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Abstract

Backdoors are often installed by attackers who have compro-
mised a system to ease their subsequent return to the sys-
tem. We consider the problem of identifying a large class of
backdoors, namely those providing interactive access on non-
standard ports, by passively monitoring a site’s Internet access
link. We develop a general algorithm for detecting interactive
traffic based on packet size and timing characteristics, anda
set of protocol-specific algorithms that look for signatures dis-
tinctive to particular protocols. We evaluate the algorithms on
large Internet access traces and find that they perform quite
well. In addition, some of the algorithms are amenable to pre-
filtering using a stateless packet filter, which yields a major
performance increase at little or no loss of accuracy. How-
ever, the success of the algorithms is tempered by the dis-
covery that large sites have many users who routinely access
what are in fact benign backdoors, such as servers running on
non-standard ports not to hide, but for mundane administrative
reasons. Hence, backdoor detection also requires a significant
policy component for separating allowable backdoor access
from surreptitious access.

1 Introduction

A backdoor is a mechanism surreptitiously introduced into a
computer system to facilitate unauthorized access to the sys-
tem. While backdoors can be installed for accessing a variety
of services, of particular interest for network security are ones
that provide interactive access. These are often installedby
attackers who have compromised a system to ease their sub-
sequent return to the system.

From a network monitoring perspective, such backdoors
frequently run over protocols such as Telnet [PR83a], Rlogin
[Ka91], or SSH [YKSRL99]. An example of a non-interactive
backdoor would be an unauthorized SMTP server [Po82], say
to facilitate relaying email spam; and one somewhat in be-
tween would be an FTP [PR85] backdoor used to provide ac-
cess to illicit content such as pirated software, or a Napster
server [NA99] run in violation of a site’s policy.

Backdoors are, by design, difficult to detect. A common
scheme for masking their presence is to run a server for a stan-

∗Y. Zhang is with the Computer Science Department, Cornell University,
Ithaca, NY. Email: yzhang@cs.cornell.edu. V. Paxson is withthe AT&T
Center for Internet Research at ICSI, at the International Computer Science
Institute in Berkeley, CA, and with the Lawrence Berkeley National Labora-
tory. Email: vern@aciri.org. This paper appears in the Proceedings of the 9th
USENIX Security Symposium, Denver, Colorado, August 2000.

dard service such as Telnet, but on an undistinguished port
rather than the well-known port associated with the service,
or perhaps on a well-known port associated with adifferent
service. In this paper we examine the problem of detecting
backdoors, particularly interactive ones, by inspecting net-
work traffic using an intrusion detection system (IDS), where
we presume that there is a large volume of legitimate traf-
fic which must be distinguished from the illegitimate traffic.
To our knowledge, this problem has not been previously ad-
dressed in the literature.

Our general approach is to develop a set of algorithms
for detecting different types of interactive traffic. Theseal-
gorithms can then be applied to a traffic stream and when-
ever they detect interactive traffic using a non-standard service
port, we have found some form of backdoor.

The rest of the paper is organized as follows. In§ 2, we dis-
cuss the design considerations and examine the tradeoffs of
different approaches. In§ 3, we develop a general algorithm
for detecting interactive traffic based on its timing character-
istics, and in§ 4 we present a number of protocol-specific
algorithms. In§ 5, we evaluate the algorithms using traces of
Internet traffic. We summarize in§ 6.

2 Design Space

A basic principle for backdoor detection is to find distinctive
features indicative of the activity of interest, be it general in-
teractive access, or use of a specific protocol such as SSH. The
more powerful a feature is for distinguishing between genuine
instances of the activity and false alarms, the better.

Candidates for such features include the specific contents
of the data stream, the size and transmission rate of the pack-
ets in the stream, and their timing structure. This last is po-
tentially very powerful for detecting interactive traffic:stud-
ies of Internet traffic have found that the interarrivals of user
keystrokes have a striking distribution [DJCME92, PF95],
namely a Pareto with infinite variance. There is also the possi-
bility that a combination of features will prove to have greater
distinctive power than any one feature by itself.

We now turn to a discussion of various tradeoffs that arise
when considering how to develop detection algorithms.

2.1 Open vs. evasive attackers

In general, network intrusion detection becomes much more
difficult when the attacker actively attempts to evade detection
by the monitor [PN98, Pa98]. Much of the difficulty comes
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from the ability of attackers to exploit ambiguities in a traffic
stream. From a monitoring perspective, heuristics might work
well for “open” (non-evasive) attackers, but completely fail in
the face of an actively evasive attacker.

While ideally any detection algorithms we develop would
of course be resistant to evasive attackers, ensuring such ro-
bustness can sometimes be exceedingly difficult, and we pro-
ceed here on the assumption that there is utility in “raisingthe
bar” even when a detection algorithm can be defeated by a
sufficiently aggressive attacker. We further note that if anat-
tacker fully controlsboth the remote and the local host, and in
particular if they are patient and/or able to deploy arbitrary
software, then all sorts of devious covert channels become
possible1 [Gl93], and backdoor detection becomes essentially
hopeless. We do not attempt to address the problem of detect-
ing covert channels.

Thus, we propose the algorithms in this paper not as solu-
tions, but merely as waystations in the ongoing “arms race”
between attackers and intrusion detection. One form of arms
race we anticipate is particularly likely is between the devel-
opers of Napster [NA99] (and Gnutella [GN00]) and our cor-
responding detection algorithm. Napster has a history of sites
attempting to control its use, and of users attempting to cir-
cumvent these restrictions [We00], and our algorithm gives
sites a new tool for detecting surreptitious use of Napster.

2.2 Passive vs. active monitoring

One tradeoff is whether we only allow the monitor to perform
passive monitoring, or if it can actively inject traffic intothe
network. Passive monitoring has the advantage that it can-
not disturb the normal operation of the network. On the other
hand, an active monitor could augment its backdoor detection
by trying to connect to suspected backdoors in order to probe
the server listening on the port to determine its service. How-
ever, doing so could in principle tip off the attacker as to the
presence of the monitor and the discovery of the backdoor.

