Appendix for
Tabulation Based 4-Universal Hashing with Applications to
Second Moment Estimation

Mikkel Thorup Yin Zhang

AT&T Labs—Research, Shannon Laboratory
180 Park Avenue, Florham Park, NJ 07932, USA.
(mthorup, yzhang) @research.att.com

June 19, 2003 8:14 PM

A Second moment estimation

Let S = (a1, wy), (ag,ws), ..., (as,ws) be a data stream, where each key a; is a member of [u]. Let v, =
Do a;—q Wi be the total weights associated with key a € [u]. Define, for each j > 0,

B=Yu
a€lu

]

The second moment, F», is of particular interest, since it arises in various applications.

A.1 Second moment estimators

Classic estimator The classic method for estimating Fa by Alon er. al. [1] uses n counters ¢; (i € [n]) and n
independent 4-universal hash functions s; that map [u] into {—1, 1}. When a new data item (a, w) arrives, all n
counters are updated using ¢;+= s;(a) - w (i € [n]). F5 is then estimated as X jassic = Zie[n] c?/n. Following
the analysis in [1], we have E [X jassic] = F2 and Var [X jagsic] = Za#Qvgvg = 2(F2 — Fy)/n.

Count sketch based estimator Recently, Charikar ef. al. [2] described a data structure called count sketch for
keeping track of frequent items in a data stream. We can adapt count sketch to make second moment estimation.
Using this method, we need n counters ¢; (i € [n]) and two independent 4-universal hash functions A : [u] —
[n] and s : [u] — {—1,1}. When a new data item (a,w) arrives, a single counter cp(,) is updated using
Ch(a)+= s(a) - w. Fy is then estimated as Xcount_sketch = Zz’e[n} c?. We can prove that E [X count_sketch] = F2
and Var [Xcount_sketch] = 2(Fy — Fy)/n. Therefore, X ount_sketch achieves the same variance as X jassic With
substantially lower update cost.

Fast count sketch based estimator An alternative way of implementing the count sketch scheme is to use 2n
counters ¢; (1 € [2n]) and a 4-universal hash function A : [u] — [2n]. When a new data item (a,w) arrives,
w is directly added to the counter cp(q): Cp(q)+= w. In the end F3 is estimated using the alternating sum
Xfast_count_sketch = Zie[n](CQi - C2i—|—1)2~ Xftast_count_sketch achieves the same variance as Xcount_sketch, but
is faster because the direct update of a counter based on a single hash value is much simpler. However, such
simplicity comes at the cost of doubling the space.

Our new estimator Here we present a new estimator that achieves the same speed and variance as the fast
count sketch based estimator without having to double the space. Instead of using 2n counters, our new method
uses m = n + 1 counters ¢; (i € [m)]), and a 4-universal hash function h : [u] — [m)]. The update algorithm
is exactly the same as that of the fast count sketch based estimator: when a new data item (a, w) arrives, w is
added to the counter c(q): Cp(q)+= w. But the estimation formula is quite different. We use

m 1
Ko = 00 3 e = o (3)

i€[m] i€[m]

Note that we do not worry about the cost of adding up counters done in the end. Hence, it is not considered
a problem to have a more complex sum for this. Below we prove that E[X] = Fb and Var [Xyew]| =
2(F2 — Fy)/(m — 1) = 2(F2 — Fy)/n.

A.2 Analysis of second moment estimator

Notations: For any possibly identical a, b € [u], let a ~ b denote h(a) = h(b), and a ~ b denote h(a) # h(b).
Leta%bdenotea ~ bbuta #b.
Clearly, we have

m 1
Xnew = p—] Zvavb— p—l Z’uavb

ar~b a,b

_ L_l ST+ Y vaw —%1 Dovi+) vavs+ Y vavs
m a a%b m a a%(, awb

= Fy+ Z VaUp — ﬁ quavb (1)

a%[) a~b

Define

1 ifa~b
Xa,b:{ 1

—== otherwise

(1) becomes
Xnew = Fo+ Y va0pXap 2)
a#b

If h is 2-universal, then for any distinct a, b € [u], we have
E[Xap) =0 3)

1
E[XZ)]=—— 4
[a,b] m—1 ()
In addition, if & is 4-universal, then for any distinct a, b € [u] and distinct ¢, d € [u] such that {a, b} # {c,d},
we have

E[XopXcd] = E[Xop] E[Xcd] =) 0)

Theorem 1 If h is 2-universal, then
E [Xnew] = Fy (6)

