
Troubleshooting Chronic Conditions in Large IP Networks

Ajay Mahimkar§, Jennifer Yates‡, Yin Zhang§, Aman Shaikh‡, Jia Wang‡, Zihui Ge‡, Cheng Tien Ee‡

The University of Texas at Austin§ AT&T Labs – Research ‡

{mahimkar,yzhang}@cs.utexas.edu {jyates,ashaikh,jiawang,gezihui,ctee}@research.att.com

ABSTRACT

Chronic network conditions are caused by performance im-
pairing events that occur intermittently over an extended pe-
riod of time. Such conditions can cause repeated perfor-
mance degradation to customers, and sometimes can even
turn into serious hard failures. It is therefore critical to trou-
bleshoot and repair chronic network conditions in a timely
fashion in order to ensure high reliability and performance
in large IP networks. Today, troubleshooting chronic condi-
tions is often performed manually, making it a tedious, time-
consuming and error-prone process.

In this paper, we present NICE (Network-wide Informa-
tion Correlation and Exploration), a novel infrastructure that
enables the troubleshooting of chronic network conditions
by detecting and analyzing statistical correlations across mul-
tiple data sources. NICE uses a novel circular permutation
test to determine the statistical significance of correlation.
It also allows flexible analysis at various spatial granularity
(e.g., link, router, network level, etc.). We validate NICE us-
ing real measurement data collected at a tier-1 ISP network.
The results are quite positive. We then apply NICE to trou-
bleshoot real network issues in the tier-1 ISP network. In
all three case studies conducted so far, NICE successfully
uncovers previously unknown chronic network conditions,
resulting in improved network operations.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Op-
erations

General Terms

Design, Management, Performance, Reliability

Keywords

Network Troubleshooting, Chronic Condition, Correlation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2008, December 10-12, 2008, Madrid, SPAIN
Copyright 2008 ACM 978-1-60558-210-8/08/0012 ...$5.00.

1. INTRODUCTION

Today, IP networks carry traffic from a diverse set of ap-
plications. Many applications, such as Voice over IP (VoIP),
Internet television (IPTV), video conferencing, streaming me-
dia, Internet games, and online trading have stringent re-
quirements for network reliability and performance. For these
applications, the best effort service is no longer an accept-
able mode of operation; service provider networks must main-
tain ultra-high reliability and performance. Doing so re-
quires accurate and timely troubleshooting of anomalous net-
work conditions, which occur due to accidents, natural disas-
ters, equipment failures, software bugs, mis-configurations,
or even malicious attacks [14]. However, troubleshooting
anomalous network conditions is extremely challenging in
large IP networks due to their massive scale, complicated
topology, high protocol complexity, and continuously evolv-
ing nature through either software or hardware upgrades,
configuration changes or traffic engineering.

Network management systems in service provider networks
have traditionally focused on troubleshooting large network
events that persist over extended periods of time, such as
link failures. However, this approach leaves other network
events flying under the operations teams’ radar, while po-
tentially impacting customers’ performance. In many sit-
uations, such events are short in duration – the symptoms
have disappeared even before a network operator can react
to them. If the event is truly a one-off event, then there may
be little point in investigating it further. However, for chronic
(i.e., recurring) events, the symptoms keep re-appearing and
can cause repeated performance degradation to customers.
In some cases, the chronic condition can aggravate over time
before it eventually turns into a serious hard failure. For ex-
ample, repeated link flaps may be observed over time before
the link completely fails. Even when the chronic event does
not result in any hard failure, the performance degradation
caused can add up to significant impact to customers over
time. It is therefore crucial to eliminate such chronic con-
ditions from the network. As with hard failures, uncovering
the underlying root cause(s) of the chronic conditions is nec-
essary before the conditions can be permanently eliminated
from the network.

Troubleshooting chronic network conditions can involve
a complex combination of (targeted) network measurement,
data mining, lab reproduction and detailed software and/or

hardware analysis. However, even when lab reproduction or
vendor intervention is required, accurate diagnosis of chronic
conditions is at the heart of the troubleshooting process. For
example, gleaning as much information from available net-
work data can rapidly guide lab reproductions in honing into
the conditions, scenarios and potential triggers necessary to
induce the events of interest. We therefore focus on mining
measurement data to effectively diagnose chronic network
events in this paper.

Traditionally, troubleshooting in operational IP networks
has focused on manually identifying network events that co-
occur with the symptoms, and then inferring the root cause(s)
from these events. Manual troubleshooting makes the task
cumbersome, tedious and error-prone, thereby severely lim-
iting the events that can be even examined. Innovative, au-
tomated solutions are required to effectively manage and re-
pair chronic conditions in a timely fashion. As IP networks
continue to grow in size and complexity, and applications
continue to mandate stricter performance requirements, we
expect this to become an ever increasingly important issue.

Approach. In this paper, we propose NICE (Network-wide
Information Correlation Exploration), a novel infrastructure
that enables the troubleshooting of chronic network condi-
tions by detecting and analyzing significant statistical corre-
lations across multiple data sources. Our key observation is
that today’s IP networks are often heavily instrumented to
continuously generate diverse measurements ranging from
network-wide performance to routing protocol events and
device syslogs. As a result, the same chronic network events
tend to manifest themselves as correlated signals in multi-
ple data sources. Thus, by analyzing significant correlations
that network operators are unaware of based on their domain
knowledge, we are more likely to uncover chronic network
conditions that previously fly under the operators’ radar.

We quantify the correlation between two event-series us-
ing Pearson product-moment correlation coefficient [7], ar-
guably the most commonly used correlation measure. Com-
pared with simple co-occurrence based analysis (which is
the state of the art for troubleshooting chronic conditions in
network operations), correlation coefficient also takes into
account the event frequency of each individual event. This
is particularly important when one type of events occur fre-
quently, resulting in high event co-occurrence count even
when the two event-series are not strongly correlated.

Challenges. Several significant challenges must be addressed
in order to apply statistical correlation to troubleshoot chronic
conditions in large IP networks:

1. Large number of network event-series. Today’s IP
networks are instrumented to generate a large amount of
diverse measurements. There are potentially on the order
of tens of thousands of individual event-series that one
can create from network data collected from different
spatial locations. Digging through this mound of data to
troubleshoot chronic conditions and identifying the root
causes is analogous to finding needles in a haystack.

2. Distributed event propagation. Some network events
have only local impact (e.g., a router reload event on

one router is known to cause protocol session timeouts
on the one-hop neighboring router), whereas others have
network-wide impact (e.g., OSPF re-convergence events
can cause CPU utilization to increase on routers across
the network). It is important to take such impact scope
into account when troubleshooting chronic network con-
ditions. For example, if two event-series are strongly
correlated but are not within each other’s impact scope,
then the correlation between them may not be of inter-
est to network operators. Blindly correlating event-series
without considering their impact scope can easily lead to
an information “snow” of results, many of which would
be false alarms.