In this paper we confine ourselves to monitors that only use
passive monitoring.

2.3 Content vs. timing

A natural approach for detecting connections to command
shell servers is to monitor the keystrokes looking for common
shell commands. Such a content-based approach has several
drawbacks, however:

• Scanning each byte in each incoming packet is very
expensive, especially if we must first reassemble TCP
streams to defeat the sort of evasions characterized in
[Pa98]. The intruder can then overload the monitor by
generating a large amount of legitimate traffic.

1See [Ra00] for a discussion of experiences with running NFS over email
by tunneling IP packets over messages delivered by SMTP.

• Many command shells allow the user to define aliases
and editing characters, which can easily defeat this ap-
proach unless the monitor performs alias and editing ex-
pansion of the commands (such as also required for “bot-
tleneck” analysis [LWWWG98]). Note that this problem
can arise either inadvertently, because the attacker as a
matter of course uses aliases or redefines the editing se-
quences, or deliberately, when the attacker is attempting
to evade detection. The former case may be amenable to
heuristic analysis; the latter likely is not.

• The intruder can easily evade the monitor by encrypting
their content either through some application-level en-
cryption method, or directly using encrypted protocols
such as SSH.

In contrast, timing-based algorithms can be completely un-
perturbed by the use of encryption. However, timing informa-
tion can become distorted due to clock skew, propagation de-
lays, loss, and packetization variations. Making timing-based
algorithm robust against such noise is challenging.

2.4 Filtering

An important factor for the success of real-time backdoor de-
tection is filtering. The more traffic that can be discarded on
a per-packet basis due to patterns in the TCP/IP headers, the
better, as this can greatly reduce the processing load on the
monitor. As we will see in subsequent sections, filtering can
sometimes be highly effective in winnowing down a large traf-
fic stream to just a few packets of interest.

However, there is clearly a tradeoff between reduced sys-
tem load and lost information. First, if a monitor detects sus-
picious activity in a filtered stream, often the filtering hasre-
moved sufficient accompanying context that it becomes quite
difficult to determine if the activity is indeed an attack. In
addition, the existence of filtering criteria makes it easier for
the attackers to evade detection by manipulating their traffic
so that it no longer matches the filtering criteria. For example,
an evasion against filtering based on packet size (see below)
is to use a Telnet client modified to send a large number of
do-nothing Telnet options along with each keystroke or line
of input.

In addition, reliance on filtering can significantly magnify
the problem of “chaff,” i.e., attackers generating bogus traffic
that matches the filtering criteria in order to overwhelm the
monitor’s analysis load, and/or to generate a huge number of
false positives, in order to mask a true attack.

Three possible filtering criteria for backdoor detection are:

• Packet size. Keystroke packets are quite small. Even
when entire lines of input are transferred using “line
mode” [Bo90], packet payloads will tend to be much
smaller than used for bulk-transfer protocols. Therefore,
by filtering packets to only capture small packets, the
monitor can significantly reduce its packet capture load.
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• Directionality. In general, an interactive connection such
as Telnet is initiated by the client rather than the server,
unless the attacker sets up some sort ofcallback mecha-
nism. This makes it possible to filter connections based
on their directionality (inbound vs. outbound). If we are
monitoring an Internet access link and are only interested
in detecting backdoors at the local site, we can limit our
monitoring to just inbound connections, which can sig-
nificantly reduce the packet capture load (for example,
by filtering out outbound Web surfing connections).

Note that there is also a “cold start” problem when the
monitor starts running and needs to analyze an existing
traffic stream. In this case, it generally cannot determine
whether the traffic was initiated inbound or outbound,
and accordingly cannot filter it out.

• Packet contents. When we are interested in identifying
specific interactive protocols, it is sometimes possible to
filter incoming packets based on patterns specific to the
protocol. An example is SSH, discussed in§ 4.1 below.

2.5 Accuracy

As with intrusion detection in general, we face the prob-
lem of false positives (non-backdoor connections erroneously
flagged as backdoors) andfalse negatives (backdoor connec-
tions the monitor fails to detect). The former can make the
detection algorithm unusable, because it becomes impossible
(or at least too tedious) to examine all of the alerts manually,
and attackers can exploit the latter to evade the monitor.

We would of course like to have both the false positive rate
and the false negative rate be as low as possible. But particu-
larly for those of our algorithms that are based on overall traf-
fic characteristics rather than sharp signatures, we frequently
will have to choose tradeoffs between the two.

2.6 Responsiveness

Another important design parameter is the responsiveness of
the detection algorithm. That is, after a backdoor connection
starts, how long does it take for the monitor to detect the back-
door? Clearly, it is desirable to detect backdoors as quickly as
possible, to enable taking additional actions such as recording
related traffic or shutting down the connection. However, in
many cases waiting longer allows the monitor to gather more
information and consequently can detect backdoors more ac-
curately, resulting in a tradeoff of responsiveness versusaccu-
racy.

Another consideration related to responsiveness concerns
the system resources consumed by the detection algorithm.
If we want to detect backdoors quickly, then we must take
care not to require more resources than the monitor can devote
to detection over a short time period. On the other hand, if
off-line analysis is sufficient, then we can use more resource-
intensive algorithms.

3 A General Algorithm for Detecting
Interactive Backdoors

In this section we present a general algorithm for detecting
interactive backdoors based on keystroke characteristics. The
algorithm incorporates three types of characteristics: direc-
tionality, packet sizes, and packet interarrival times. Wealso
find we need to exclude excessively short flows (common in
our traces due to the use of scanning by automated monitor-
ing software), which do not provide enough traffic to analyze
soundly. The criterion we use is to skip analysis of any flows
comprised of fewer than 8 packets or lasting less than 2 sec-
onds, where a flow is one direction of a bidirectional TCP
connection.