Proof

E [Xnew] =@2) F2 + E Zvavaa,b =F+ Z’Ua’vi [Xap] =) F2

aF#b aF#b
]
Theorem 2 If h is 4-universal, then
2
Var [Xnew] = H(Fg - F4) (7)
Proof
Var [Xpew] = E [(Xuew — F2)°] =) EQ_ vavpXa,) ®)
a#b
= 2Y veniB[X)+ Y vavsvevaE [XopXed) 9)
a#b a#bAc£d
{a,b}#{c,d}
1 2
=) 2 v ——1 = ——(F — F)) (10)
a#b
|

A.3 Dealing with long hash keys

Our constructions of 4-universal hash functions are most efficient when the hash key length coincides with single
or double machine word length. If the hash keys are longer, we show here that we can first hash them into a
smaller domain [2%4 using 2-universal hashing with little degradation on the accuracy of the final estimator.

Theorem 3 Let h be a 2-universal hash function from [u] into [u']. Let X =", vaUp. We have

a~b

1 2
B[[X -] < U(XGZ [va) (11)

Proof Let

1 ifa~b
Yap = { 0 otherwise

Since h is 2-universal, for any distinct a, b € [u], we have

E Y] =1/ (12)
Clearly,
X=Y 024> vavs=Fo+ > vatsYap (13)
a a % b a#b
Therefore,

BIX — Bl <ay 3 lanlBVas] =z 3 loavsl 5 < (3 oal)
aFb a#b a
"
If the mass of {|v,|} is distributed on n/ < 254 keys, which is almost certainly the case in any foreseeable
future, then we have
(D lval)?/Fy <! < 2%
a
Therefore, if we choose ' to be 264, then by (11) and Markov’s Inequality, | X — Fs|/F, will be small with
very high probability.

A.4 Performance evaluation

The code for second moment estimation can be found in §B.6. We used m = 2'5, giving us a relative standard
error below 1/2/(m —1) ~ 277 < 1%. Table 1 compares the instruction count and the running times for
performing 10 million hash computation and counter updates. We see that the additional overhead is very small.
Even in the worst case when all packets are of the minimum IP packet size of 40 bytes (320 bits), the counter
update part can easily keep up with 320 x 107 /0.68 = 4.7 x 10? bits per second on the slower computer, which
is nearly twice as fast as OC48 speed (2.48 Gbps). With enough buffering, if the average IP packet size is above
85 bytes (680 bits), which is generally the case in today’s Internet, we can even keep up with OC192 speed
(10 Gbps).

C-level running time (sec)
algorithm instructions | computer A | computer B
Table32 8 0.30 0.55
StreamUpdate2nd 11 0.50 0.68

Table 1: Instruction count plus running times for performing 10 million hash computations and counter updates
on computer A (400 MHz SGI R12k processor running IRIX64 6.5) and B (900 MHz Ultrasparc-III processor
running Solaris 5.8).

B Code

B.1 Common data types and macros
typedef unsigned char INTS;
typedef unsigned short INT16;
typedef unsigned int INT32;
typedef unsigned long long INT64;
typedef INT64 INTS6[31;

// different views of a 64-bit double word
typedef union {

INT64 as_int64;

INT16 as_intl6s([4];
} into64dviews;

const INT64 LowOnes = (((INT64)1)<<32)-1;
#define LOW(x) ((x) &LowOnes) // extract lower 32 bits from INT64
#define HIGH (x) ((x)>>32) // extract higher 32 bits from INT64

B.2 Tabulation based hashing for 32-bit keys using 16-bit characters

/* tabulation based hashing for 32-bit key x using 16-bit characters.
* TO, T1l, T2 are precomputated tables */

inline INT64 Table32 (INT32 x, INT64 TO[], INT64 T1[], INT64 T2[]) {
INT32 x0, x1, x2;
x0 = x&65535;
xl = x>>16;

x2 = x1 + x2;
x2 = compress32(x2); // optional compression
return TO[x0] ~ T1l([x1l] =~ T2[x2];

} // 8 + 4 = 12 instructions

/* optional compression */
inline INT32 compress32 (INT32 i) {
return 2 — (i>>16) + (i1&65535);

} // 4 instructions

The code uses 12 instructions (8 without compression), including 3 lookups.