3. Auto-correlation within event-series. In order to test
whether the correlation coefficient between two event-
series is significant, several classic statistical significance
tests can be applied. Unfortunately, in our context, we
often observe significant auto-correlation within each in-
dividual event-series. Existing significance tests for cor-
relation coefficient either do not account for such auto-
correlation at all or do not account for it sufficiently. As
a result, they tend to overestimate the significance of cor-
relation coefficients, resulting in too many false alarms.

4. Inaccurate event timestamps. Delay often exists be-
tween when an event occurs and when it shows up in
measurement data. There can be several reasons for this.
First, the measurement process may be far away from the
location for the event, resulting in a propagation delay.
Second, many measurement processes are periodic. For
example, SNMP link loads are often polled only once
every five minutes. As a result, a maximum delay of one
measurement cycle may be added after an event occurs
and before it gets recorded. Third, the event may not
be immediately observable to the measurement process
(e.g., due to damping mechanisms in routing updates).
Finally, the clocks of distributed measurement processes
may not be synchronized and typically only have limited
resolution. Inaccurate event timestamps may result in
seemingly violation of causality (i.e., the cause may be
recorded after the effect). So, it is crucial to make corre-
lation analysis robust to inaccurate event timestamps.

Contributions. We design and implement the NICE infras-
tructure (see Section 3), which we believe is the first flexible

and scalable infrastructure for troubleshooting chronic net-
work conditions using statistical correlation testing across
multiple network data sources. NICE addresses the above
challenges as follows:

1. Instead of blindly mining for correlations across all pos-
sible pairs of network event-series, NICE starts with the
symptom1 event-series and outputs the list of other net-
work events that have statistically significant correlations
with the symptom. This list represents the potential root
causes and impacts of the symptom event.

1A symptom event is an event that is indicative of a chronic network
condition and is directly observable to the operations team (e.g.,
CPU overload or high packet loss rate).

2. NICE incorporates a spatial proximity model and the hi-
erarchical structure of network components to capture
the impact scope of network events. For example, to
troubleshoot packet loss observed on a path, NICE iden-
tifies strong statistical correlations between loss and other
events that occur on routers and links on the same path.
By using the spatial scope, NICE can significantly in-
crease the fraction of potentially interesting correlations
in the final reports.

3. NICE develops a novel circular permutation test of sta-
tistical correlation significance that can deal with auto-
correlation within each event-series. The statistical cor-
relation test ensures that most events that co-occur by
chance are eliminated.

4. NICE copes with imprecise event timestamps by adding
“padding margins” when converting raw measurement
data into event-series.

We then systematically evaluate NICE using real network
data collected from a tier-1 ISP’s network (see Section 4).
Our results demonstrate that the correlations considered sig-
nificant by NICE generally agree with the domain expertise.
When there is a disagreement, it is typically caused by either
our imperfect domain knowledge, measurement artifact, or
genuine network chronic conditions. Encouraged by the val-
idation results, we have used NICE to troubleshoot real net-
work issues in collaboration with operators of the tier-1 ISP.
Our deployment experience has been very positive. In all
three case studies that we conducted (see Section 5), NICE
uncovered previously unknown chronic network conditions
that are performance impacting. Remedy actions have been
taken as a result of the NICE reports. NICE is becoming a
powerful troubleshooting tool within the tier-1 ISP.

2. NETWORK DATA

ISPs today collect a plethora of data related to fault and
performance from the network. Below we provide a brief
overview of the data collected by the tier-1 ISP. We mainly
focus on data sources that are relevant to the rest of the paper.

2.1 Data Sources

Layer-1 Alarms. The ISP collects standard alarms and per-
formance monitoring metrics reported by the layer-1 devices
used to inter-connect routers in different locations. These
alarms indicate link failures, performance impairments (e.g.,
high bit error rates, loss of signal or frame), and protection
switching events occurring at the physical layer.

Router Syslogs. Syslog messages provide information about
states, state changes, and error conditions encountered by
routers and other devices. The exact type and format of
these messages depend on the manufacturer and model of
the router. Examples include messages related to timer ex-
pirations for routing protocols, state changes for routing ses-
sions, and errors in the internal functioning of routers.

SNMP. SNMP MIBs and traps provide a standardized way
of collecting performance and fault data from network ele-
ments. The ISP pulls various MIB elements such as the num-

10
0

10
2

10
4

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Events per Event Type

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Figure 1: CDF of event counts per event type.

ber of bytes transmitted and received through interfaces, and
CPU utilization at routers through periodic polling.

End-to-end Performance Measurements. The ISP net-
work has an infrastructure of servers covering major PoPs
(Point of Presence). Active data probes are sent in a periodic
fashion between server pairs. These active probes provide
measurements regarding delay and loss between PoPs.

Routing Data. The ISP uses OSPF as its intra-domain rout-
ing protocol, and collects OSPF LSAs (Link State Advertise-
ments) using an OSPF Monitor [17]. We focus on the LSAs
that indicate events caused by maintenance and failures in
the network. We also use OSPF data to infer how traffic is
routed across the backbone, and when and how routes are
impacted (re-routed) by network events.

Router Command Logs. The router command logs pro-
vide a history of commands executed on routers through
their command line interface (CLI).

Router Configuration. Router configuration information
is crucial for mapping interfaces to routers, binding IP layer
and layer-1/2 information of interfaces, and mapping IP links
to their OSPF areas.

2.2 Data Characteristics

The measurement data collected by these systems are di-
verse. For example, some data sources consist of point events
(i.e., events with zero duration) such as layer-1 alarms, sys-
log messages, router commands, routing events. Some data
sources, on the other hand, consist of range events. For ex-
ample, CPU utilization pulled by SNMP is reported periodi-
cally over a fixed time interval. Similarly, loss and delay are
reported over intervals used by the active probing system.

The data also vary in terms of number of “data points”
over a time period. Fig. 1 shows the distribution of counts
per event type over a one month time interval at the tier-1
ISP. We can observe significant diversity in the frequency
of occurrence for different types of events. For example,
around 15% event types have a single occurrence, whereas
around 5% event types have counts greater than 10000 times.
The mean and maximum number of occurrences are 8269.4
and 1759821 respectively.

Note also that a particular event may manifest itself in
multiple different data sources. For example, a link going
down can show up in router syslogs as layer-1/2 problems.
This event can also trigger breakdown of a routing session

Correlation

Statistical

Section 3.5Section 3.2 Section 3.3

Result

Interpretation

Event
Transformation

Symptom

Spatial Proximity
Model

Section 3.1

Network data

NICE Infrastructure
Events with
significant

correlations

Figure 2: NICE infrastructure.

showing up in router syslogs and/or route monitors. Clearly,
finding root causes amongst such large and diverse sets of
data presents a huge challenge to the operators of ISPs.

3. NICE INFRASTRUCTURE

Troubleshooting chronic network conditions is often an ad
hoc and cumbersome manual process, with experienced net-
work operators fumbling through a large collection of het-
erogeneous data sources, looking for patterns of event co-
occurrence, and conducting reasoning and diagnosis on a
case-by-case basis. In this section, we describe our NICE
infrastructure that can turn such ad hoc manual process into
a simple and systematic task. Our design focuses on three
main aspects for chronic troubleshooting: (i) a data model
that unifies different types of event-series; (ii) a spatial model
that captures the scope of impact for different events in a net-
work; and (iii) an auto-correlation compensated correlation
metric and evaluation process that automates the obscure co-
occurrence based reasoning by network operators. Fig. 2
shows the NICE infrastructure that takes as input a symptom
event for troubleshooting and outputs a list of other network
events that have significant correlations with the symptom.

