writing the appropriate code is entirely the app
developer’s responsibility. Unsurprisingly, access control
for Android apps is often broken [38, 54].

Android also has a URI permission mechanism [1]
for fine-grained, temporary access granting. The access-
control logic still resides in the application itself, making
URI permissions difficult to use for programmatic access
control. Android mostly uses them to involve the user in
access-control decisions, e.g., when the user clicks on a
document and chooses an app to receive it.

In iOS, apps cannot directly share data via the file
system or background services. For example, to share a
photo, apps either copy it to the system’s gallery, or use
app extensions [24] which require user involvement (e.g.,
using a file picker) for every operation.

Without principled client-side mechanisms for pro-
tected sharing, mobile developers rely on server-side au-
thentication protocols such as OAuth that give third-party
apps restricted access to remote resources. For example,
Google issues OAuth tokens with restricted access rights,
and any app that needs storage on Google Drive attaches
these tokens to its requests to Google’s servers [18, 19].
Management of OAuth tokens is notoriously difficult and
many apps badly mishandle them [48], leaving these apps
vulnerable to impersonation and session hijacking due
to token theft, as well as identity misbinding and ses-
sion swapping attacks such as cross-site login request
forgery [44]. In 2015, a bug in Facebook’s OAuth pro-
tocol allowed third-party apps to access users’ private
photos stored on Facebook’s servers [14].

To appear in USENIX NSDI 2016. 2 / 16

Inadequate protection model. Protection mechanisms
on the existing platforms are based on permissions at-
tached to individual data objects. These objects are typi-
cally coarse-grained, e.g., files. Even fine-grained permis-
sions (e.g., per-row access control lists in a database) do
not support the protection requirements of modern mobile
apps. The fundamental problem is that data objects used
by these apps are inter-related, thus any inconsistency in
permissions breaks the semantics of the data model.

Per-object permissions fail to support even simple, com-
mon data sharing patterns in mobile apps. Consider a
photo collection where an individual photo can be ac-
cessed directly via the camera roll interface, or via any
album that includes this photo. As soon as the user wants
to share an album with another app, the per-object per-
missions must be changed for every single photo in the
album. Since other types of data may be related to pho-
tos (e.g., text tags), the object-based permission system
must compute the transitive closure of reachable objects
in order to update their permissions. This is a challenge
for performance and correctness.

In practice, writing permission management code is
complex and error-prone. App developers thus tend to
choose coarse-grained protection, which does not allow
them to express, let alone enforce their desired policies.

3 Design goals and overview

Throughout the design of Earp, we rely on the platform
(i.e., the mobile OS) to protect the data from unauthorized
access and to confine non-cooperative apps. Earp provides
several platform-enforced mechanisms and abstractions
to make data storage, sharing, and protection in mobile
apps simpler and more robust.

• Apps in Earp store and manage data using a uniform,
relational model that can easily express relationships be-
tween objects as well as access rights. This allows app
developers to employ standard database abstractions and
relieves them of the need to implement their own data
management.
• Apps in Earp give other apps access to the data via

structured, fine-grained, system-provided abstractions.
This relieves app developers of the need to implement
ad hoc data-access APIs.
• Apps in Earp rely on the platform to enforce their

access-control policies. This separation of policy and
mechanism relieves app developers of the need to imple-
ment error-prone access-control code.

Efficient system-level enforcement requires the plat-
form to have visibility into the data structures used by
apps to store and share data. In the rest of the paper, we
describe how this is achieved in Earp.

3.1 Data model

UNIX has a principled approach for protecting both stor-
age and IPC channels, based on a unifying API—file
descriptors. On modern mobile platforms, however, data
management has moved away from files to structured
storage such as databases and key/value stores.

In Earp, the unifying abstraction for both storage and
inter-app services is relational data. This approach (1)
helps express relationships between objects, (2) integrates
access control with the data model, and (3) provides a
uniform API for data access, whether by the app that owns
the data or by other apps.

Unifying storage and services is feasible because Earp
apps access inter-app services by reading and writing
structured, inter-related data objects via relational APIs
that are similar to those of storage. A service is defined
by four service callbacks (§5), which Earp uses as the
primitives to realize the relational API.

Earp uses the same protection mechanism for remote
resources. For example, a remote service such as Google
Drive can have a local proxy app installed on the user’s
device, which defines an inter-app service that acts as
the gateway for other apps to access Google’s remote
resources. Earp enforces access control on the proxy ser-
vice in the same way as it does with all inter-app services,
avoiding the need for protocols such as OAuth.

Earp not only makes it easier to manage structured
data that is pervasive in mobile apps, but also maintains
efficient, protected access to files and directories. Earp
uses files and directories internally, thus avoiding the
historical performance problems of implementing a file
system on top of a database [50].

3.2 Access rights

All databases and services in Earp have an owner app.
The owner has the authority to define policies that govern
other apps’ access, making Earp a discretionary access
control system. The names of databases and services are
unique and prefixed by the name of the owner app.

Earp’s protection is fine-grained and captures the re-
lationships among objects. In the photo gallery exam-
ple, each photo is associated with some textual tags, and
photos can be included in zero, one, or several albums.
Fine granularity is achieved by simple per-row ACLs,
allowing individual photos to each have different permis-
sions. However, per-object permissions alone can create
performance and correctness problems when apps share
collections of objects (§2).

To enable efficient and expressive fine-grained permis-
sions for inter-related objects, Earp introduces capabil-
ity relationships—relationships that confer access rights
among related data. For example, if an app that has ac-

To appear in USENIX NSDI 2016. 3 / 16

cess rights to an album traverses the album’s capability
relationship to a photo, the app needs to automatically
obtain access rights to this photo, too. Capability rela-
tionships only confer access rights when traversed in one
direction. For example, having access to a photo does not
grant access to all albums that include this photo.

Capability relationships make it easy for apps to share
ad hoc collections. For example, the photo gallery can
create an album for an ephemeral messaging app like
Snapchat, enabling the user to follow the principle of
least privilege and install Snapchat with permissions to
access only this album (and, transitively, all photos in this
album and their tags).

Capability relationships also enable Earp to use very
simple ACLs without sacrificing the expressiveness of ac-
cess control. There are no first-class concepts like groups
or roles, but they can be easily realized as certain capabil-
ity relationships.

3.3 Data-access APIs
In Earp, access to data is performed via subset descrip-
tors. A subset descriptor is a capability “handle” used by
apps to operate on a database or service. The capability
defines the policy that mediates access to the underlying
structured data, allowing only restricted operations on a
subset of this data.

The holder of a subset descriptor may transfer it to
other apps, possibly downgrading it beforehand (remov-
ing some of the access rights). Intuitively, a subset de-
scriptor is a “lens” through which the holder accesses a
particular database or service.

Critically, the OS reference monitor ensures that all
accesses comply with the policy associated with a given
descriptor. Therefore, app developers are only responsible
for defining the access-control policy for their apps’ data
but not for implementing the enforcement code.

Capability relationships make access rights for one ob-
ject dependent on other objects. This is a challenge for
efficiency because transitively computing access-control
decisions would be expensive. To address this problem,
apps can create subset descriptors on demand to buffer
access-control decisions for future tasks. For example, an
app can use a descriptor to perform joins (as opposed to
traversal) to find all photos with a certain tag, then create
another descriptor to edit a specific photo based on the
result of a previous join. The photo access rights are com-
puted once and bound to the descriptor upon its creation.
Earp thus enjoys the benefits of both the relational rep-
resentation (efficient joins) and the graph representation
(navigating a collection to enumerate its members).