3.1 Exploiting connection directionality

As noted above, an interactive connection is most likely initi-
ated by the client, unless the server has some callback mech-
anism. Therefore, when looking for keystrokes we need only
consider traffic sent by the initiator of a connection. However,
if the monitor doesn’t see the establishment of the connection,
that is, the connection is apartial connection, there is no way
to tell who is the actual initiator. In this case, we must con-
sider both flows.

If we are monitoring an access link and are only interested
in detecting backdoors within the local site, we can further
exploit the connection directionality and ignore all outbound
flows, even if the connection is partial.

3.2 Exploiting packet length characteristics

3.2.1 The size of keystroke packets

Keystroke packets are likely to be very small, even if sent in
line mode, because most commands are short. To verify this
assumption, we analyzed several Internet traffic traces with a
total of 2.1 million Telnet and Rlogin client data packets. Of
these, 79% carried a single byte, 97% carried 3 bytes or less,
and 99.7% carried 20 bytes or less.

For a trace of SSH 1.x and 2.x connections (very heavily
skewed towards 1.x), we found that 28% of the 150 K client
data packets had length 20 or less. (Note that those SSH con-
nections with predominantly big packets are likely to be file
transfers.)

Consequently, we use 20 bytes as our cutoff for “small”
packets.

3.2.2 Characterizing the frequency of small packets

Since most keystroke packets are quite small, we can exclude
those connections that don’t have enough small packets. More
specifically, we can devise a metric to measure the frequency
of small packets in a connection, which we then use to deter-
mine whether we should exclude the connection.
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The simplest metric is the ratio of the number of small
packets over the total number of packets, for a suitable def-
inition of “small packet,” which per the previous section we
define as 20 bytes or less of payload. Unfortunately, this met-
ric doesn’t work well in practice. Although, as stated in the
previous section, over 99.7% of keystrokes are very small,
such statistics are based on a large number of connections.
For a specific connection, we find that the ratio can be as low
as 30–40%. Consequently, in order to prevent frequent false
negatives, we have to choose a conservative threshold as low
as 20–30%. But with such a low threshold, the metrics have
little discriminating power and can introduce too many false
positives.

To avoid such problems, we devised a metricΓ, defined in
terms ofS, the number of small packets,N , the total number
of packets, andG, the number of gaps between small packets.
A gap occurs any time two small packets are separated by at
least one large packet. We then evaluate:

Γ =
S − G − 1

N
.

The intuition behindΓ is that consecutive small packets are
strong indicators that a connection has interactive traffic. If
the small packets are all spread throughout a connection, then
we will haveG = S − 1, soΓ = 0. If they are all grouped
together, thenG = 0 andΓ will reflect the relative proportion
of small packets in the trace.

In our final algorithm, we set the threshold toΓ = 0.2.

3.3 Exploiting timing characteristics

As mentioned above, keystroke interarrival times come in
a striking Pareto distribution, exhibiting a very broad range
[PF95]. We can then exploit the tendency of machine-
driven, non-interactive traffic to send packets back-to-back,
with a very short interval between them, to discriminate non-
interactive traffic from interactive. We do so by examining
each pair of back-to-back small packet arrivals and comput-
ing the ratioα of how many of these interarrival times fall
within the range 10 msec through 2 sec. (We need to take care
not to include retransmitted packets in this computation.)The
upper bound of 2 sec is fairly arbitrary; using 100 sec does not
appreciably change the performance.

We then define a metricα to quantify how often the in-
terarrival between two consecutive small packets falls in this
range. In our final algorithm, we set the threshold toα = 0.2.

It might appear that the criteria ofΓ = 0.2 andα = 0.2 are
too lax, and singularly, they are; but jointly, they prove highly
effective, as we show in§ 5.7.

3.4 Making the algorithm run in real-time

In this section we discuss two considerations in using the al-
gorithm in real-time. First, we observe that we can reduce
the packet capture load a great deal by filtering on the data

payload length of the packets to only capture small pack-
ets.tcpdump [JLM91] doesn’t actually have an easy way to
specify a particular range of payload sizes, but the following
will filter out all packets with more than 20 bytes of payload:

# (packet length -
# ip header length -
# tcp header length) <= 20.
# That is, data length <= 20.
(ip[2:2] - ((ip[0]&0x0f)<<2) -

(tcp[12]>>2)) <= 20

where the bit-shifting is required to extract the IP and TCP
header lengths, which can be variable length due to the pres-
ence of IP or TCP options.

Introducing filtering does not affect the evaluation ofα for
a flow, sinceα is only computed for packets that are con-
secutive in the TCP sequence space (§ 3.3). However, we
must take care when evaluatingΓ, since now that we only
see small packets, we can’t accurately tell the total numberof
packetsN transmitted by a given flow. To solve this prob-
lem, whenever we see a gap in the sequence number, we
estimate the number of missing large packets in the gap as
⌈gap/LARGE PKT SIZE⌉, where LARGEPKT SIZE is a
guess at the most common size for full-sized packets. This
size varies with path characteristics such as the Maximum
Transmission Unit, and also depends on the particular TCP
implementation, but as a rough approximation we simply use
LARGE PKT SIZE = 500.

The other consideration for real-time detection concerns
how quickly the algorithm can determine it has found a back-
door. For off-line analysis, it suffices to check whether a con-
nection has backdoor characteristics when the connection ter-
minates (or when the trace ends), and as we have definedΓ
andα above, they are in terms of statistics computed over a
connection’s total lifetime.

The simplest way to adapt the algorithm to run in real time
is to reevaluateΓ andα on each incoming packet. Alterna-
tively, we can have a timer for each connection and test the
connection whenever the timer goes off. Unfortunately, nei-
ther approach works well in practice. The major problem is
that when we classify a connection as a non-backdoor connec-
tion, we can’t just ignore the connection later on, because it’s
hard to tell whether the connection is indeed a non-backdoor
connection, or instead actually a backdoor connection witha
preamble that has non-backdoor characteristics (such as the
Telnet option negotiations that precede a Telnet login dialog).
Consequently, we have to keep re-testing each non-backdoor
connection, which is clearly very expensive.