3.1 Formalization of Event Co-occurrence

When troubleshooting a chronic network condition, the
network operators most often examine what other events oc-
curred together, i.e., co-occurred, with the symptom event.
Some questions that arise in this context are: what consti-
tutes an event? what qualifies as a co-occurrence? What
spatial proximity of symptom event to consider? Since co-
occurrence is also the basis for computing statistical corre-
lation, below we address these questions and in the process
formalize the notion of co-occurrence.

Basic Events. A network event is characterized by the type

of the event, the location of the event, and the time of the
event. The event type describes what happened: some ex-
amples include a period of router CPU overload, an OSPF
adjacency reset, or an excessive loss of active probing pack-
ets from one router to another. The event location indicates
where the event took place or was observed. This can be a
specific interface on a router, a specific router, a link, a se-
quence of links (i.e., a path), or a subset of routers (e.g., an
OSPF area). With respect to the event time, there are two
types of events: a point event or a range event. Point events
such as router syslog messages do not have a duration, and
hence only a single time-stamp is associated with the event.
Range events, on the other hand, are those that either take
place over a period of time or are observed over a measure-
ment interval too coarse to collapse into an exact time in-
stance. For example, a spike in traffic volume is detected by

Logical Link

Path OSPF Area

Autonomous System

Physical Link Router

Layer−1 Devices Router interfaces

Figure 3: Location hierarchy for network events.

two consecutive polls of SNMP counters. So we define the
event as a range event with the start time being the time of
the first poll and the end time being the time of the second.

Event Composition. Basic events can be combined into
composite events through logical operators such as inter-
section (AND), union (OR), and negation (NOT). In many
cases, it is the composite events that contain the information
for troubleshooting. For example, an OSPF adjacency down
event followed (within a small time window) by an OSPF
adjacency up constitutes an OSPF link-flap event. Logically,
OSPF link-flap is the intersection of OSPF adjacency down
and OSPF adjacency up events in the same time window.
Our data model in Section 3.2 greatly simplifies such logical
operations. As another example, the loss of probe packets
from one router to another is expected to occur when con-
gestion events (defined by high buffer overflow counts) take
place on the data path between the two routers. Such path
congestion event is a logical union of the congestion events
at each of the links on the path. NICE supports event com-
position both over event type (as in the first example) and
over event location (as in the second example).

Co-occurrence in Time. Strictly speaking, for two events
to be co-occurring, they must happen at the same time. How-
ever, for troubleshooting chronic network conditions, we of-
ten care about causal relationships in which the impact of
a cause event propagates through the network, usually de-
layed by some timers, finally manifesting as the symptom
event. Hence, we define two events to be co-occurring in
time when they occur within a time window of S seconds,
where S is typically in the order of 10s of seconds. A large
value of S means one can work with low precision of the
event timestamp, and lack of perfect time synchronization
amongst data sources. This is often the case in reality.

Co-occurrence in Space. While troubleshooting for a symp-
tom event, network operators often focus on other events
that occur at the same location or within some proximity
of the symptom event, instead of looking for events occur-
ring throughout the network. This is based on the experi-
ence or the domain knowledge related to the potential im-
pact scope of the network events. Some events are known
to have a local impact (e.g., a physical link down event is
known to cause protocol session to go down on the same
link), whereas other events propagate from one location to
another (e.g., a router reload event on one router is known to
cause protocol session timeouts on its neighboring routers).

To automate the troubleshooting process, we formalize

the implicit spatial model used by network operators into
a systematic model of the impact scope of network events.
To specify the location of an event, we organize network
components into a location hierarchy. As shown in Fig. 3,
a physical link consists of interfaces on its two ends and all
layer-1 devices in between; a logical link contains one or
more physical links; a router comprises all its interfaces; an
end-to-end path includes all logical links and routers on it;
and an OSPF area includes all routers and links in its re-
gion. Intuitive as it may sound, the location hierarchy offers
significant flexibility to network operators in specifying the
scope of interest without drilling into the detailed topology
or connectivity information of a particular event location.

We then use a proximity model to capture the scope of im-
pact an event can have. The proximity model is specified
in terms of the number of hops between the symptom event
and potential cause events: for a given number of hops h,
NICE considers only those events that occurred at most h

hops away from the location of the symptom event for cor-
relation. NICE allows the user to specify the value of h. For
example, to understand packet loss on a path, it often suffices
to correlate it with other events along the same path (i.e.,
h = 0). Meanwhile, to troubleshoot a control plane anomaly
on a router, the user typically needs to include router reload
events on any router that is one hop away (i.e., h = 1). Com-
bined together, location hierarchy and proximity model pro-
vide powerful and flexible ways for operators to apply their
domain knowledge in troubleshooting chronic events.

3.2 Event-series Transformation

Now that we have described what is meant by co-occurrence
of events in time and space, theoretically it should be straight-
forward to correlate the symptom event-series with all other
event-series. In practice, however, due to the diversity and
heterogeneity of the data sources, it becomes arduous to cre-
ate composite event-series out of basic ones and to determine
the overlapping period of event occurrences. To solve this
problem, we introduce an intermediate data representation
in NICE, which greatly simplifies the task of event-series
correlation while preserving the important information con-
tained in the original event-series required for troubleshoot-
ing. The representation is also flexible enough to allow easy
incorporation of new data into the NICE infrastructure.

For the intermediate data representation in NICE, we adopt
a fixed-interval binary time-series representation, where value
1 represents the event occurrence within a time-window (for
a point event) or overlap with the time-window (for a range
event), while 0 indicates otherwise. NICE also supports nu-
merical time-series representation. But our experience so far
has found the binary representation to be adequate.

Transformation into a binary time-series involves three
steps (shown in Fig. 4). Fig. 4(a) shows two original event-
series A and B, where A is a point event-series and B is a
range event-series. Below we describe the three steps:

1. Conversion to range event-series (Fig. 4(b)): To ac-
count for the lack of exact synchronization between dif-
ferent data sources and the delay involved in the propa-

gation of an impact, we add a “padding margin” to each
side of an event occurrence. This converts any point
event-series into a range event-series and increases the
interval of occurrence for a range event-series.

2. Merging overlapping ranges (Fig. 4(c)): With the ad-
dition of the padding margins, successive event occur-
rences can become overlapped when the end-time of an
event becomes higher than the start-time of the subse-
quent event. In this case, we collapse multiple event oc-
currences into a single event occurrence.

3. Conversion to fixed-interval binary series (Fig. 4(d)):

Different lengths of event intervals across various event-
series result in complications for determining co-occurrences.
To get around this problem, we convert all event-series
into a fixed-interval binary series as follows:

X(i) =

{

1, if ∃ a ∈ A covers [i ·δ , (i+1)·δ]
0, otherwise

(1)

where a is a range in a range event-series A, δ is the
time-bin size, T is the total duration for the event-series,
and i is an integer such that 0 ≤ i <

T
δ .