To facilitate programming with structured data, Earp
provides a library that presents an object graph API
backed by databases or inter-app services (see an example

backend database (or service)

relational
representation

albums photos tags

pl
at

fo
rm

lib
ra

ry

security reference monitor

ap
p

a

p
p

p

t
tt

a

pp

tt

fetchGraph: queryPaths:

fetch all contents in an album find photos in the album with
a certain tag

multiple query operations join on multiple tables

Figure 1: Platform- and library-level representations of
structured data in Earp.

in Figure 1). This API is functionally similar to the Core
Data API in iOS, but each internal node is mapped to a
platform-level data object under Earp’s protection. This
API relieves developers of the need to explicitly handle
descriptors or deal with the relational semantics of the
underlying data.

3.4 Choosing the platform

Mobile apps are often written in portable Web languages
such as HTML5 and JavaScript [46, 47]. Browser-based
mobile/Web platforms (e.g., Firefox OS, Chrome, and uni-
versal Windows apps) support this programming model
by exposing high-level resource abstractions such as “con-
tacts” and “photo gallery” to Web apps, as well as generic
structured storage like IndexedDB; they are implemented
in a customized, UI-less browser runtime, instead of app-
level libraries. All resource accesses by apps are mediated
by the browser runtime, although it only enforces all-or-
nothing access control.

For our Earp prototype, we chose a browser-based plat-
form, Firefox OS, allowing us to easily add fine-grained
protection to many new and legacy APIs. Earp also re-
tains coarse-grained protection on other legacy APIs (e.g.,
raw files), allowing us to demonstrate Earp’s power and
flexibility with substantial apps (§7.1).

It is possible to adapt Earp to a conventional mobile
platform like Android. For storage, we could port SQLite
into the kernel and add access-control enforcement to
system calls; alternatively, we could create dedicated sys-
tem services to mediate database accesses and enforce
access-control policies. Non-cooperative apps would be
confined by the reference monitor in either the kernel, or
the services. For content providers, we could modify the
reference monitor to support capability relationships, and
require apps to provide unforgeable handles that are simi-
lar to subset descriptors when they access data in content
providers.

To appear in USENIX NSDI 2016. 4 / 16

album photo tag

Full data

A subset

album_data

1-to-n n-to-1 1-to-n

Figure 2: A relational representation of structured data.
We show the entire data set and a subset chosen by a
combination of row and column filtering. Relationships
across tables are always bidirectional, but capability rela-
tionships are unidirectional as indicated by solid arrows.

4 Data storage and protection

UNIX stores byte streams in files protected by owner ID
and permission bits and accessed via file descriptors. Earp
stores structured data in relational databases protected
by permission policies and accessed via subset descrip-
tors. Because structured data is more complex than byte
streams, Earp must provide more sophisticated protection
mechanisms than what is needed for files. Before describ-
ing these mechanisms, we give a brief overview of the
relational data model and how it’s used in Earp.

4.1 Data model
Earp represents structured data using a relational model.
The same relational API is used for storage and inter-app
services (§5). The back end of this API can be, respec-
tively, a database or a service provided by another app.

Each data object in Earp is a row in some table, as
shown in Figure 2. An object in one table can have re-
lationships with objects in other tables. For example, a
photo object is a row in the photo table with a column for
raw image data, several columns for EXIF data (standard
metadata such as the location where the photo was taken),
and a relationship with the tag table, where tags store tex-
tual notes. Storing tags in a separate table allows photos
to have an arbitrary number of tags that can be queried
individually. Relationships in Earp are standard database
relationships, as summarized below, but the concept of
a capability relationship (§4.2) is a new contribution and
the cornerstone of efficient access control in Earp.

Relationships have different cardinalities. For example,
the relationship between a photo and its tags is 1-to-n
from the photo to its tags, or, equivalently, n-to-1 from the
tags to the photo. 1-to-1, or, more precisely (1|0)-to-1, is
a special case of n-to-1. For example, each digital camera
has a single product profile which may or may not be
present in the photo’s EXIF.

Logically, the relationship between albums and photos
is n-to-n, because a photo can be included in multiple

albums and an album can contain multiple photos. Like
many relational stores, Earp realizes n-to-n relationships
by adding an intermediate table. In our example, we call
the intermediate table album data. The album-album data
relationship is 1-to-n, and the album data-photo relation-
ship is n-to-1. All four tables are illustrated in Figure 2.

4.2 Access rights

Access control lists. Each database in Earp is owned by
a single app. Rows have very simple access control lists
(ACLs) to control their visibility to other apps. Each row
is either public, or private to a certain app. If a table does
not have an AppId column, it can be directly accessed
only by the owner of the database. If an Earp table has an
AppId column, its value encodes the ACL: zero means
that the row is public, positive n means that the row is
private to the app whose ID is n. Any app can read
or write public rows. Without an appropriate capability
relationship (see below), apps can only read or write their
own private rows.

Relationships create challenges for ACLs because they
are traversed at run time and their transitive closure may
include many objects. If ACLs were the only protec-
tion mechanism, an app that wants to share a photo
with another app would have to modify the ACLs for
all tags—either by making each ACL a list containing
both apps, or by creating a group.

Capability relationships. A relationship is logically
bidirectional. For example, given a photo, it is possible to
retrieve its tags, and given a tag, it is possible to retrieve
the photo to which it is attached. In Earp, however, only
a single direction can confer access rights, as specified in
the schema definition. These capability relationships are
denoted as solid arrows in Figure 2.

We use x 1:n y to denote a 1-to-n capability relation-
ship between tables x and y, which confers access rights
when moving from the 1-side (x) to the n-side (y). Sim-
ilarly, x n:1 y denotes an n-to-1 capability relationship
that confers access when moving from the n-side to the
1-side. x n:1 y denotes a non-capability relationship that
does not confer access rights.

In the photo gallery example,
• photo 1:n tag. Having a reference to a photo

grants the holder the right to access all of that photo’s
tags, but not the other way around. Therefore, if an app
asks for all photos with a certain tag, it will receive only
the matching photos that are already accessible to it (via
ownership, ACL, or capability relationship).
• album 1:n album data n:1 photo. The interme-

diate table album data realizes an n-to-n relationship
with capability direction from album to photo. Hav-
ing access to an album thus confers access to the related

To appear in USENIX NSDI 2016. 5 / 16

objects in album data and photo.

album data and tag are both on the n-side of some
x 1:n y relationship, and they are intended to be accessed
only via capability relationships. For example, each tag is
attached to a single photo and is useful only if the photo
is accessible. Typically, such tables do not need ACLs.

We have not needed bidirectional capability relation-
ships in Earp, and they would create cycles that make the
access-control model confusing. Therefore, we decided
not to support bidirectional capability relationships at the
platform level. Earp prevents capabilities from forming
cycles, ensuring that the transitive closure of all capability
relationships is a directed acyclic graph (DAG).

Groups. A group can be created in Earp by defining a
table with an appropriate schema. For example, to sup-
port albums that are shared by a group of apps, the app
can define another table album access, with album -

access n:1 album. Each row in album access is
owned by one app and confers access to an album. With
this table, even if an album is private to a certain app, it can
be shared with other apps via entries in album access.

Primary and foreign keys. Earp requires that all tables
have immutable, non-reusable primary keys generated
by the platform. The schema can also define additional
keys. Therefore, the (database, table, primary key) tuple
uniquely identifies a database row.

Cross-table relationships are represented via foreign
keys in relational databases. A foreign key specifies an
n-to-1 relationship: the table that contains the foreign key
column is on the n-side, the referenced table is on the
1-side. If the foreign key column is declared with the
UNIQUE constraint, the relationship is (1|0)-to-1.

Earp enforces that a foreign key references the primary
key of another table and must guarantee referential in-
tegrity when the referenced row is deleted [41].

For x 1:n y where y does not have ACLs, when the
referenced row (e.g., a photo) is deleted, the referencing
rows (e.g., tags) will be deleted as well, because they are
inaccessible and the deleting app has the (transitive) right
to delete them.