We address this problem by exponentially backing off the
reevaluation timer. We initially choose a small timeout value
for the timer (30 seconds). Subsequently, whenever a connec-
tion appears to be a non-backdoor, we increase the timeout
value by a factor of 1.5, which spreads the computational load
over the lifetime of the connection.
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4 Special-Purpose Detection Algo-
rithms

In this section we explore algorithms that look for signatures
reflecting the use of particular protocols. If we then find
servers for those protocols running on ports other than their
standard ones, such instances may indicate the presence of a
backdoor.

Compared to the general-purpose detection algorithm,
special-purpose algorithms can better benefit from protocol-
specific information, and hence are likely to be more accurate
or more efficient. On the other hand, relying on protocol-
specific information can make the algorithm susceptible to
evasion, if the attacker can perturb the signature.

There are two major applications for special-purpose de-
tection algorithms. First, they can be used as baseline algo-
rithms to evaluate the performance of the general-purpose al-
gorithm described in§ 3, allowing us to understand how much
performance we lose by making the algorithm more general
(and hence more difficult to evade). Second, the special-
purpose algorithms themselves can be used either individu-
ally or in combination with the general-purpose algorithm to
detect backdoors.

In the rest of this section, we introduce 15 algorithms for
detecting various interactive protocols and the like. Based on
different design purposes, we can divide these algorithms into
the following two classes:

• Optimal algorithms are designed to identify backdoors
as accurately as possible, without worrying about effi-
ciency. Such algorithms are intended for use as baseline
algorithms and for off-line analysis.

• Efficient algorithms incorporate protocol-specific filter-
ing mechanisms into the optimal algorithms to reduce
their expense, at the cost of a degree of accuracy. The
tradeoff here varies a great deal—sometimes it is even
possible to use a simple packet filter to achieve accu-
racy in the same league as for much more expensive al-
gorithms (see§ 4.1 below)—and the gain is algorithms
efficient enough to use for real-time detection.

Table 1 summarizes the algorithms discussed in the rest of
this section.

4.1 SSH

Secure Shell (SSH) encrypts transmitted content with strong
cryptography. It is increasingly used for both interactiveand
bulk transfer traffic. While all in all its deployment represents
a major advance for Internet security, it presents significant
difficulties for content-based intrusion detection precisely be-
cause it renders the monitor blind to the specifics of each con-
nection. It is thus particularly attractive for backdoor use.

Our first algorithm for detecting SSH,ssh-sig, uses the SSH
version string as the signature for SSH. When an SSH connec-
tion has been established, both sides send an identifying string

Backdoor type Optimal algorithm Efficient algorithm

SSH ssh-sig, ssh-len ssh-sig-filter
Rlogin rlogin-sig rlogin-sig-filter
Telnet telnet-sig telnet-sig-filter
FTP ftp-sig ftp-sig-filter
Root prompt root-sig root-sig-filter
Napster napster-sig napster-sig-filter
Gnutella gnutella-sig gnutella-sig-filter

Table 1: Summary of the special-purpose backdoor detection
algorithms.

of the form “SSH-protoversion-softwareversion comments”,
followed by carriage-return and newline (ASCII 13 and 10,
respectively) [YKSRL99]. The maximum length of the string
is 255 characters, including the carriage-return/newline. Ver-
sion strings contain only printable characters, not including
space or “- ”.

Currently, the SSH protocol version is either “1.x” or “2.x”.
Therefore, it suffices forssh-sigto look for text “SSH-1.” or
“SSH-2.” at the beginning of the first data packet sent in each
direction of a connection.

We can replacessh-sigwith the following tcpdump filter
(denoted asssh-sig-filter) for very efficient detection:

# 1st 4 bytes are ’SSH-’ and
# bytes 5 and 6 are ’1.’ or ’2.’
tcp[(tcp[12]>>2):4] = 0x5353482D and
(tcp[((tcp[12]>>2)+4):2] = 0x312E or

tcp[((tcp[12]>>2)+4):2] = 0x322E)

Our second detection algorithm,ssh-len, uses an implicit
signature, the packet length, to detect SSH sessions. Accord-
ing to the SSH specification, SSH 1.x will (in the absence
of TCP repacketization) generate packet payload sizes of the
form 8k +4, that is, 4 more than a multiple of 8. SSH 2.x will
generate payload sizes of length at least 16, and also a multi-
ple of the cipher block size, which is a multiple of 8 for all of
the ciphers of which we are aware. Therefore, for SSH, either
most packets will have length8k+4, or most will have length
8k. One deviation occurs with the initial version exchange,
which does not conform with these rules.

In light of this pattern,ssh-lendetects SSH as follows:

1. First test for an interactive connection using the timing-
based algorithm (§ 3). If it is interactive, go to the next
step, otherwise stop.

2. If the proportion of packets with length8k + 4 or the
number of packets with length8k exceeds a threshold,
classify the connection as SSH.

We need to be careful when choosing the threshold, because
packet retransmission and fragmentation can sometimes dis-
tort such characteristics. In our current implementation,we
set the threshold to 75%.
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4.2 Rlogin

Upon connection establishment, an Rlogin client sends four
NUL-terminated strings to the server in the following format
[Ka91]:

<NUL>
client-user-name<NUL>
server-user-name<NUL>
terminal-type/speed<NUL>

The server then returns a zero byte (NUL) to indicate that
it has received these strings and is now in data transfer mode.
Algorithm rlogin-sig attempts to detect Rlogin sessions using
this negotiation as a signature. It first applies the following
analysis to a connection:

• For the flow towards the initiator of a connection, check
if the first byte is a NUL.

• For the flow sent by the initiator, keep testing each byte
until one of the following events happens:

- A gap in sequence number occurs;

- four NUL’s have been seen;

- an empty string or a non-7-bit-ASCII byte is
seen; or

- the number of bytes we examined reaches a maxi-
mum bound (128 in the current algorithm).