Note that the time-bin size δ need to be chosen with care.
At one extreme, choosing a very large δ will result in loss
of precision, making everything appear as co-occurring in
a time window. At the other extreme, choosing too small
a δ will increase the number of points in the time-series,
adding to the computation cost. The δ value should also be
comparable to the padding margin so as to preserve the auto-
correlation structure of the event-series, which will become
clear in Section 3.3. Both δ and padding margin are con-
figurable in NICE. We use a time-bin size (δ) of 20 seconds
and a padding margin of 30 seconds throughout this paper.
We have found these values to work well in practice.

3.3 A Novel Statistical Correlation Test

With the aforementioned data transformation, an obvious
way of detecting co-occurring events is to simply identify
the event-series in which value 1 is present in the same time-
bin as the 1′s in the symptom event-series. However, such a
co-occurrence based approach suffers from two major prob-
lems: (i) some co-occurrences of events may be a mere coin-
cidence or a one-time incident, in which case they are of no
interest to network operators; (ii) event-series that have high
probability of occurrence may overlap with symptom event
by chance, in which case they are false alarms.

Having described the limitation of the co-occurrence based
approach, we now look into applying statistical correlation
to identify significant event co-occurrences. We first review
Pearson’s correlation coefficient and the classic correlation
significance test. Then we explain why the classic signifi-
cance test fails in our context. Finally, we develop a novel
correlation significance test based on circular permutation.

Correlation Coefficient and Significance Test. Given two
event-series x, y, the Pearson’s coefficient of correlation is:

r =
∑N

i=1(xi − µx)(yi − µy)

(N −1)σxσy

(2)

1 1 1 1 10 0 0 0 0 0 0 0 011

1 1 0 1 11 1 1 1 1 1 1 1 110

(a) Original Event−series

Point Event−series A

Range Event−series B

padding margin

(b) Convert to range event−series

1 indicates
presence of event

bin sizeOverlapping Range

(d) Convert to binary time−series(c) Merge overlapping ranges

Figure 4: Event-series transformation to a binary time-series.

where xi,yi are individual samples in x and y, µx,µy are
means for x and y, σx,σy are standard deviations for x and y,
and N is the number of samples in each series (i.e., sample
size). The value of r should fall within [−1,1], with 1 rep-
resenting the two event-series being identical and −1 for the
two being exactly opposite of each other.

Given the correlation coefficient, the classic approach to
test for its significance is to apply Fisher’s z-transform [7]:

z =
1

2
ln

[

1 + r

1− r

]

(3)

Under the null hypothesis that the two event-series are in-
dependent, z should be asymptotically Gaussian with mean
µz = 0 and standard deviation σz = 1√

N−3
. Thus, the correla-

tion score defined below is expected to be standard Gaussian
with a large value of N.

score
△
=

z− µz

σz
= z×

√
N −3 (4)

A large absolute value of the correlation score (e.g., 1.96
at 95% confidence level) will reject the hypothesis that the
two event-series of interest are independent.

Limitation of Existing Significance Tests. The above sig-
nificance test assumes that each sample (i.e., time-bin) in
an event-series is independently and identically distributed.
Unfortunately, this assumption does not hold in our context
for two reasons. First, an event-series is inherently an auto-
correlated series2. This is because most events are more
likely to re-occur in a short time frame rather than after a
long period. For example, a malfunctioning line card that
produces high packet errors is more likely to generate high
packet errors in the subsequent time bins. Second, the use
of padding margin and discretization in the data transforma-
tion process can introduce auto-correlation. For example,
a single CPU overload event in a five-minute measurement
interval will be transformed into several consecutive 1′s in
the event-series when thirty-second time-bins are used dur-
ing the conversion, resulting in significant auto-correlation
at small lags. Without accounting for such auto-correlation,
the classic test can easily overestimate the significance of
correlation coefficients, yielding too many false alarms.

2Auto-correlation of an event-series captures the correlation be-
tween samples within the same series at different points in time.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minimum lag at which auto−correlation becomes insignificant

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Figure 5: Cumulative distribution for the minimum lag

after which auto-correlation becomes insignificant in an

event-series. Each event-series contains 30 days worth of

data. The total number of event-series is 2321.

A technique proposed by Dawdy and Matalas [3] can ac-
count for lag-1 auto-correlation by estimating the number of
independent samples with the effective sample size instead
of the original sample size N. Here lag-1 auto-correlation
is the correlation between an event-series x and the shifted
version of x by one time-bin. This approach works fine for
lag-1 auto-correlation, but does not account for higher-lag
auto-correlation. As shown in Fig. 5, network event-series
often exhibit significant higher-lag auto-correlation. The fig-
ure shows the cumulative distribution for the minimum lag
at which the auto-correlation becomes insignificant in an
event-series for 2321 event-series extracted from the tier-1
ISP. As we can see, about 30% of event-series have signifi-
cant auto-correlation at lag 100 or higher.

New Circular Permutation Based Significance Test. To
capture high-lag auto-correlation, we develop a novel signif-
icance test based on circular permutation. Given two event-
series x and y, we generate samples of the Pearson’s corre-
lation coefficient r by circularly shifting y to different lags
with respect to x, and computing the correlation coefficient
between x and the shifted versions of y. Specifically, for each
lag t ∈ [0,N], let r(t) be the Pearson’s correlation coefficient
between x and the circularly shifted version of y at lag t:

r(t) =
∑N

i=1(xi − µx)(y(i+t) mod N − µy)

(N −1)σxσy

(5)

Intuitively, by circularly shifting one event-series against
the other, we destroy the cross-correlation between the two
event-series while preserving the auto-correlation within each

event-series. We can therefore use {r(t)} (t ∈ [0,N]) to es-
tablish a baseline for the null hypothesis that the two event-
series have no significant cross-correlation. Following this
intuition, let the Fisher’s z-transform of r(t) be

z(t) =
1

2
ln

[

1 + r(t)

1− r(t)

]

(6)

We expect {z(t)} to be asymptotically Gaussian for suffi-
ciently large N. Let σ

perm
z = stddev({z(t)}) be the standard

deviation of {z(t)}. Instead of setting σz = 1√
N−3

(as is done

in the classic significance test), we use the sample-estimated
σ

perm
z to compute the correlation score:

scoreperm =
z(0)

σ
perm
z

=
z(0)

stddev({z(t)}) (7)

We consider a correlation score significant if it falls out-
side of the [−2.5,2.5] range. With z asymptotically Gaus-
sian, this yields a low false positive ratio of around 1%.

We apply Fast Fourier Transform (FFT) to efficiently com-
pute r(t) at all possible lags t ∈ [0,N]. So the time complex-
ity of computing the correlation score is O(N log(N)). The
CPU time in running a pair-wise correlation test on a Intel
Pentium 2.4 GHz processor for event-series with thousands
of sample points is a few milli-seconds. Even with a million
sample points, it takes only around one second.