For other types of relationships, when the referenced
row (e.g., a photo) is deleted, Earp by default sets
the foreign keys of the referencing rows (e.g., rows in
album data) to NULL. If these rows no longer contain
useful data without the foreign key, the schema can
explicitly prescribe that they should be deleted. For
album data, it is reasonable to delete the rows because
they are merely intermediate relations between albums
and photos.

4.3 App-defined access policies

ACLs and capability relationships are generic and en-
forced by Earp once the schema of a database or service is
defined. To enable more expressive access control tailored
for relational data, Earp also lets apps define schema-level
permission policies on their databases and services. These
policies govern other apps’ access to the data.

A policy defines the following for each table:
1. AppID and default insert mode.
2. Permitted operations: insert, query, update, and/or

delete.
3. A set of accessible columns (projection).
4. A set of columns with fixed values on insert/update.
5. A set of accessible rows (selected by a WHERE

clause, in addition to ACL-based filtering).
The AppID is a number that identifies the controlling

app as the basis for ACLs, much like the user ID identifies
the user as the basis for interpreting file permission bits.
The default insert mode indicates if data inserted into the
database is public or private to the inserting app.

Data access in Earp is expressed by four SQL oper-
ations—insert, query, update, and delete—inspired by
Android’s SQLite API (omitting administrative functions
like creating tables). Read-only access is realized by re-
stricting the available SQL operations to query only. Con-
trol over writing is fine-grained: for example, an app can
limit a client of the API to only insert into the database,
without giving it the ability to modify existing entries.

The permission policy can filter out certain rows (e.g.,
private photos) and columns (e.g., phone numbers of
contacts), making them “invisible” to the client app. In
addition, values of certain columns can be fixed on in-
sert/update. For example, a Google Drive app can enforce
that apps create files only in directories named by their
official identifiers.

Just like the owner ID and permission bits of a file con-
strain the file descriptor obtained by a user when opening
a file in UNIX, the permission policy constrains the subset
descriptor (see below) obtained by a user when opening
a database. While permission bits specify a policy for
all users using coarse categories (owner, group, others),
Earp lets apps specify initial permission policies for indi-
vidual AppIDs, as well as the default policy. Figure 6 in
Section 7.1 shows examples of policy definitions.

4.4 Data-access APIs

Earp provides two levels of APIs to access relational
data: direct access via subset descriptors and object-graph
access via a library.

To appear in USENIX NSDI 2016. 6 / 16

a1 p2

t1

p4 t4

p1

p3 t3

t2 p2

t1

t2

t1

t2

d0: initial descriptor via opening the
database (bold lines denote a join.)

d1: descriptor for a
specific photo

d2: descriptor for
the photo's tags

var d0 = navigator.openDB('sys/gallery');
var cursor = d0.joinTransClosure(['album','album_data',

'photo', 'tag'], where); // join
cursor.onsuccess = function(event) {
 ... // navigate to a row (the first bold line above)
 // d1: descriptor for photo in cursor's current row
 var d1 = cursor.getSelfDesc('photo');
 // d2: descriptor for the current photo's tags
 var d2 = cursor.getRefDesc('photo', 'tag');
}

directly accessible entries indirectly accessible entries

Figure 3: A database join using an initial subset descriptor,
then creating new descriptors to represent subsets of the
result. The figure includes a visual depiction of the data
accessible from the different descriptors.

4.4.1 Subset descriptors

Apps in Earp access databases and services via subset
descriptors. When an app opens a database or service that
it owns, it obtains a full-privilege descriptor. If it opens
another app’s database or service, it obtains a descriptor
with the owner’s (default or per-app) permission policy.

Subset descriptors are created and maintained by Earp;
apps manipulate opaque references to descriptors. There-
fore, Earp initializes descriptors in accordance with the
database owner’s permission policy, and apps cannot tam-
per with the permissions of a descriptor (though descrip-
tors can be downgraded, as discussed below).

Efficiently working with descriptors. An example of
working with descriptors is shown in Figure 3. The app
receives descriptor d0 when it opens the database. It can
use d0 to access albums or photos as permitted by their
ACLs. The code in Figure 3 will succeed in performing a
join using d0 because Earp verifies that all tables can be
reached by traversing the capability relationships from a
root table (album in this case), and that entries in different
tables are related via corresponding foreign keys.

However, using d0 is not always efficient for all tasks,
because access rights on some objects can only be com-
puted transitively. To minimize expensive cross-table
checks, an app can create more descriptors that directly
encode computed access rights over transitively accessi-
ble objects. Once such a descriptor is created, the app
can use it to access the corresponding objects without
recomputing access rights. In Figure 3, when the app suc-
cessfully performs a query, join, or insert for a particular
photo via d0, this proves to Earp that it can access the
photo in question. Therefore, Earp lets it obtain a new
descriptor d2, which allows the app to operate only on the
entries in the tag table whose foreign key matches the
photo’s primary key. Access rights are verified and bound

to d2 upon its creation, thus subsequent operations on
d2 are not subject to cross-table checks. Any tag created
using the d2 descriptor will belong to the same photo
because d2 fixes the foreign key value to be the photo’s
primary key. As discussed in §4.4.2, the object graph li-
brary automates creation and management of descriptors.

Transferring and downgrading descriptors. An app
can pass its descriptor to another app or it can create a new
descriptor based on the one it currently holds (e.g., create
d1 based on d0 in Figure 3). When a new descriptor is
generated based on an existing one, all access restrictions
are inherited. For example, if the existing descriptor does
not include some columns, the new one will not have
those columns, either; if the existing descriptor is query-
only, so will be the new one; fixed values for columns, if
any, are inherited, too.

When delegating its access rights, an app may create
a downgraded descriptor. For example, an app that has
full access to an album may create a read-and-update
descriptor for a single photo before passing it to a photo
editor. A downgraded descriptor can also deny access to
certain relationships by making the column containing
the foreign key inaccessible.

Revoking descriptors. By default, a subset descriptor
is valid until closed by the holding app. However, some-
times an app needs more control over a descriptor passed
to another app. Therefore, Earp supports transitive revoca-
tion. When an app explicitly revokes a subset descriptor,
all descriptors derived from it will also be revoked, in-
cluding descriptors that are copied or transferred1 from
it, as well as those generated based on query results. In
this way, App A can temporarily grant access to App B
by passing a descriptor d to it, then revoke App B’s copy
of d (and derived descriptors) afterwards by revoking the
original copy in App A itself.

Creating relationships. A foreign key in Earp may
imply access rights. For x 1:n y, foreign keys are never
specified by the app. For example, inserting a tag for a
photo can only be done via a descriptor generated for that
photo’s tags, i.e., d2 in Figure 3, which fixes the foreign
key value. This prevents an app from adding tags to a
photo that it cannot access.

For x n:1 y, however, the app needs to provide a for-
eign key when creating a new row in x. For example,
to add an existing photo to an album, the app needs to
add a row in album data with a foreign key referencing
the photo. In this case, Earp must ensure that the app
has some administrative rights over the referenced photo,
because this operation makes the photo accessible to any-
one that has access to the album. An analogy is changing
file permissions in UNIX via chmod, which also requires

1Transferring a descriptor generates a new copy of the descriptor in
the receiving app. This copy is derived from the original descriptor.

To appear in USENIX NSDI 2016. 7 / 16

administrative rights (matching UID or root).
To create such a reference, Earp requires an app to

specify the foreign key value in the form of an unforgeable
token. The app can obtain such a token via a successful
insert or query on the referenced row, provided that the
row is public or owned by the app. This proves that the
app has administrative rights over the row.