If the above terminates by finding four NUL’s, then we
check to see whether the flow in the other direction begins
with a non-NUL byte, or whether we found any empty strings
or non-7-bit-ASCII bytes. If neither of these last two hold,
then the connection is classified as an Rlogin connection.

We can combinerlogin-sig with the following tcpdump fil-
ter, resulting in a more efficient algorithmrlogin-sig-filter :

# last byte is 0 and data len != 0 and
# data length <= 128
(tcp[(ip[2:2]-((ip[0]&0x0f)<<2))-1] = 0)
and ((ip[2:2]-((ip[0]&0x0f)<<2)-

(tcp[12]>>2)) != 0)
and ((ip[2:2]-((ip[0]&0x0f)<<2)-

(tcp[12]>>2)) <= 128)

Note thatrlogin-sig tests for whether thelast byte in the
packet is NUL, rather than the first byte. This is necessary
because we find that clients tend to send their first NUL in its
own packet, and the remainder of the prolog information in a
second packet.

4.3 Telnet

The Telnet protocol [PR83a] includes a quite general mech-
anism for negotiating options [PR83b]. Since most Telnet
sessions begin with a series of option negotiations, we can
attempt to detect these, which have a distinct pattern, taking
one of the following four 3-byte formats:

IAC WILL option-code
IAC WON’Toption-code
IAC DOoption-code
IAC DON’T option-code

The code values forWILL, WON’T, DO, DON’T, and IAC
are 251, 252, 253, 254, and 255 respectively. Note that some
options have parameters, and so can be longer than the above
three bytes.

telnet-sig tests the first two bytes of each incoming packet
to see if they match the beginning of any of the above. If a
connection doesn’t involve any option negotiation, we clas-
sify it as a non-Telnet connection. Otherwise, we test the fol-
lowing additional conditions:

• At least 75% of the bytes are 7-bit-ASCII.

• At least 50% of the lines are not longer than 80 bytes.

These aid in weeding out binary traffic that happens to match
the option patterns above.

We can combine the following packet filter withtelnet-sig
to form a more efficient algorithm,telnet-sig-filter:

# 1st byte is <IAC> (0xff),
# 2nd byte is <251> - <254>
(tcp[(tcp[12]>>2):2] > 0xfffa) and
(tcp[(tcp[12]>>2):2] < 0xffff)

4.4 FTP

In this section we look at a somewhat different form of inter-
active protocol, the user control portion of the FTP file transfer
protocol [PR85]. FTP is a request/reply protocol in which re-
quests are sent in single, usually short, lines of ASCII text, and
replies have a similar structure, but can be longer and multi-
line. Some FTP requests are sent in response to user activ-
ity, and accordingly have interactive-like timing. Othersare
generated mechanically by the FTP client, and arrive closely
spaced.

Replies sent by FTP servers start with a status code (a num-
ber), followed by any accompanying text. For a day’s worth of
FTP activity between the Lawrence Berkeley National Labo-
ratory and the rest of the Internet (7,229 connections), thedis-
tribution of the code in the first reply returned by the serveris:
code220 (“ready for new user”) seen 6,685 times; code421
(“service not available”) seen 535 times; code226 (“clos-
ing data connection”) seen 7 times; codes426 (“connec-
tion closed”) and200 (“command okay”) each seen once; no
other codes seen.

Of these, if we miss a server that returns421 we haven’t
actually missed anything significant, since the service is not
available. All that really matters is detecting220 , though we
can include421 , too, without too much extra effort.

For FTP server replies, the fourth byte is either a blank or a
hyphen, the latter indicating a multi-line reply. Therefore, the
ftp-sig algorithm looks in the first four bytes for either220

6



or 421 , followed by either a blank or a hyphen, as a signature
for an FTP connection.

We can also composeftp-sig-filter :

# 1st three bytes are ’220’,
# 4th byte is blank or hyphen
tcp[(tcp[12]>>2):4] = 0x3232302d or
tcp[(tcp[12]>>2):4] = 0x32323020

with a similar filter for421 .
One difficulty with this approach is that the same sort of

status codes are used by the popular SMTP mail transfer pro-
tocol [Po82]. Code220 corresponds to “service ready” and
421 to “service not available,” just as it does for FTP. This
means that our algorithms for detecting FTP backdoors should
work just as well for SMTP backdoors (which can actually be
beneficial), which in§ 5.5 we explore further.

4.5 Root Backdoor

From operational experience we have found that one particu-
lar type of backdoor installed by attackers is a Unix root shell,
and the connection to it may not involve any Telnet option ne-
gotiation. For these, often the server starts by sending a packet
with a payload of exactly two bytes: “#<blank>”, which cor-
responds to one of the forms of a Unix root shell prompt. This
gives us a simple algorithm,root-sig, which attempts to detect
root backdoors by looking for the two bytes in the first packet
sent by the server side of a connection, and the corresponding
root-sig-filter :

# look for ’# ’ in a packet with
# exactly 2 bytes of payload
tcp[(tcp[12]>>2):2] = 0x2320 and
(ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) == 2

which, given its conceptual simplicity, works surprisingly
well (see§ 5.6 below).

4.6 Napster

Napster is a distributed system by which users can share
copies of music that has been digitized in MP3 format
[NA99]. Users run a client that connects tonapster.com
servers for purposes of publishing the MP3’s that the user has
made available to the public, and for searching for particular
MP3’s available elsewhere in the distributed database. The
server redirects the client to other clients that have the desired
MP3 available, and the client then makes a direct connection
to the source of the MP3, bypassing the server at this point.

Napster has proven controversial because often the MP3
trading is in violation of copyright laws, and also because
MP3’s tend to be large files, so the enthusiasm of a site’s Nap-
ster users can consume considerable resources [NA00, Ha00].
Therefore, sites make efforts to control Napster traffic, for
example by removing connectivity to thenapster.com

servers. Napster users have taken counter-measures to cir-
cumvent such blocking [We00], including configuring Nap-
ster servers to use non-standard ports for their commu-
nications. Open-source Napster clients are also available
[GN99, ON00a], which will aid Napster users in modifying
the client’s behavior to better circumvent detection.