3.4 Extension for Multiple Symptom Events

Thus far, we have focused on troubleshooting a single
symptom event-series. In operational practice, it is intu-
itive to look at multiple event-series together if they show
the same symptom and are believed to share the same type
of causes. For example, if one wants to understand the com-
mon causes for buffer overflow at edge routers, it makes
sense to combine all edge router that show the symptom to-
gether in the analysis. Such aggregation can also be applied
over the manufacturer of the equipment. For example, if one
wants to gain knowledge about the CPU overload condition
on routers from a particular vendor, it is desirable to examine
those routers collectively and make the diagnosis.

NICE provides two methods to support multiple symptom
event-series. (i) event-series union. In this method, NICE al-
lows one to define a composite symptom event-series that is
the union (i.e., element-wise OR) of the individual symptom
event-series, and test it against the union of the diagnostic
event-series. The length of the event-series after taking the
union is the same as each of the original event-series. While
some correlation signal may get lost in the union process,
we expect genuine and strong patterns of event correlation
to remain, especially when the symptom events are rare. (ii)
event-series concatenation. In this method, NICE allows
multiple symptom event-series to be concatenated to form
a single longer symptom event-series and so to all corre-
sponding diagnostic event-series. With a modification of the
significance test to limit the circular shifting to within their
original event-series respectively, NICE computes a single
correlation score that gives emphasis to common and strong
correlations across different symptom event-series.

3.5 Result Interpretation

Finally, we describe the process by which NICE presents
the results to operators and helps them prioritize the events.

Equivalence Class Grouping. To help network operators
better interpret the correlation result, NICE groups similar
event-series (that have significant correlation with the symp-
tom event-series) into equivalence classes.

NICE quantifies the similarity of different event-series in
the context of the symptom event-series based on the Jac-
card similarity measure [7]. Specifically, let s be the symp-
tom event-series, and E be the set of event-series that have
strong statistical correlations with s. Let ∩ be the intersec-
tion of two event-series, which captures the co-occurrence
of events in time. Let ∪ be the union (i.e., element-wise OR)
of two event-series. Given two event-series x, y (∈ E), their
similarity in the context of the symptom s is defined as the
Jaccard similarity between (x∩ s) and (y∩ s):

sim(x,y)
△
= sim

Jaccard
(x∩ s,y∩ s) =

|(x∩ s)∩ (y∩ s)|
|(x∩ s)∪ (y∩ s)| (8)

To group event-series into equivalence classes, NICE first
constructs a similarity graph in which each vertex repre-
sents an event-series that has significant correlation with the
symptom event-series. An edge is added between two ver-
tices if and only if the similarity between the two corre-
sponding event-series (as defined above) is above a specified
threshold τ . NICE then returns each connected component
of the similarity graph as an equivalence class.

Prioritization. For each symptom, NICE outputs the list
of events (that have strong statistical correlations) grouped
as equivalence classes. The list is sorted by the fraction of
symptoms events that co-occurred with the symptom series.
This serves as the prioritized list for the operators. In addi-
tion, NICE also provides the operators with individual event
counts, conditional probabilities and co-occurrence counts.
This information helps in further analysis of the results.

4. NICE VALIDATION

In this section, we validate NICE using real data collected
from the tier-1 ISP backbone. The goals are two-fold: (i)
examine whether the statistical correlation results output by
NICE make operational sense, and (ii) understand the appli-
cability of the spatial proximity model used in NICE.

Specifically, we examined whether mathematically signif-
icant correlation (as reported by NICE) is also operationally
significant (according to network domain knowledge) and
vice versa. We pursued every case of disagreement to under-
stand if it is a mistake made by NICE or not.

4.1 Methodology

To validate NICE, we identified a wide range of events
for which either we or the network operators we collaborate
with have sufficient domain knowledge. Table 1 summa-
rizes the major categories of events that we considered and
the data sources from which the event-series were extracted.
These events span loss measurements, layer-1 outages, con-
gestion, failures, route changes, CPU activity and operations

Category Events Data Sources

End-to-end perfor-
mance

End-to-end loss Active Probes

Traffic problems Link congestion, queuing problems,
packet errors

SNMP, Router
Syslogs

OSPF events Link up/down, router up/down, link
metric changes

OSPF Monitor

Router CPU uti-
lization

Spikes, thresholds SNMP

Router internal
problems

Line card crash, switching fabric prob-
lems

Router Syslogs

Routing session
problems

Dead timer expiry, session downs Router Syslogs

Router commands Show commands to view routing state,
router reload

Router Com-
mand Logs

Layer 1/2 problems Link capacity changes, signal loss on in-
terfaces, high bit error rate

Router Syslogs

Table 1: Major categories for event-series extracted from

the data collected at the tier-1 ISP network.

activities. Each event-series contained six months worth of
data. The actual number of events in the event-series ranged
from 3 to 2,350,111, with mean and median values of 34,694
and 2,221, respectively. So the data had a lot of diversity
with respect to the event count distribution.

We used the events of Table 1 to form a list of event pairs.
Out of all possible event pairs, we extracted a subset of event
pairs for which we could a priori determine the presence or
absence of positive correlation that is operationally signifi-
cant. These decisions were made based on either network-
ing domain knowledge (e.g., large routing events are likely
to cause a short period of loss in the network) or anecdotal
evidence of certain behavior observed by network operators
(e.g., certain router commands are known to be CPU inten-
sive). The first and second columns of Table 2 show the
list of event pairs for which we could determine the pres-
ence or absence of operationally significant correlation. The
third and fourth columns show the number of event-series
pairs that we expected to have operationally insignificant and
significant correlations, respectively. Once we had all such
event pairs, we ran NICE and compared its output with the
estimate of operationally significant correlation.

4.2 Results

The fifth and sixth columns of Table 2 summarize the
number of unexpected correlations (i.e., correlations that are
considered operationally insignificant by us but mathemati-
cally significant by NICE) and missed correlations (i.e., cor-
relations that are considered operationally significant by us
but mathematically insignificant by NICE). We observe that
for about 97% pairs, NICE’s correlation output agrees with
our estimate of operational significance.

For the remaining 3% pairs (for which NICE’s correla-
tion output disagreed with the operational significance), we
drilled down further to understand the mismatch. The re-
sults are summarized in the seventh column of Table 2. The
causes for the mismatches fell under three categories: (i) un-
desirable network condition, (ii) imperfect domain knowl-
edge, and (iii) measurement artifacts.

Undesirable Network Condition. Modern service provider
networks often use failure recovery mechanisms at layer 1

(e.g., SONET ring protection switching) to rapidly recover
from faults without inducing re-convergence events at layer
3 [20]. However, NICE identified strong correlations be-
tween layer-1 failure recovery and layer-3 re-convergence
events on some links – completely contradicting expecta-
tions. After further drill down, it was determined that router
bugs were causing this, and the issue mitigated.