4.4.2 Object graph library

As mentioned in Section 3, Earp provides a library that
implements an object graph API on top of the relational
data representation. Rows (e.g., photos) are represented
as JavaScript objects. Related objects (e.g., photos and
tags) are attached to each other via object references. The
corresponding descriptors are computed and managed
internally by the library. As Figure 1 illustrates for our
running photo gallery example, an album can be retrieved
(or stored) as a graph, and searching for photos with a
certain tag can be done via a path query in this graph.

An app can use this library to conveniently construct
a subgraph from an entry object that has capability or
non-capability relationships with other objects. The
lightweight nature of subset descriptors allows the library
to proactively create descriptors as the app is perform-
ing queries. Internally, the library automates descriptor
management and chooses appropriate descriptors for each
operation. For example, it has dedicated descriptors for
simple function APIs such as addObjectRef to create
objects that have relationships with existing ones, as well
as APIs that facilitate more complex operations, such as:
• populateGraph: populate a subgraph from a start-

ing node (e.g., fetch all data from an album);
• storeGraph: store objects from a subgraph to mul-

tiple tables (e.g., store a new photo along with its tags);
• queryPaths: find paths in a subgraph that satisfy a

predicate (e.g., find photos with a certain tag in an album).

5 Data sharing via inter-app services

In Earp, sharing non-persistent data between apps relies
on the same relational abstractions as storage. In par-
ticular, data is accessed through subset descriptors that
control which operations are available and which rows
and columns are visible (just like for storage). The OS
in Earp interposes on inter-app services, presents a rela-
tional view of the shared data, and is fully responsible for
enforcing access control.

Figure 4 illustrates inter-app services in Earp. The
server app is the provider of the data, the client app is
a recipient of the data. In Earp, the server app defines
and registers a named service, implemented with four
service callbacks. To client apps, this service appears
as a database with a set of virtual tables and clients use

client
app

server
app

Earp services ref. monitor
registered service

callbacks
register

open
subset
desc

DB operations
client
operation

service
callbacks

query list

insert add

update list, alter

delete list, remove

Earp translates DB operations
into service callbacks

Figure 4: Inter-app services in Earp.

subset descriptors to access this “database.” Defining
virtual tables via callbacks is a standard idea, and a similar
mechanism exists in SQLite [42]. Earp uses a subset of
this interface tailored for the needs of mobile apps.

Virtual tables have the same relational model and are
accessed through the same subset descriptors as conven-
tional database tables (§4). The server app can define
permission policies on virtual tables, in the same way
as for storage databases. Like conventional tables, a vir-
tual table can have a foreign key to another virtual table,
defining a capability or non-capability relationship.

5.1 Implementing a relational service API
A service is implemented by defining four service call-
backs: list, add, alter, and remove. The callbacks
operate on virtual tables as follows.
• list: The server app provides a list of rows in the

requested virtual table. This is the only set operation
among the four callbacks. The server app also supplies
values for the ACL column of any directly accessible table.
Many use cases (§7.1), however, only rely on schema-
level permission policies, so the server app may simply
provide a dummy public value.
• add: Given a single row object, the server app adds

it to the requested virtual table.
• alter: Given a single row object and new values

for a set of columns, the server app updates that row in
the requested virtual table.
• remove: Given a single row object, the server app

deletes it from the requested virtual table.
Implementation of the service callbacks is necessarily

app-specific. An app can retrieve data in response to a
list invocation from an in-memory data structure, or
fetch it on demand from a remote server via HTTP(S)
requests. For example, list for the Google Drive service
may involve fetching files, while add for the Facebook
service may result in posting a status update.

5.2 Using a relational service API
Earp interposes on client apps’ accesses to a service and
converts standard database operations on virtual tables
(query, insert, update, delete) into invocations of service
callbacks. The reference monitor filters out inaccessible

To appear in USENIX NSDI 2016. 8 / 16

rows and columns and fixes column values according to
the subset descriptor held by the client app.
• query: Earp invokes list, then filters the result set

before returning to the client. Multi-table queries (joins)
are converted to multiple list calls.
• insert: Earp sanitizes the client app’s input row

object by setting the values of fixed columns as specified
in the descriptor, then passes the sanitized row to add.
• update: Earp invokes the list callback, performs

filtering, sanitizes the new values, then invokes alter
for each row in the filtered result set. This ensures that
only the rows to which the client app has access will be
updated, and that the client cannot modify columns that
are inaccessible or whose values are fixed.
• delete: Earp invokes the list callback, performs

filtering, then invokes remove for each row in the filtered
result set.

5.3 Optimizing access-control checks

Earp’s strategy of active interposition to enforce access
control on inter-app services could reduce performance
for certain server implementation patterns. We use sev-
eral techniques to mitigate the performance impact on
important use cases.

Separate data and metadata. Earp’s filtering for list
happens after the server app provides the data. Therefore,
if the server returns a lot of unstructured “blob” data (e.g,
raw image data associated with photos), possibly from a
remote host, access control checks could be expensive.

In the common scenario where only metadata columns
are used to define selection and access control criteria, the
server app can greatly improve performance by separating
the metadata and the blob data into two tables. The meta-
data table is directly visible to the client apps, and Earp
performs filtering on it. The blob table is only accessible
via a capability relationship (i.e., metadata n:1 blob).
The client app receives the filtered result from the meta-
data table and can only fetch blobs that are referenced by
the metadata rows.

Leverage indexing and query information. Although
Earp does not require the server app to check the correct-
ness or security of the data it returns in response to list,
the server app can significantly reduce the amount of sent
data if it already maintains indices on the data and takes
advantage of the fact that Earp lets it see the actual client
operation that invoked a particular callback.

For example, when a service exports a key/value inter-
face, the server app can learn the requested key from Earp
and return only the value for that key. Similarly, if the ser-
vice acts as a proxy for a local database (e.g., a photo filter
for the gallery), Earp sanitizes the client requests based on
the client’s descriptor and passes the sanitized operations

to the service. The service uses Earp’s database layer,
which has a safe implementation of the relational model.

6 Implementation of Earp

We modified Firefox OS 2.1 to create the Earp proto-
type. The backend for storage is SQLite, a lightweight
relational database that is already used by Firefox OS
internally. Firefox OS supports inter-app communica-
tion based on a general message passing mechanism. It
presents low-level APIs to send and receive JavaScript
objects (similar to Android Binder IPC). Earp’s inter-app
service support is built on top of message passing, but
presents higher-level APIs that facilitate access-control en-
forcement for structured data (similar to Android Content
Providers which are built on top of Binder IPC). Our im-
plementation of Earp consists of 7,785 lines of C++ code
and 1,472 lines of JavaScript code (counted by CLOC [9])
added to the browser runtime and libraries.

6.1 Storing files
There are two ways to store files in Earp. When per-file
metadata (e.g., photo EXIF data and ACLs) is needed,
files can be co-located with the metadata in a database
with file-type columns. Apps store large, unstructured
blob data (e.g., PDF files) using file-type columns, and
the only way for them to get handles to these files is by
reading from such columns. This eliminates the need
for a separate access-control mechanism for files. In-
ternally, Earp stores the blob data in separate files and
keeps references to these files in the database. This is a
common practice for indexing files, used, for example,
in Android’s photo manager and email client. Inserting a
row containing files is atomic from the app’s point of view.
This allows Earp to consistently treat data and metadata,
e.g., a photo and its EXIF.

If per-file metadata and access control are not needed,
an app can store and manage raw files via directory han-
dles. Access control is provided at directory granularity,
and apps can have private or shared directories. Internally,
Earp reuses the access-control mechanism for database
rows to implement per-directory access control, simply
by adding a directory-type column which stores directory
references. The permissions on a directory are determined
by the permissions on the corresponding database row.

6.2 Events and threads
JavaScript is highly asynchronous and relies heavily on
events. Therefore, the API of Earp is asynchronous and
apps get the results of their requests via callbacks.