Detecting Napster traffic is thus in many ways similar to
detecting other backdoors, even though in this case the traffic
does not reflect a security access violation, but rather a policy
violation (authorization rather than authentication).

We focused on the problem of detecting the communication
directly between Napster clients (used to transfer the actual
MP3’s). One thought was to develop a generic MP3 detec-
tor, though our preliminary work on this has shown the prob-
lem to be somewhat difficult, as the format has a short, binary
header that does not suggest a simple, distinct pattern to look
for [Bo00].

The Napster client communication, however, has a quite
distinctive signature [ON00b]. The communication begins
with the stringSENDor GET followed immediately by the
name of the item (no intervening whitespace). Furthermore,
we have found that theSENDor GETdirective is sent by the
Napster client in its own packet,2 so our current version of
napster-sig simply looks for either of these strings sent in
their own packet and occurring at the beginning of a con-
nection. napster-sig-filter does the same, but without the
beginning-of-a-connection context:

# look for "SEND" or "GET" in a
# packet by itself (so payload of
# 4 or 3 bytes, respectively)
((ip[2:2] - ((ip[0]&0x0f)<<2) -

(tcp[12]>>2)) = 4 and
tcp[(tcp[12]>>2):4] = 0x53454e44) or

((ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) = 3 and

tcp[(tcp[12]>>2):2] = 0x4745 and
tcp[(tcp[12]>>2)+2]=0x54)

4.7 Gnutella

Gnutella is a distribution system similar in spirit to Napster
[GN00]. Its distinctive features are that it is fully open source,
it can be used to exchange arbitrary files and not just MP3’s
(although there are now Napster add-ons for doing this, too),
and it has no centralized component—Gnutella clients sim-
ply need to know the name of another Gnutella client and
they can participate in the distribution network. Consequently,
Gnutella is likely to prove harder for sites to control than Nap-
ster.

In its current form, however, Gnutella is very easy to de-
tect. Each Gnutella session begins with the connecting client
transmitting:

2Clearly, this is very easy for the Napster client to change, and the corre-
sponding change to make to our detector is looking for the absence of whites-
pace following the directive, which will address mistaking NapsterGET’s for
those used by HTTP.
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GNUTELLA CONNECT/<version><NL><NL>

and receiving in reply:

GNUTELLA OK<NL><NL>

where<NL> is the newline character (ASCII 10).
Accordingly, gnutella-sig looks for the string

“GNUTELLA<blank>” at the beginning of a connec-
tion.

The correspondinggnutella-sig-filter is:

# look for "GNUTELLA " as first
# 9 characters of payload
tcp[(tcp[12]>>2):4] = 0x474e5554 and
tcp[(4+(tcp[12]>>2)):4] = 0x454c4c41
and tcp[8+(tcp[12]>>2)] = 0x20

5 Performance evaluation

In this section we evaluate the algorithms developed in§ 3 and
§ 4. The evaluations were done by adding implementations of
the algorithms to the Bro intrusion detection system [Pa98].

Our general framework for evaluation is as follows. To as-
sess an algorithm’s accuracy, we first run it against known
interactive traffic of the particular type it is supposed to detect
(Telnet, Rlogin, SSH; or, for the general algorithm, a combi-
nation of Telnet and Rlogin, since SSH traffic is sometimes
bulk-transfer) and analyze how often it fails to flag a connec-
tion in the trace as interactive. This evaluates thefalse neg-
ative rate. We then run the algorithm against packet traces
of a site’s Internet traffic (these have high-volume protocols
such as HTTP, NFS, and X11 removed, because otherwise we
could not capture the traces reliably) to see which connections
they mark as interactive, and then manually assess whether the
connection does indeed appear to be interactive. This evalu-
ates thefalse positive rate.

Note, we do not assess the Napster and Gnutella detectors,
as the traces we use here were captured before those appli-
cations existed. However, our informal assessment based on
correlating traffic to known Napster and Gnutella ports and
services is that they work very well.

5.1 Trace description

We used four traces to evaluate the performance of the algo-
rithms:

• ssh.trace (194MB, 380K packets, 905 connections),
a half-hour snapshot of all the SSH connections seen late
at night on the Internet access link (DMZ) of the Univer-
sity of California at Berkeley (UCB).

• lbnl.mix1.trace (54MB, 134K packets, 4.6K con-
nections) andlbnl.mix2.trace (421MB, 863K
packets, 14.7K connections). Each trace contains one
hour of aggregate traffic collected at the DMZ of the

Lawrence Berkeley National Laboratory (LBNL), the
first in the middle of the night, the second in the middle
of the afternoon. The traces have had high volume pro-
tocols (HTTP, SSH, NFS, X11, NNTP, FTP data) filtered
out.

Note that we might well apply such filtering for opera-
tional use, too, deciding to trade off missing backdoors
on those ports for the reduced packet capture load.

• lbnl.inter.trace (389MB, 3.5M packets, 5.5K
connections), one day’s worth of Telnet and Rlogin traf-
fic collected at LBNL.

5.2 Performance of SSH algorithms

We ranssh-sigon tracessh.trace to evaluate its false neg-
ative ratio. Clearly,ssh-sigonly works when the beginning of
a connection is present. Altogether, there are 546 complete
SSH connections inssh.trace , none of which is missed
by ssh-sig. This demonstrates that the false negative ratio of
ssh-sigis extremely low, which is to be expected since the
presence of the signature is required by the specification.