Imperfect Domain Knowledge. We could explain 23 out
of 24 unexpected correlations and 10 out of 29 missed cor-
relations because of imperfect domain knowledge. As an
example, one of the router commands is considered highly
CPU intensive at least anecdotally. Therefore, we estimated
that it would correlate strongly with a CPU utilization above
high threshold values such as 80%. However, we did not
find any correlation between execution of the command and
CPU utilization even when the threshold was as low as 50%.
It was only when we used a threshold of 40%, did we see
correlations. What we learned out of this exercise was that
the CPU-intensive command did cause CPU utilization to
increase, but not as high as we had originally thought. This
example brings out the fact that domain knowledge or the ex-
pected network behavior based on experience can be impre-
cise or even wrong at times because of scale, heterogeneity
and complex interplay of hardware, software and operational
practices in IP networks.

Measurement Artifacts. We found that 19 remaining missed
correlations (out of 29) were explained by measurement arti-
facts. For example, we found low correlation between router
reloads and CPU utilization, which was counter to our ex-
pectation. On closer inspection, we found that CPU utiliza-
tion reports were unavailable while the router was rebooting.

4.3 Summary

Our validation results above demonstrate that the NICE’s
correlation output tends to agree well with our domain knowl-
edge. That is, mathematically significant correlations (as re-
ported by NICE) tend to be operationally significant (based
on the domain knowledge) and vice versa. When NICE’s
correlation output disagrees with our domain knowledge, the
disagreement can be explained by undesirable network con-
dition that needs to be mitigated, or imperfect domain knowl-
edge that needs to be revised, or artifacts of measurement
process that needs to be improved.

5. OPERATIONAL EXPERIENCE

We have recently deployed NICE within the tier-I ISP to
troubleshoot chronic network conditions. In this section, we
describe three case studies where NICE was used to trou-
bleshoot network issues. These studies demonstrate the ef-
ficacy and flexibility of NICE for handling diverse network
problems and measurement data sets.

5.1 Overview

In each of the case studies discussed here, we selected a
known network symptom, the spatial scope, and the time
interval over which troubleshooting was to be performed.
Our goal was to identify a list of other network events that

Results expected by operators NICE correlation results
Event-series 1 Event-series 2 Insignificant Significant Unexpected Missed Results of

Category Category Correlations Correlations Correlations Correlations drill-down

End-to-end loss OSPF events 16 12 5 0 Imperfect domain knowledge
End-to-end loss Layer 1/2 problems 0 3 0 0
End-to-end loss Router internal problems 0 2 0 0
End-to-end loss Traffic problems 0 11 0 0

Router CPU OSPF events 59 70 0 5 Measurement artifact
Router CPU Router commands 28 28 0 10 Imperfect domain knowledge

OSPF events Routing session problems 0 3 0 0

Router reload Router CPU utilization 0 14 0 14 Measurement artifact
Router reload OSPF events 0 20 0 0
Router reload Routing session problems 1482 6 16 0 Imperfect domain knowledge
Router reload Layer 1/2 problems 2 0 0 0
Router reload Router internal problems 2 0 0 0

Layer-3 failures a Layer-1 failure recovery 1 0 1 0 Undesirable network condition

OSPF down OSPF events 2 10 2 0 Imperfect domain knowledge
OSPF down Layer 1/2 problems 0 6 0 0
OSPF down Routing session problems 0 4 0 0
OSPF down Router internal problems 0 4 0 0

Total 1592 193 24 29

Table 2: Results for validation of NICE using six months worth of event-series data from the tier-1 ISP network.

a
Analysis is performed for only one week.

Data source Number of event types

Layer-1 Alarms 130
SNMP 4
Router Syslogs 937
Router Command Logs 839
OSPF Monitor 25
Total 1935

Table 3: Data sets used in case studies.

have strong statistical correlations with the known symptom
event. This list incorporated both potential root causes and
impacts of the symptom event. In each case, NICE identi-
fied several interesting correlations, some of which provided
new insights while others revealed conditions and behaviors
that were not previously understood.

The three case studies cover a wide range of network con-
ditions, including (i) packet loss observed on the uplink of
an access router, (ii) packet loss observed by active mea-
surement between a pair of routers, and (iii) CPU spikes ob-
served on routers across the ISP backbone.

Table 3 summarizes the data sets used in the case studies.
Multiple event types are extracted from each data source.
For example, we create 937 distinct event-series from the
router syslogs, with each event-series corresponding to dif-
ferent error codes and messages within the syslogs. Simi-
larly, we identify 839 different event-series from router com-
mand logs – each corresponding to a unique command en-
tered by network operators. We consider a total of 1,935
different event-series from our available data sources within
our case studies here.

Table 4 summarizes the main results for each case study.
For each symptom event and spatial scope of impact, it shows
the trace duration, the number of pairs used for correlation
testing, the number of events with strong statistical correla-
tions, the number of equivalence classes and the percentage
reduction. The events in the equivalence classes are those
which NICE identified for the network operator to examine
as part of troubleshooting the symptom. For all case stud-
ies, there is an approximately 90% reduction in the number
of event types – a significant simplification in the analysis

0.01 1 10 100
0

0.2

0.4

0.6

0.8

1

Correlation Score

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

Uplink Loss

Path Loss

Router CPU

Significance
Threshold

of 2.5

Figure 6: Correlation score distribution for case studies.

required by the operator. The correlation score distribution
for each case study is shown in Fig. 6. In subsequent sub-
sections, we explain each case study in more detail.

5.2 Case Study I: Router Performance Issues

In our first case study, we focus on troubleshooting a chronic
packet loss condition on the uplink of an access router. Ac-

cess routers are the routers to which ISP customers connect.
These access routers consist of large numbers of interfaces
(on the order of hundreds) directly connected to customer lo-
cations. Traffic is aggregated from these customers for trans-
mission into the ISP network, via uplinks which connect the
access router to the ISP backbone.

The router in question had been exhibiting intermittent
packet loss on the uplink, and operators were challenged to
determine the root cause so that it could be mitigated. Tak-
ing the packet losses on the uplink as the symptom event, we
ran NICE using local (i.e. zero distance) spatial proximity at
the router level for all other events in the scope, including
those extracted from syslogs and SNMP measurements. The
events included packet losses observed on each of the router
interfaces.

Findings. Using NICE, we found that four customer-facing
interfaces exhibited congestion-related packet loss that was
highly correlated with the packet losses experienced on the
relatively lightly loaded router uplinks. Congestion-related

Symptom Spatial Scope Trace Pairs to correlate Strong Correlations Equivalence Classes Reduction

Duration (A) (B) (C) (A−C
A

)×100%

Uplink Packet loss Single Router 4 days 245 26 17 93.06 %

End-to-end packet loss Single Path 30 days 868 157 72 91.71 %

Router CPU Composite 30 days 1286 179 128 90.05 %

Table 4: Results summary for all case studies.