Thread pool. Internally, all requests to storage and ser-
vices are dispatched to a thread pool to avoid blocking the

To appear in USENIX NSDI 2016. 9 / 16

queryqueryinsert

store file

insert

store file

query

update
prepare & wait

DB access

clean-up & notify

Notation

time

req issued

Figure 5: Constraints on request processing order in the
thread pool.

app’s main thread for UI updates. The thread pool han-
dles all I/O operations for database access and performs
result filtering for inter-app services. After completing
its processing of a request, Earp dispatches a success or
error event to the main thread of the app, which invokes
an appropriate callback.

A request may be processed by multiple concurrent
threads to maximize parallelism. For example, inserting
a row that contains n files will be processed by n+ 1
threads, where the first n threads store the files and the
last thread inserts metadata into the database. Although
processed concurrently, such an insert request is atomic
to apps, because they are not allowed to access the files
until the insert finishes. If any thread fails, Earp aborts
the operation and removes any written data.

Similarly, a request to a service can also be parallelized.
For example, when processing an update request, Earp
first uses a thread to invoke the list callback of the server
app and to filter the result; for each row that passes the
filter, Earp immediately dispatches an event to invoke the
alter callback. If alter has high latency due to remote
access, the server app can also parallelize its processing,
e.g., by sending concurrent HTTP(S) requests.

Request ordering. When processing requests, Earp
preserves the program order of all write requests (insert,
update and delete) and guarantees that apps read (query)
their writes. The critical section (database access) of a
write waits for all previous requests to complete, while
a read waits only for previous writes. Storing blob-type
columns, as part of inserts or updates, is parallelized;
however, a read must wait for the previous blob stores to
complete. Note that an app could request an editable file
or directory handle from a database query, but Earp does
not enforce the order of reads and writes on the handle.
It enforces the order when storing or replacing the whole
blob using inserts or updates. Figure 5 shows an example
of runtime request ordering.

6.3 Connections and transactions
A subset descriptor is backed by a database connection or
a service connection. The program’s order of requests is
preserved per connection. When an app opens a database
or a service, Earp creates a new connection for it. Descrip-
tors that are derived from an existing descriptor inherit

the same connection. However, the app can also request a
new connection for an existing descriptor.

Earp exposes SQLite’s support for transactions to apps.
An app can group multiple requests in a transaction. If
it does not explicitly use the API for transactions, each
individual request is considered a transaction. Note that a
transaction is for operations on a connection; requests on
multiple descriptors could belong to a same transaction if
they share the connection. The object graph library uses
transactions across descriptors to implement the atomic
version of storeGraph.

6.4 Safe SQL interface
SQL queries require WHERE clauses, but letting apps di-
rectly write raw clauses would create an SQL injection
vulnerability. Earp uses structured objects to represent
WHERE clauses and column-value pairs to avoid parsing
strings provided by apps and relies on prepared statements
to avoid SQL injection.

6.5 Reference monitor
The reference monitor mediates apps’ access to data by
creating appropriate descriptors for them and enforcing
the restrictions encoded in the descriptor when processing
apps’ requests. Descriptors, requests, and tokens for for-
eign keys can only be created by the reference monitor;
they cannot be forged by apps. They are implemented
as native C++ classes with JavaScript bindings so that
their internal representation is invisible to apps. These ob-
jects are managed by the reference counting and garbage
collection mechanisms provided by Firefox OS.

App identity. An app (e.g., Facebook) often consists of
local Web code, remote Web code from a trusted origin
(e.g., https://facebook.com) specified in the app’s
manifest, and remote Web code from untrusted (e.g., ad-
vertising) origins. Earp adopts the app identity model
from PowerGate [17], and treats the app’s local code and
remote code from trusted origins as the same principal,
“the app.” Web code from other origins is considered
untrusted and thus has no access to databases or services.

Policy management. Earp has a global registry of poli-
cies for databases and services, specified by their owners.
Earp also has a trusted policy manager that can modify
policies on any database or service.

7 Evaluation

7.1 Apps
To illustrate how Earp supports sharing and access-control
requirements of mobile apps, we implemented several es-

To appear in USENIX NSDI 2016. 10 / 16

sential apps based on Firefox OS native apps and utilities.

Photo gallery and editor. Gallery++ provides a user in-
terface for organizing photos into albums and applying
tags to photos (as in our running example). With the
schema shown in Figure 2, Earp automates access con-
trol enforcement for Gallery++ and lets it define flexible
policies for other apps. For example, when other apps
open the photo database, they are granted access to their
private photos and albums as well as public photos and
albums, but certain fields like EXIF may be excluded.

Gallery++ can also share individual photos or entire
albums with other apps (optionally including EXIF and
tag information), by passing subset descriptors. For ex-
ample, we ported a photo editing app called After Effects
to Earp but blocked it from directly opening the photo
database. Instead, this app can only accept descriptors
from Gallery++ when the user explicitly invokes it for
the photos she selected in Gallery++. When she finishes
editing and returns from After Effects, Gallery++ revokes
the descriptor to prevent further access.

Contacts manager. The Earp contacts manager provides
an API identical to the Firefox OS contacts manager,
thus legacy applications interacting with the manager all
continue to work, yet their access is restricted according
to the policies imposed by the Earp contacts manager.

The contacts manager stores contacts using seven ta-
bles: the main contact table in which the columns
are simple attributes, five tables to manage attributes
that allow multiple entries (e.g., contact 1:n phone

and contact 1:n email), and the final table that holds
contact categories with category n:1 contact. Cate-
gories can be used to restrict apps’ access to groups of
related contacts. Such a schema enables Earp-enforced
custom policies, e.g., a LinkedIn app can be given access
only to contacts in the “Work” category, without home
address information.

Email. The Firefox OS built-in email client saves at-
tachments to the world-readable device storage (SD card)
when it invokes a viewing app to open the attachment.

The Earp email client allows attachments to be exported
only to an authorized viewing app, which obtain a subset
descriptor to the email app’s database. The Earp email
client also supports flexible queries from the viewing app,
such as “show all pictures received in the past week,” or
“export all PDF attachments received two days ago”.

Elgg social service and client apps. We use Elgg [12],
an open-source social networking framework, to demon-
strate Earp’s support for controlled sharing of app-defined
content. We customized Elgg to provide a Facebook-like
social service where users can see posts from their friends.
There are three components: the Elgg Web server, the
Elgg local proxy app, and local client apps. Client apps
are not authorized to directly contact the Elgg Web server.

Activity Map:
 {post: {ops: ['query'],
 cols: ['location']},
 image: {ops: [], cols: []}} // no access

Social Collection:
 {post: {ops: ['query'],
 // WHERE clause (group='public') encoded
 // as a JS object to prevent SQL injection
 rows: {op: '=', group: 'public'}},
 image: {}} // image access implied by post
News:
 {post: {ops: ['insert'],
 fixedCols: [{category: 'news'}]},
 image: {}} // image access implied by post

Figure 6: Policies defined for Elgg client apps, repre-
sented as JavaScript objects.

Instead, they must communicate with the Elgg local app
which defines a service. This service acts as a local proxy
and accesses remote resources hosted on the Web server.

A post in Elgg is a text message with associated images.
The Elgg app maintains two virtual tables, one for the
post text (called post), the other for the images (called
image), with a post 1:n image relationship.

The service callbacks use asynchronous HTTP requests
to fetch data. To optimize bandwidth usage, images are
only fetched when the requesting client app has access to
the post with which they are associated.

Local access control in Earp provides a simple and
secure alternative to OAuth. The Elgg local app defines
policies for other apps based on user actions, e.g., via
prompts. We implemented several client apps, and the
policies for them are shown in Figure 6.
• An “activity map” app can read the location col-

umn in post, but not any textual or image data. The
post-to-image capability relationship is unavailable to it,
so it cannot fetch images even for accessible posts.
• A “social collection” app gathers events from differ-

ent social networks. It can read all posts and associated
images from the “public” group.
• A “news” app has insert-only access to the service,

which is sufficient for sharing news on Elgg. The policy
fixes the category column of any inserted post to be
“news”, preventing it from posting into other categories.