We then ran ssh-sig on lbnl.mix1.trace ,
lbnl.mix2.trace and lbnl.inter.trace to
evaluate its false positive ratio. Among the 16,938 complete
non-SSH connections, none is mis-classified as SSH by
ssh-sig. Therefore, the false positive ratio ofssh-sigis close
to 0.

ssh-sig-filter has exactly the same good performance on
the traces we have, which is not surprising, as the only ap-
parent opportunity for error is unusual packetization splitting
the SSH version text across multiple packets. In addition, the
filtering gain is tremendous, because only those packets that
contain the SSH version string need to be further processed.
For ssh.trace , the algorithm needs only inspect 111 KB
of packets rather than the 194 MB present in the entire trace.

The major limitation ofssh-sigand ssh-sig-filter is that
they only work when the beginning of an SSH connection is
present.

Since SSH can be used for both interactive traffic and bulk
transfer, it is difficult to soundly evaluate the false negative
ratio of ssh-len, which is designed to detectinteractive SSH
backdoors. Consequently, we only evaluate the false positive
ratio here.

Again, we ranssh-lenon the three traces without ssh con-
nections: lbnl.mix1.trace , lbnl.mix2.trace and
lbnl.inter.trace . Among the 16,938 non-SSH con-
nections, only 5 are classified as SSH byssh-len, yielding a
very low false positive rate.

Compared withssh-sigandssh-sig-filter, ssh-lendoes not
require the presence of the beginning of a connection. How-
ever, it is less robust for SSH 1.x over highly lossy links,
where two SSH blocks of length8k + 4 could be coalesced
due to packet retransmission, resulting in a single packet of
8(k1 + k2 + 1) bytes. Consequently, we only usessh-len
when the beginning of a connection is missing.
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5.3 Performance of Rlogin algorithms

Altogether there are 175 complete Rlogin connections in the
traces, none of which is missed byrlogin-sig.

We begin with evaluating the false positive ratio ofrlogin-
sig. In the four traces, altogether there are 17,306 non-rlogin
connections, none of which is mis-classified as an Rlogin con-
nection. This meansrlogin-sig also has an extremely low
false positive ratio.

After adding filtering intorlogin-sig, we found that the
false negative ratio remains the same (0/175). Meanwhile,
the increase in the false positive ratio is marginal: altogether
there are 4 out of 17,306 non-Rlogin connections that are mis-
classified as Rlogin connections byrlogin-sig-filter .

The filtering gain ofrlogin-sig-filter is significant. Among
the 1 GB data we have in the four traces, only 16 MB data
needs to be processed byrlogin-sig.

The major limitation ofrlogin-sig and rlogin-sig-filter is
similar to ssh-sig—they only work when the beginning of a
connection is seen by the monitor.

5.4 Performance of Telnet algorithms

Again, we first evaluate the false negative ratio of algorithm
telnet-sig. Unfortunately, it turns out that many Telnet con-
nections in our traces are very short. For such short connec-
tions, telnet-sig fails because the connections do not include
option negotiations. On the other hand, if a connection is that
short, even if it is indeed a backdoor, it is not likely to cause
significant damage.

To make the evaluation meaningful, we only consider those
connections satisfying:

• the client sends at least two lines of data;

• the server sends at least one line of data; and

• the duration of the connection is at least 1 second.

After eliminating connections not satisfying these require-
ments, 1,526 Telnet connections remain, 18 of which are
missed bytelnet-sig. Further inspection shows that 17 out of
the 18 involve the same public library catalog server, which
performs passwordless logins without any option negotiation.

We further find that of the 12,708 non-Telnet connections in
the traces, none is mis-classified as Telnet connections. This
demonstrates thattelnet-sighas a very low false positive ratio.

After adding filtering into telnet-sig to form algorithm
telnet-sig-filter, the false positive and false negative ratios are
unaffected for the traces we have studied. The filtering gain,
however, is significant:telnet-sig-filter has to process less
than 1.5 MB out of over 1 GB of packet data.

The major limitation oftelnet-sig and telnet-sig-filter is
similar to ssh-sigand rlogin-sig—they only work when the
connection as seen by the monitor includes option negotia-
tions, which tends to only occur at the beginning of a connec-
tion.

5.5 Performance of FTP algorithms

As noted in§ 4.4, our FTP detection algorithm will also detect
SMTP, so here we note this limitation and then treat the two
protocols together.

We have altogether 5,629 FTP/SMTP sessions in which the
server sent at least 4 bytes of data. Of these, 29 are missed
by ftp-sig. Further inspection shows that these connections
are almost all partial connections for which the initial dialog
(which is far and away the most likely place for our signature
to trigger) is missing. This demonstrates thatftp-sig has a low
false negative ratio.

Among 20,135 non-FTP/SMTP connections, only one is
classified as FTP/SMTP. Further inspection shows that this is
actually an FTP server running via WinSock—so there is no
false positive after all!

After adding filtering,ftp-sig-filter enjoys the same accu-
racy, as well as a terrific filtering gain: only 1.2 MB out of
over 1 GB data need be processed byftp-sig-filter .

Again, the limitation forftp-sig and ftp-sig-filter is that,
except for rare exceptions, they only work when the beginning
of a connection is seen by the monitor.

5.6 Root shell algorithms

As far as we can tell, our traces do not include any root shells,
so we cannot soundly evaluate the performance ofroot-sig
and root-sig-filter . But see the next section for preliminary
experiences indicating that they (root-sig-filter , in particular)
are quite powerful.

5.7 Performance of the general detection algo-
rithm

To assess the false negative ratio of the algorithm, we ran it
on tracelbnl.inter.trace , which consists only of Tel-
net and Rlogin connections. Among the 150 complete Rlogin
connections, 26 are missed by the algorithm. Further inspec-
tion shows that 23 are excessively short (less than 2 seconds
in duration, or only one command executed), and the other 3
are user login failures. Among all 1,450 Telnet connections
that are not excessively short, 22 are missed by the timing-
based algorithm. Therefore, the false negative ratio is at least
comparable totelnet-sig. Further inspection shows that the
algorithm found all 18 connections missed by thetelnet-sig,
but 22 connections detected bytelnet-sig are missed by the
timing-based algorithm.