0

2000

4000

Time interval − One day
(a)

P
a
c
k
e
t
lo

s
s

0

200

400

600

Time interval − One day
(b)

P
a
c
k
e
t
lo

s
s

0

2

4

x 10
5

Time interval − One day
(c)

P
a
c
k
e
t
lo

s
s

Uplink

Strongly correlated
customer−facing Interface

Not strongly correlated Interface

Figure 7: Time-series plots for a single day for the uplink

packet loss case study: (a) Packet losses on the router

uplinks. (b) Packet losses on one of the four interfaces

connected to an enterprise customer (the other three had

similar patterns). (c) Packet losses on a separate in-

terface, which do not statistically correlate with uplink

losses even though they have high co-occurrence.

loss on customer interfaces is far from uncommon – a result
of the very bursty nature of individual customer’s traffic and
customer link bandwidths. Thus, although these four inter-
faces were not the only customer-facing interfaces demon-
strating congestion-related loss, the correlations between these
four interfaces and the uplink issues stood out well above
those for any other interfaces. The four interfaces were also
grouped into a single equivalence class. The time-series
plots for a single day are shown in Fig. 7. Fig. 7(a) shows
the packet loss observed on the router uplinks. As shown in
Fig. 7(b), the time-series for one of the customer-interfaces
correlates nicely with uplink losses. The other three inter-
faces in the equivalence class demonstrate very similar be-
havior. Interestingly, Fig 7(c) illustrates another customer
interface, which in fact demonstrates much higher loss. How-
ever, even though the losses frequently co-occur with the
uplink ones, NICE accurately identifies that the statistical
correlation is insignificant – the interface is continually ex-
periencing some level of loss as the customer appears to be
overloading its interface with short term traffic bursts. The
traffic overload related to this interface, however, is appar-
ently not the root cause of the observed uplink issues.

Examination of router configuration files revealed that these
four interfaces were connected to a single enterprise cus-
tomer, and this customer was configured with packet load
balancing. Short term traffic bursts flowing through the router
to these customer interfaces appear to have been causing in-
ternal router limits to be momentarily reached, impacting
traffic flowing out of the router (and hence other, unrelated
customer’s traffic). At the time of writing this paper, opera-
tors were in the process of re-homing this customer’s inter-
faces to another access router.

This example demonstrates how NICE can be applied to
rapidly isolate the root cause of a performance degradation,
something which would have been either extremely painful
or nearly impossible to achieve manually or just with a co-
occurrence based approach.

5.3 Case Study II: End-to-end Packet Loss

Our second case study focuses on troubleshooting packet
loss observed between a pair of routers across the ISP’s back-
bone. Given the sensitivity of an increasing number of appli-
cations to packet loss, it is critical that network loss events
are analyzed so that their root cause is identified, and efforts
can be made to continue to drive loss out of the network.
However, it is clearly impractical to examine each individ-
ual event by hand; automation is critical here.

The ISP has an automated tool called “Backbone Loss
Analysis Tool”, which, given a list of potential root causes of
loss, assigns the most likely root cause to a given loss event.
This tool is instrumental in characterizing at an aggregate
level the impact of different failure modes and events in the
network on loss, and has been used extensively by network
engineers to make strategic decisions regarding the potential
impact of new technologies considered for network deploy-
ment (e.g., QoS).

However, the Backbone Loss Analysis Tool is only as
good as the domain knowledge feeding it. To determine
which of the massive number of events are indicative of po-
tential causes of loss is simply impossible to achieve through
manual inspection. As a result, only a relatively simple list
of events is currently used for root cause analysis in the tool
– routing, congestion, and active measurement errors. These
events were selected based on domain knowledge.

To better diagnose the packet loss symptom reported by
active probes between a pair of routers, we applied NICE
to an entire range of router syslogs, command logs, layer-1
alarms, and routing data to automatically identify the event-
series that are statistically correlated to these packet losses.
We used local proximity at the path level as the spatial model,
in which NICE calculated the routing path based on OSPF
routing information collected from the network and performed
event composition accordingly.

Findings. Out of a total of 868 candidate events, NICE
identified 157 events that had statistically significant corre-
lation with packet loss. These events were related to routing
events, router software errors, hardware failures and internal
router issues. In total, we were able to successfully identify
network events that were indicative of root causes of packet
loss for 98% of our sample loss events.

The set of network events reported by NICE is much more
comprehensive than the relatively simple set of events cur-
rently used for root cause analysis in the Backbone Loss
Analysis Tool. Close inspection of these events also yields
several interesting findings that expand our domain knowl-
edge. For instance, we find that active probe losses correlate
with composite member link returning to service (reported
by a particular syslog message) when a composite link is on
the path. Note that a composite link is a logical IP link con-
sisting of multiple physical links between a pair of routers.
Although this event is a very small contributor to loss and
the resulting lossy period only lasts for tens of milliseconds,
it is a surprising behavior. This example demonstrates how
NICE allows network operators to rapidly discover new sig-
natures, gain new insights, and expand the domain knowl-
edge to help better troubleshoot network problems.

5.4 Case Study III: Router CPU Utilization
Fluctuations

Router central CPUs support routing and signaling pro-
cesses, and provide the interface through which the outside
world can configure, monitor and manage the routers. Thus,
CPU overload conditions can result in potentially serious
performance issues. For example, should routing protocols
be unable to process routing messages, unnecessary (perfor-
mance impacting) re-routes could occur. The ISP thus col-
lects CPU utilization measurements for every router in the
network at five minute intervals, via SNMP, allowing the op-
erators to detect and troubleshoot anomalous CPU behav-
iors. In fact, monitoring CPU utilization serves as one of
the vital “pulse-points” for gauging the overall health of the
network.

The network operators have invested significant resources
in troubleshooting anomalous CPU conditions to ensure that
this limited resource is effectively managed on an ongoing
basis. Operators have painstakingly dug through immense
mounds of network data to uncover events which are either
a cause of or are induced by CPU conditions, i.e., events
which are correlated with CPU anomalies. This process has
involved months of manual analysis and is an ongoing pro-
cess. The goal is to ensure that CPU load is kept to a mini-
mum. Such ongoing monitoring and troubleshooting of CPU
load has allowed the operators to work with router vendors
to improve router implementation through code optimiza-
tions, bug-fixes, and appropriate prioritization of how CPU-
intensive commands are handled. In a similar fashion, through
CPU monitoring, operators have also been able to better un-
derstand how operations support systems impact CPU uti-
lization on routers, resulting in refinements to these systems
to minimize the impact.

Clearly, such a CPU troubleshooting analysis is an ideal
NICE application. We thus decided to validate NICE against
the work already executed by the operations ensuring that
NICE could identify the relevant correlations. Operators
provided us with the CPU anomalies of interest, which we
used as the input chronic symptom event to NICE. We tested
the CPU anomalies against all router syslog messages, rout-
ing events, router command logs and layer-1 alarms. We ap-
plied local proximity at the router level as the spatial model.
Since the network operations team were interested in an-
alyzing aggregate network-wide CPU conditions, we also
adopted the extension in Section 3.4 to identify correlations
to these CPU anomalies across the entire network.

Findings. NICE successfully identified all the earlier oper-
ations findings as well as uncovered some new ones. Consis-
tent with the operations findings, NICE identified that con-
trol plane activity and certain router commands were domi-
nant causes of router CPU spikes. Control plane activity usu-
ally incurs some processing by the CPU, so this was not sur-
prising. Certain router commands such as those used to view
routing protocol state were also known to cause CPU anoma-
lies. However, the high impact of some other router com-
mands (such as customer provisioning) on CPU utilization
were more recent operations discoveries. All of these were
also highlighted by NICE. In addition, NICE was also able to
identify correlations between certain router commands and
high CPU utilization that were not known before.