Google Drive and client apps. The Google Drive proxy
app in Earp provides a local service that mediates other
apps’ access to cloud storage, avoiding the need for
OAuth. Client apps enjoy the benefits of cloud storage
without having to worry about provider-specific APIs or
managing access credentials. The proxy app presents a
collection of file objects containing metadata (folder and
file name) and data (file contents) to other apps. It ser-
vices requests from client apps by making corresponding
HTTPS requests to Google’s remote service. We have
ported two client apps to use the service.
• DriveNote is a note-taking app which stores notes

on the user’s Google Drive account via the local proxy.
The proxy allows it to read/write files only in a dedicated

To appear in USENIX NSDI 2016. 11 / 16

Inter−App Service

Get Large Photo
Get Small Photo

Insert Large Photo
Insert Small Photo

Create Large File
Create Small File
Delete Empty File
Create Empty File

Enumerate Contacts

Find Contact By Phone
Find Contact By Name

Insert Contact

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Earp Run Time Normalized to Firefox OS

Figure 7: Microbenchmark results for storage and ser-
vices. Smaller run time indicates better performance.

folder. Earp enforces this policy, ensuring that queries
do not return files outside of this folder, and fixing the
folder column on any update or insert operation.
• Gallery++ is a system utility, thus the Google Drive

proxy app trusts it with access to all files. Gallery++ can
scan and download all images stored on Google Drive.

7.2 Performance

We evaluate the performance of Earp on a Nexus 7 tablet,
which has 2GB of DDR3L RAM and 1.5GHz quad-core
Qualcomm Snapdragon S4 Pro CPU.

7.2.1 Microbenchmarks

We run various microbenchmarks to measure Earp’s per-
formance for storage and inter-app services. Figure 7
shows Earp’s run time relative to Firefox OS.

DB-only workloads (contacts). We measure the time
to insert new contacts, enumerate 500 contacts, and find a
single contact matching a name or a phone number from
the 500; the base line is the contacts manager in Firefox
OS which uses IndexedDB. Earp outperforms the baseline
for all workloads except enumerating contacts, where it
is about only 3% slower.

Earp’ performance is explained by its (1) directly using
SQLite, while Firefox OS uses IndexedDB built on top of
SQLite, (2) directly maping an object’s fields into table
columns, whereas IndexedDB uses expensive serialization
to store the entire object, (3) using SQLite’s built-in index
support, whereas IndexedDB needs to create rows in an
index table for all queryable fields of every object, (4)
more complex data structure for contacts (six tables as
opposed to a single serialized row for the baseline), which
affords sophisticated access control but requires a bit more
time to perform joins.

File-only workloads. We measure the time to cre-
ate/delete empty files and write small (18KB)/large

Baseline Earp slowdown
Elgg: read 50 posts 1623±102 1755± 99 8%
Elgg: upload 50 posts 5748±152 5888±117 2%
Google Drive: read 10 files 1310± 77 1392±120 6%
Google Drive: write 10 files 2828±217 2923±253 3%
Email: sync 200 emails 4725±433 4416±400 -6%

Table 1: Latency (msec) measured for macrobenchmarks
on Earp applications.

(3.4MB) files using Earp’s directory API; the base line
is Firefox OS’ DeviceStorage API. Earp has comparable
performance to the baseline, where the -11%∼4% differ-
ence in run time is due to different implementations of
these APIs. Note that the measured times include event
handling, e.g., dispatching to I/O threads and complete
notification to the app.

DB-and-file workloads (photos). The measurements
include inserting small, 18 KB, and large, 3.4 MB, pho-
tos with metadata, and retrieving them; the baseline is
inserting/retrieving the same photo files and their meta-
data into the MediaDB library in Firefox OS, which
uses IndexedDB. Earp largely outperforms the baseline,
mostly because of the differences between SQLite and In-
dexedDB, as explained in the contacts experiments. When
inserting large photos the run time is dominated by writing
files so performance is very close (<1%) to the baseline.

Inter-app service. We measure the run time for re-
trieving 4,000 2 KB messages from a different app us-
ing Earp’s inter-app service framework. The baseline
uses Firefox OS’ raw inter-app communication channel
to implement an equivalent service, where requests are
dispatched to Web worker threads (equivalent to Earp’s
thread pool). Figure 7 shows that Earp performs roughly
the same as the baseline, and the time spent for access
control (result filtering) is negligible.

7.2.2 Macrobenchmarks

Table 1 reports end-to-end latency for several real-world
workloads described in Section 7.1.

Remote services. We measure the latency of client apps
(Elgg client and DriveNote) accessing remote services
(Elgg and Google Drive) by communicating with local
proxy apps for these services. The baseline is the local
proxy apps performing the same tasks by directly sending
requests to their remote servers. The workloads include
reading/uploading fifty posts with images via Elgg and
reading/uploading ten 2KB text files via Google Drive.
Table 1 shows that communicating with local proxy apps
adds 3%∼8% latency, due to extra data serialization and
event handling.

Email. We measure the latency of downloading 200
emails. The baseline is Firefox OS’ email app which

To appear in USENIX NSDI 2016. 12 / 16

stores emails using IndexedDB. As shown in the “Email:
sync” row of Table 1, Earp achieves similar performance
storing the emails in an app-defined database.

8 Related work

Fine-grained, flexible protection on mobile platforms.
TaintDroid [13] is a fine-grained taint-tracking system
for Android. Several systems [21, 40, 45] rely on Taint-
Droid for fine-grained data protection. Pebbles [40] is
most related to Earp: it modifies Android’s SQLite and
XML libraries and uses TaintDroid to discover app-level
structured data across different types of storage. Pebbles
relies on developers using certain design patterns consis-
tently to infer the structure of data and it is implemented
in an app-level library, not in the platform. Pebbles can
help cooperative apps avoid mistakes, like preserving an
attachment of a deleted email, but, unlike Earp, it cannot
confine uncooperative apps.

Many systems extend Android to support more flexible
and expressive permission policies [3, 4, 10, 11, 15, 30, 31,
52,53] or mandatory access control [6,39]. FlaskDroid [6]
provides fine-grained data protection by implementing a
design pattern that lets content providers present differ-
ent views of shared data to different apps. FlaskDroid
is limited to SQLite-based content providers and does
not support cross-table capabilities. By contrast, Earp’s
framework supports all types of services, including prox-
ies for remote servers. Moreover, in contrast to all existing
systems, Earp integrates access-control policies with the
data model itself, via capability relationships.

Fine-grained protection in databases. Traditional ac-
cess control systems for relational databases [5, 7, 16, 20,
26,32,35] are based on users or roles with relatively static
policies. Recently, IFDB [37] showed how decentralized
information flow control (DIFC) can be integrated with a
relational database. IFDB also discusses foreign key is-
sues, but focuses on potential information leakage due to
referential integrity enforcement. This is a very different
problem than the one solved by Earp’s capability rela-
tionships. The key contribution of Earp is identifying the
relational model as the unified foundation for protecting
data storage and sharing on mobile platforms.

Protection on Web platforms. BSTORE [8] provides
a file system API to Web apps and uses tags to enable
flexible access control on files. It is similar to Earp in
that access control is enforced by a central reference mon-
itor regardless of where the resource is hosted (local or
remote). Unlike Earp, BSTORE’s data abstraction is un-
structured files.

Several systems enable flexible policies [25, 29], con-
trolled object sharing [28, 33], or confinement [22, 23, 43]
for JavaScript in a Web browser. Earp puts protection

much lower in the system stack. For Web code interacting
directly with the OS and other apps, Earp provides a uni-
fying abstraction for both storage and inter-app services
and adds access control directly into the data model.