To evaluate the false positive ratio of the algo-
rithm, we ran the algorithm onlbnl.mix1.trace and
lbnl.mix2.trace with all the Telnet/Rlogin/FTP/SSH/
SMTP connections filtered out. Among over 12,000 con-
nections, the timing-based algorithm reported 57 backdoors.
Further inspection shows that 45 are IMAP [Cr94] and POP
[MR96] mail servers used interactively, and therefore are not
in fact false positives.3

3The algorithm has also detected interactive SMTP sessions,nominally a
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5.8 Experience with production use

We only recently begun operational deployment of the back-
door detection algorithms for production use on the LBNL
DMZ. One of the most surprising (and, in retrospect, obvious)
findings has been the large number of legitimate backdoors.

For example, when analyzing 20 minutes of traffic from the
UCB DMZ (comprising 4.9 GB of data after filtering out the
high volume traffic), the protocol-specific algorithms report
334 backdoors on non-standard ports. Of these, 326 are FTP
servers on non-standard ports, 7 are interactive games, andthe
remaining one is a library card catalog server. In contrast,the
timing-based algorithm reports 220 backdoors. From visual
inspections of 75 of these, we found: 17 are interactive AOL
sessions, 19 are interactive games, 14 are chat sessions, 3 are
card catalog servers, 7 are FTP sessions, and we were unable
to identify the other 15.

Running on the live traffic stream, the SSH detection algo-
rithms have turned up SSH servers running on port 80 (nomi-
nally HTTP—the server ran on that port to provide tunneling
through firewalls); port 110 (nominally POP); port 32 (used
to run an older version of SSH than the one on port 22, due
to compatibility problems); ports 44320–44327 (a NAT server
with SSH access to the collection of hosts behind it via a num-
ber of different ports); as well as a host of variants of 22 (222,
922, 2222,. . .).

For production use it is unsafe to filter out the high-volume
protocols. Running the signature-based tcpdump filters on
full traffic streams does not present any performance prob-
lems when using a kernel-based packet filter, as the filters
are highly selective. For the other protocol-specific detec-
tors, it appears we can also run them on good-sized full traffic
streams, as running all of them against a 10 GB trace only
takes about 20 CPU minutes on a 400 MHz Pentium II.

We run all of the protocol-specific detectors daily against
traces of LBNL traffic other than the high-volume ports. (We
will shortly be configuring our monitor to run them in real-
time.) We currently run with a set of five filters to remove
legitimate backdoors: the NAT front-end mentioned above;
two hosts that run a document upload service that triggers
ftp-sig (the protocol is not FTP or SMTP, but has a simi-
lar structure); a host that runs a service on TCP port 497 that
involves an exchange that looks like Telnet option negotiation
(but isn’t); and a popular FTP server that sometimes serves
files with binary data that looks like embedded Telnet options.

The Napster and Gnutella detectors have become important
tools in enforcing LBNL’s appropriate use policy, and, for ex-
ample, have detected a remote Napster server running on port
21 (FTP) in an apparent attempt to hide or circumvent a fire-
wall.

The root backdoor filter,root-sig-filter , has uncovered root
backdoors running on UCB traffic. However, these have not
been in the form originally intended (in which the connec-
tion begins directly with “#<blank>”), which we know from
experience are a rare, albeit striking, signature. Instead, be-

non-interactive protocol.

cause the filter version of the algorithm detects “#<blank>”
anywhere in a connection, providing it is sent as a prompt
(by itself with no newline),root-sig-filter is quite powerful at
detecting both some transitions to root via the Unixsu com-
mand, and sessions for which the prompt seen after the login
prolog is indeed “#<blank>”.

Part of the appeal ofroot-sig-filter is that it generates very
few candidate connections, so even though its false hit rateon
general traffic is fairly high, the connections it flags are not
burdensome to check, and it is an exceptionally cheap algo-
rithm in terms of computation.

We do not yet run the general algorithm operationally. As
discussed above, it detects large numbers of interactive ser-
vices, requiring time-consuming effort contacting the man-
agers for the various machines to determine that in fact the
backdoors are legitimate. But the potential of the approach
seems clear already.

6 Summary

The problem of finding a backdoor connection in a flood of
otherwise legitimate network traffic initially appears daunting.
But because interactive traffic has characteristics quite differ-
ent from most machine-driven traffic (smaller packet sizes,
longer idle periods), it is possible to search efficiently for
such traffic. We have presented a general algorithm for doing
so, and also protocol-specific algorithms that look for signa-
tures particular to different protocols, both of which we im-
plemented in the Bro intrusion detection system.

One unexpected benefit of developing the protocol-specific
algorithms was to realize how it is frequently possible to fin-
gerprint a particular application protocol by unique or nearly
unique text it includes. This lead to the developement of suc-
cessful algorithms for Napster and Gnutella, which can be
important to detect given that their use sometimes violatesa
site’s policy, and that their users often attempt to evade detec-
tion.

The algorithms are frequently amenable to prefiltering in
which a stateless packet filter discards nearly all of the traffic
stream before it is even considered by the algorithm. Such fil-
tering yields major performance increases in terms of reduced
CPU processing, for little or sometimes no decrease in accu-
racy. A related line of future work that may prove fruitful is
to explore the possibility of combining the general algorithm
with the protocol-specific algorithms, which is likely to yield
better accuracy.

While the algorithms work very well, a major stumbling
block we failed to anticipate is the large number of legitimate
“backdoors” that users routinely access. These are not back-
doors in the surreptitious sense, but only in the more general
sense of standard protocols being run on non-standard ports.
We have recently begun using the algorithms operationally,
which will necessitate both the development of refined secu-
rity policies addressing the many legitimate backdoors, and
honing our algorithms as a mechanistic way to eliminate cer-
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tain classes of benign backdoors. But even given these hur-
dles, we find the utility of the detection algorithms clear and
compelling, and a natural next step is to now investigate their
application to detecting custom backdoor protocols such as
LOKI [da97] and Back Orifice [CERT98].
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