We also experimented with NICE’s ability to analyze net-
work behavior as it varies across different classes of net-
work routers. Specifically, we compared CPU correlations
for different classes of routers grouped by different vendors,
router models and router roles (such as backbone routers,
edge routers). Interestingly, CPU correlations were reason-
ably consistent within a class of routers, but varied across
different classes. For example, while troubleshooting strong
correlations between SNMP polling and CPU spikes observed
on certain individual edge routers, NICE uncovered that the
correlation was statistically significant for some classes of
routers, but not for other classes. Operations personnel are
currently working with router polling systems to refine their
polling mechanisms to minimize router CPU impact.

We have thus successfully demonstrated that NICE can
automatically identify correlations of interest from a large
scale of data. NICE does this without immensely painful
manual analysis, and uses statistics to ensure that the corre-
lations identified are “real” and not simply some accidental
co-occurrences.

6. RELATED WORK

Most of the effort to date has focused on diagnosing large
and long-lasting events, such as hard link or interface fail-
ures. SCORE[10] models the cross-layer fault diagnosis prob-
lem using a bipartite graph. [11] use spatial correlation to
detect and diagnose silent failures. [18] presents a nice sur-
vey of fault localization techniques. Sherlock [1] infers de-
pendencies using conditional probabilities and a multi-level
approach. NetDiagnoser [4] adapts the Boolean tomography

technique to identify the location of failures. eXpose [8]
uses mutual information and spectral graph partitioning to
extract communication patterns from packet traces. A num-
ber of Bayesian network techniques are also proposed in
[1, 9]. Commercial tools such as HP Openview [15], IBM
Tivoli [19] focus on analyzing large events.

The state-of-art in diagnosing chronic condition is to look
for co-occurrences across multiple data sources. The focus
of this paper is to analyze statistical correlations (rather than
individual co-occurrences) across a diverse set of network
data sources, and identify performance impacting behaviors.

There has been increasing interest in identifying new pat-
terns in time-series data using data mining and statistical
learning tools. Approaches proposed for mining correlations
include CORDS [6] using chi-squared analysis, SPIRIT [16]
using Principal Component Analysis (PCA), [21] using Hid-
den Markov Models, and Minerals [13] using association
rule mining.

Remarks. NICE differs from previous approaches through
the use of (i) a novel auto-correlation incorporated correla-
tion metric with circular permutation test for significance,
(ii) a novel spatial proximity model that captures the impact
scope for different network events, and (iii) a unified data
representation, which together enable flexible and scalable
troubleshooting of chronic network conditions. Also note
that none of the previous approaches above takes into ac-
count auto-correlation within a time-series.

Anomaly detection [2, 5, 12, 22] is complementary to
our work on correlation. Anomalies can be input as events
of interest to NICE to identify other network events that
are strongly correlated (e.g., identify strong correlations be-
tween CPU anomalies and syslog messages on the same router,
or identify strong correlations between link utilization anoma-
lies and link packet loss anomalies).

7. CONCLUSION AND FUTURE WORK

We presented the design and implementation of NICE which
provides a flexible and scalable infrastructure for troubleshoot-
ing chronic network conditions. NICE uses a novel statis-
tical correlation test across multiple network data sources
along with a spatial proximity model to significantly reduce
the number of correlated events for troubleshooting the symp-
tom event. We validated NICE using real network data col-
lected from a large tier-1 ISP, and also demonstrated its ef-
ficacy using three case studies. Our results and operational
experience indicate that NICE is becoming a powerful trou-
bleshooting tool within the tier-1 ISP.

We plan to extend NICE in several directions. First, we
plan to explore higher-order N-way correlations and multi-
variate techniques. We expect to be able to re-use much of
the NICE library. Second, we would like to understand how
anomaly detectors and our correlation infrastructure inter-
act with each other and whether they can provide each other
feedback to identify unknown network anomalies. Finally,
we intend to design and prototype innovative applications to
enable us to drill-down into network correlations.

Acknowledgement

We thank Joanne Emmons and Prasanna Ramachandran for
their invaluable feedback during the case-study analysis and
application of NICE. This work is supported in part by NSF
Awards CNS-0546720, CNS-0627020 and CNS-0615104.

8. REFERENCES
[1] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz,

and M. Zhang. Towards highly reliable enterprise network
services via inference of multi-level dependencies. In
Sigcomm, 2007.

[2] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis
of network traffic anomalies. In IMW, 2002.

[3] D. R. Dawdy and N. C. Matalas. Statistical and probability
analysis of hydrologic data, part III: Analysis of variance,
covariance and time series. In V. T. Chow, editor, Handbook
of applied hydrology, a compendium of water-resource
technology, pages 8.68–8.90, 1964.

[4] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot.
NetDiagnoser: troubleshooting network unreachabilities
using end-to-end probes and routing data. In CoNEXT, 2007.

[5] Y. Huang, N. Feamster, A. Lakhina, and J. J. Xu. Diagnosing
network disruptions with network-wide analysis. In
Sigmetrics, 2007.

[6] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and A. Aboulnaga.
CORDS: Automatic discovery of correlations and soft
functional dependencies. In Sigmod, 2004.

[7] S. K. Kachigan. Statistical analysis: an interdisciplinary
introduction to univariate and multivariate methods. Radius
Press, 1986.

[8] S. Kandula, R. Chandra, and D. Katabi. What’s going on?
learning communication rules in edge networks. In Sigcomm,
2008.

[9] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A Tool for
Failure Diagnosis in IP Networks. In MineNet, 2005.

[10] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren.
IP fault localization via risk modeling. In NSDI, 2005.

[11] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren.
Detection and localization of network blackholes. In
Infocom, 2007.

[12] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies
using traffic feature distributions. In Sigcomm, 2005.

[13] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb.
Minerals: using data mining to detect router
misconfigurations. In MineNet, 2006.

[14] A. Markopoulou, G. Iannaccone, S. Bhattacharyya,
C. Chuah, and C. Diot. Characterization of failures in an IP
backbone network. In Infocom, 2004.

[15] HP Openview. http://www.openview.hp.com.
[16] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern

discovery in multiple time-series. In VLDB, 2005.
[17] A. Shaikh and A. Greenberg. OSPF monitoring:

Architecture, design, and deployment experience. In NSDI,
2004.

[18] M. Steinder and A. S. Sethi. A survey of fault localization
techniques in computer networks. Science of Computer
Programming, 2004.

[19] IBM Tivoli.
http://www-306.ibm.com/software/tivoli.

[20] J.-P. Vasseur, M. Pickavet, and P. Demeester. Network
Recovery: Protection and Restoration of Optical,
SONET-SDH, IP, and MPLS. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2004.

[21] K. Yamanishi and Y. Maruyama. Dynamic syslog mining for
network failure monitoring. In KDD, 2005.

[22] Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan. Network
anomography. In IMC, 2005.