Native relational stores. Like Earp, there are previous
efforts to make relational data directly supported by the
OS, notably Microsoft’s cancelled project WinFS [50].
WinFS contained a database engine to natively support
SQL, and implemented files and directories on top of the
database. While WinFS had fine-grained access control,
it was still based on per-object permissions.

WinFS was developed before mobile platforms become
popular, and traditional desktop apps that rely on files suf-
fered performance penalties due to database-managed
metadata. Earp’s database-centric approach fits the cur-
rent mobile development practice where databases are the
de facto storage hubs [40]. Crucially, Earp uses an unmod-
ified file system (unlike WinFS) to store blob data and to
provide compatibility file APIs that have no performance
overhead.

9 Conclusion

Earp is a new mobile app platform built on a unified
relational model for data storage and inter-app services.
Earp directly exposes fine-grained, inter-related structured
data as platform-level objects and mediates apps’ access
to these objects, enabling it to enforce app-defined access-
control policies with simple building blocks, both old
(ACLs) and new (capability relationships). Earp securely
and efficiently supports key storage and sharing tasks of
essential apps such as email, contacts manager, photo
gallery, social networking and cloud storage clients, etc.

Acknowledgments. We thank the anonymous reviewers,
Simon Peter, Michael Walfish, and our shepherd, Brad
Karp, for valuable feedback and suggestions. This work
was partially supported by NSF grants CNS-1223396 and
140894 and the NIH grant R01 LM011028-01.

References

[1] Android developers: URI permissions.
http://developer.android.com/
guide/topics/security/permissions.
html#uri. [Online; accessed 21-September-
2015].

[2] Android Developers: Using content providers.
http://developer.android.com/
training/articles/security-
tips.html#ContentProviders. [On-
line; accessed 21-September-2015].

To appear in USENIX NSDI 2016. 13 / 16

http://developer.android.com/guide/topics/security/permissions.html#uri
http://developer.android.com/guide/topics/security/permissions.html#uri
http://developer.android.com/guide/topics/security/permissions.html#uri
http://developer.android.com/training/articles/security-tips.html#ContentProviders
http://developer.android.com/training/articles/security-tips.html#ContentProviders
http://developer.android.com/training/articles/security-tips.html#ContentProviders

[3] BACKES, M., GERLING, S., HAMMER, C., MAF-
FEI, M., AND VON STYP-REKOWSKY, P. App-
Guard – real-time policy enforcement for third-party
applications. Tech. Rep. A/02/2012, MPI-SWS,
2012.

[4] BERESFORD, A. R., RICE, A., SKEHIN, N., AND
SOHAN, R. MockDroid: Trading privacy for ap-
plication functionality on smartphones. In Interna-
tional Workshop on Mobile Computing Systems and
Applications (HotMobile) (2011), ACM.

[5] BERTINO, E., JAJODIA, S., AND SAMARATI,
P. Supporting multiple access control policies in
database systems. In IEEE Symposium on Security
and Privacy (1996).

[6] BUGIEL, S., HEUSER, S., AND SADEGHI, A.-R.
Flexible and fine-grained mandatory access control
on Android for diverse security and privacy policies.
In USENIX Security Symposium (2013).

[7] BYUN, J.-W., AND LI, N. Purpose based access
control for privacy protection in relational database
systems. The VLDB Journal 17, 4 (2008), 603–619.

[8] CHANDRA, R., GUPTA, P., AND ZELDOVICH, N.
Separating web applications from user data storage
with BSTORE. In USENIX Conference on Web
Application Development (WebApps) (2010).

[9] CLOC – count lines of code. http://cloc.
sourceforge.net/. [Online; accessed 17-
September-2015].

[10] CONTI, M., NGUYEN, V. T. N., AND CRISPO,
B. CRePE: Context-related policy enforcement for
Android. In Information Security Conference (ISC)
(2010).

[11] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU,
A., AND WALLACH, D. S. Quire: Lightweight
provenance for smart phone operating systems. In
USENIX Security Symposium (2011).

[12] Elgg - open source social networking engine.
https://www.elgg.org. [Online; accessed
17-September-2015].

[13] ENCK, W., GILBERT, P., CHUN, B.-G., COX,
L. P., JUNG, J., MCDANIEL, P., AND SHETH, A.
TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. In
USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2010).

[14] How I exposed your private photos -
Facebook private photo hack. http:

//www.7xter.com/2015/03/how-i-
exposed-your-private-photos.html.
[Online; accessed 17-September-2015].

[15] FELT, A. P., WANG, H. J., MOSHCHUK, A.,
HANNA, S., AND CHIN, E. Permission re-
delegation: Attacks and defenses. In USENIX Secu-
rity Symposium (2011).

[16] FERRAIOLO, D. F., SANDHU, R., GAVRILA, S.,
KUHN, D. R., AND CHANDRAMOULI, R. Proposed
NIST standard for role-based access control. ACM
Transactions on Information and System Security
(TISSEC)4, 3 (2001), 224–274.

[17] GEORGIEV, M., JANA, S., AND SHMATIKOV, V.
Rethinking security of Web-based system applica-
tions. In International World Wide Web Conference
(WWW) (2015).

[18] Google Drive API for Android: authorizing Android
apps. https://developers.google.com/
drive/android/auth. [Online; accessed 18-
September-2015].

[19] Google Drive API for iOS: authorizing requests
of iOS apps. https://developers.google.
com/drive/ios/auth. [Online; accessed 18-
September-2015].

[20] GUARNIERI, M., AND BASIN, D. Optimal security-
aware query processing. In International Confer-
ence on Very Large Data Bases (VLDB) (2014).

[21] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER,
S., AND WETHERALL, D. These aren’t the droids
you’re looking for: Retrofitting Android to protect
data from imperious applications. In ACM Confer-
ence on Computer and Communications Security
(CCS) (2011).

[22] HOWELL, J., PARNO, B., AND DOUCEUR, J. R.
Embassies: Radically refactoring the Web. In
USENIX Symposium on Networked Systems Design
and Implementation (NSDI) (2013).

[23] INGRAM, L., AND WALFISH, M. Treehouse:
JavaScript sandboxes to help web developers help
themselves. In USENIX Annual Technical Confer-
ence (2012).

[24] iOS developer library: App extension programming
guide. https://developer.apple.com/
library/ios/documentation/General/
Conceptual/ExtensibilityPG/
index.html#//apple_ref/doc/uid/
TP40014214. [Online; accessed 17-September-
2015].

To appear in USENIX NSDI 2016. 14 / 16

http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
https://www.elgg.org
http://www.7xter.com/2015/03/how-i-exposed-your-private-photos.html
http://www.7xter.com/2015/03/how-i-exposed-your-private-photos.html
http://www.7xter.com/2015/03/how-i-exposed-your-private-photos.html
https://developers.google.com/drive/android/auth
https://developers.google.com/drive/android/auth
https://developers.google.com/drive/ios/auth
https://developers.google.com/drive/ios/auth
https://developer.apple.com/library/ios/documentation/General/Conceptual/ExtensibilityPG/index.html#//apple_ref/doc/uid/TP40014214
https://developer.apple.com/library/ios/documentation/General/Conceptual/ExtensibilityPG/index.html#//apple_ref/doc/uid/TP40014214
https://developer.apple.com/library/ios/documentation/General/Conceptual/ExtensibilityPG/index.html#//apple_ref/doc/uid/TP40014214
https://developer.apple.com/library/ios/documentation/General/Conceptual/ExtensibilityPG/index.html#//apple_ref/doc/uid/TP40014214
https://developer.apple.com/library/ios/documentation/General/Conceptual/ExtensibilityPG/index.html#//apple_ref/doc/uid/TP40014214

[25] JAYARAMAN, K., DU, W., RAJAGOPALAN, B.,
AND CHAPIN, S. J. Escudo: A fine-grained pro-
tection model for web browsers. In IEEE Interna-
tional Conference on Distributed Computing Sys-
tems (ICDCS) (2010).

[26] JELOKA, S., ET AL. Oracle Label Security Ad-
ministrator’s Guide, release 2 (11.2) ed. Oracle
Corporation, 2009.

[27] LI, T., ZHOU, X., XING, L., LEE, Y., NAVEED,
M., WANG, X., AND HAN, X. Mayhem in the
push clouds: Understanding and mitigating security
hazards in mobile push-messaging services. In ACM
Conference on Computer and Communications Se-
curity (CCS) (2014).

[28] MEYEROVICH, L. A., FELT, A. P., AND MILLER,
M. S. Object views: Fine-grained sharing in
browsers. In International World Wide Web Confer-
ence (WWW) (2010).

[29] MEYEROVICH, L. A., AND LIVSHITS, B. Con-
script: Specifying and enforcing fine-grained secu-
rity policies for JavaScript in the browser. In IEEE
Symposium on Security and Privacy (2010).

[30] NAUMAN, M., KHAN, S., AND ZHANG, X. Apex:
Extending Android permission model and enforce-
ment with user-defined runtime constraints. In ACM
Symposium on Information, Computer and Commu-
nications Security (AsiaCCS) (2010).

[31] ONGTANG, M., MCLAUGHLIN, S., ENCK, W.,
AND MCDANIEL, P. Semantically rich application-
centric security in Android. Security and Communi-
cation Networks 5, 6 (2012), 658–673.

[32] OSBORN, S., SANDHU, R., AND MUNAWER, Q.
Configuring role-based access control to enforce
mandatory and discretionary access control policies.
ACM Transactions on Information and System Secu-
rity (TISSEC)3, 2 (2000), 85–106.

[33] PATIL, K., DONG, X., LI, X., LIANG, Z., AND
JIANG, X. Towards fine-grained access control in
JavaScript contexts. In IEEE International Confer-
ence on Distributed Computing Systems (ICDCS)
(2011).

[34] RITCHIE, D. M., AND THOMPSON, K. The UNIX
time-sharing system. Communications of the ACM
(CACM) 17, 7 (1974).

[35] RIZVI, S., MENDELZON, A., SUDARSHAN, S.,
AND ROY, P. Extending query rewriting techniques
for fine-grained access control. In ACM SIGMOD
International Conference on Management of Data
(SIGMOD) (2004).

[36] SALTZER, J. H. Protection and the control of infor-
mation sharing in multics. Communications of the
ACM (CACM) 17, 7 (1974).

[37] SCHULTZ, D., AND LISKOV, B. IFDB: Decen-
tralized information flow control for databases. In
ACM European Conference in Computer Systems
(EuroSys) (2013).

[38] SHAHRIAR, H., AND HADDAD, H. Content
provider leakage vulnerability detection in Android
applications. In SIN (2014).

[39] SMALLEY, S., AND CRAIG, R. Security enhanced
(SE) Android: Bringing flexible MAC to Android.
In Network and Distributed System Security Sympo-
sium (NDSS) (2013).

[40] SPAHN, R., BELL, J., LEE, M. Z., BHAMIDI-
PATI, S., GEAMBASU, R., AND KAISER, G. Peb-
bles: Fine-grained data management abstractions for
modern operating systems. In USENIX Symposium
on Operating Systems Design and Implementation
(OSDI) (2014).

[41] Sqlite foreign key support. https://www.
sqlite.org/foreignkeys.html. [Online;
accessed 18-September-2015].

[42] The virtual table mechanism of SQLite. https://
www.sqlite.org/vtab.html. [Online; ac-
cessed 17-September-2015].

[43] STEFAN, D., YANG, E. Z., MARCHENKO, P.,
RUSSO, A., HERMAN, D., KARP, B., AND
MAZIERES, D. Protecting users by confining
JavaScript with COWL. In USENIX Symposium
on Operating Systems Design and Implementation
(OSDI) (2014).

[44] SUN, S.-T., AND BEZNOSOV, K. The devil is in
the (implementation) details: An empirical analy-
sis of OAuth SSO systems. In ACM Conference
on Computer and Communications Security (CCS)
(2012).

[45] TANG, Y., AMES, P., BHAMIDIPATI, S., BIJLANI,
A., GEAMBASU, R., AND SARDA, N. CleanOS:
Limiting mobile data exposure with idle eviction. In
USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2012).

[46] HTML5 trumping iOS among app develop-
ers in emerging mobile markets. http:
//www.zdnet.com/article/html5-
trumping-ios-among-app-developers-
in-emerging-mobile-markets/. [Online;
accessed 17-September-2015].

To appear in USENIX NSDI 2016. 15 / 16

https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/vtab.html
https://www.sqlite.org/vtab.html
http://www.zdnet.com/article/html5-trumping-ios-among-app-developers-in-emerging-mobile-markets/
http://www.zdnet.com/article/html5-trumping-ios-among-app-developers-in-emerging-mobile-markets/
http://www.zdnet.com/article/html5-trumping-ios-among-app-developers-in-emerging-mobile-markets/
http://www.zdnet.com/article/html5-trumping-ios-among-app-developers-in-emerging-mobile-markets/

[47] Survey: Most developers now prefer
HTML5 for cross-platform development.
http://techcrunch.com/2013/02/26/

survey-most-developers-now-prefer-

html5-for-cross-platform-development/.
[Online; accessed 17-September-2015].

[48] VIENNOT, N., GARCIA, E., AND NIEH, J. A mea-
surement study of Google Play. In ACM Interna-
tional Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS) (2014).

[49] WANG, R., XING, L., WANG, X., AND CHEN,
S. Unauthorized origin crossing on mobile plat-
forms: Threats and mitigation. In ACM Conference
on Computer and Communications Security (CCS)
(2013).

[50] Introducing “Longhorn” for developers, Chapter 4:
Storage. https://msdn.microsoft.com/
en-us/library/Aa479870.aspx. [Online;
accessed 17-September-2015].

[51] XING, L., BAI, X., LI, T., WANG, X., CHEN, K.,
LIAO, X., HU, S., AND HAN, X. Cracking app iso-
lation on Apple: Unauthorized cross-app resource
access on MAC OS X and iOS. In ACM Conference
on Computer and Communications Security (CCS)
(2015).

[52] XU, R., SAÏDI, H., AND ANDERSON, R. Aurasium:
Practical policy enforcement for Android applica-
tions. In USENIX Security Symposium (2012).

[53] XU, Y., AND WITCHEL, E. Maxoid: Transparently
confining mobile applications with custom views of
state. In ACM European Conference in Computer
Systems (EuroSys) (2015).

[54] ZHOU, Y., AND JIANG, X. Detecting passive con-
tent leaks and pollution in Android applications. In
Network and Distributed System Security Sympo-
sium (NDSS) (2013).

To appear in USENIX NSDI 2016. 16 / 16

https://msdn.microsoft.com/en-us/library/Aa479870.aspx
https://msdn.microsoft.com/en-us/library/Aa479870.aspx

	Introduction
	Inadequacy of existing platforms
	
	Data model
	Access rights
	Data-access APIs
	Choosing the platform

	Data storage and protection
	Data model
	Access rights
	App-defined access policies
	Data-access APIs
	Subset descriptors
	Object graph library

	Data sharing via inter-app services
	Implementing a relational service API
	Using a relational service API
	Optimizing access-control checks

	Implementation of Earp
	Storing files
	Events and threads
	Connections and transactions
	Safe SQL interface
	Reference monitor

	Evaluation
	Apps
	Performance
	Microbenchmarks
	Macrobenchmarks

	Related work
	Conclusion