B.3 Tabulation based hashing for 64-bit keys using 16-bit characters

/* tabulation based hashing for 64-bit key x using 16-bit characters.
* TO, T1, T2, T3, T4, T5, T6 are precomputated tables */
inline INT64 Table64 (int64views x, INT64 *TO[], INT64 *T1[], INT64 *T2[],
INT64 *T3[], INT64 T4([], INT64 T5[], INT64 T6[])
{
INT64 *al, *al, *a2, *a3, c;

a0 = TO[x.as_intl1l6s[0]]
a2 = T2[x.as_intl6s[2]]

al = Tl[x.as_intl6s[1]];
a3 = T3[x.as_intl6s[3]1];

4
4

c =al0[l] + al[l] + a2[1] + a3[1];

c = compress64 (c); // optional compression
return

a0[0] ~ al[0] = a2[0] ~ a3[0] ~

T4[c&2097151] ~ T5[(c>>21)&2097151] ~ To6[c>>42];

} // 32 + 5 instructions

/* optional compression */

inline INT64 compress64 (INT64 i) |
const INT64 Maskl = (((INT64)4)<<42) + (((INT64)4)<<21l) + 4;
const INT64 Mask2 = (((INT64)65535)<<42) + (((INT64)65535)<<21) + 65535;
const INT64 Mask3 = (((INT64)32)<<42) + (((INT64)32)<<21) + 31;
return Maskl + (i&Mask2) - ((i>>16) &Mask3);

} // 5 instructions

The code uses 37 instructions (32 without compression) including 7 lookups.

B.4 CW Trick for 32-bit keys with prime 2°! — 1

const INT64 Prime = (((INT64)1)<<6l) - 1;

/* Computes ax+b mod Prime, possibly plus 2*Prime,
exploiting the structure of Prime. */

inline INT64 MultAddPrime (INT32 x, INT64 a, INT64 b) {
INT64 a0,al,cO0,cl,c;
a0 = LOW(a) *x;

al = HIGH (a) *x;

cO = a0+ (al<<32);

cl = (a0>>32)+al;

c = (cO0&Prime)+ (cl>>29)+b;

return c;
} // 12 instructions

/* CWtrick for 32-bit key x with prime 2761-1 */
inline INT64 CWtrick (INT32 x, INT64 A, INT64 B, INT64 C, INT64 D) {
INT64 h;
h = MultAddPrime (MultAddPrime (MultAddPrime (x,A,B),x,C),x%x,D);
h = (h&Prime)+ (h>>61);
if (h>=Prime) h-=Prime;
return h;
} // 12*3 4+ 5 = 41 instructions

The code uses 41 instructions including 6 multiplications.

B.5 CW trick for 64-bit keys using prime 2% — 1

const INT64 Prime89_0 = (((INT64)1)<<32)-1;
const INT64 Prime89_1 = (((INT64)1)<<32)-1;
const INT64 Prime89_2 = (((INT64)1)<<25)-1;
const INT64 Prime89_21 = (((INT64)1)<<57)-1;

/* Computes (r mod Prime89) mod 2764, exploiting the structure of Prime89 */
inline INT64 Mod64Prime89 (INT96 r) {
INT64 r0, rl, r2;

// r2rlr0 = r&Prime89 + r>>89
r2 = r[2]; rl = r[1l]; 0O = r[0] + (r2>>25); r2 &= Prime89_2;

return (r2 == Prime89_2 && rl == Prime89_1 && r0 >= Prime89_0) ?
(rO0 — Prime89_0) : (r0 + (rl<<32));
} // 7 instructions (worst case)

/* Computes a 96-bit r s.t. r mod Prime89 == (ax+b) mod Prime89
exploiting the structure of Prime89. */

inline void MultAddPrime89 (INT96 r, INT64 x, INT96 a, INT96 b) {
INT64 x1, x0, c21, c20, cl1, c10, c01, cO00;
INT64 d0, di1, d2, d3;
INT64 sO0, sl, carry;

x1 = HIGH (x); x0 = LOW(x);

c2l = a[2]*x]1; cll = a[l]l*x1l; c0l = a[0]*x1;
c20 = a[2]*x0; cl0 = a[l]*x0; c00 = a[0]*x0;

d0 = (c20>>25)+(cl1l>>25)+(c1l0>>57)+ (c01>>57);

dl = (c21<<7);

d2 = (cl0&Prime89_21) + (c0l&Prime89_21);

d3 = (c20&Prime89_2) + (cll&Prime89_2) + (c21>>57);

sO = b[0] + LOW(c00) + LOW(dO) + LOwW(dl);

r[0] = LOW(s0); carry = HIGH(sO0);

sl = b[1l] + HIGH(c00) + HIGH(dO) + HIGH(dl) + LOW(d2) + carry;
r(l] = LOW(sl); carry = HIGH(sl);

r(2] = b[2] + HIGH(d2) + d3 + carry;

} // 59 instructions

/* cW trick for 64-bit key x with prime 2789-1 */

inline INT64 CWtrick89 (INT64 x, INT96 A, INT96 B, INT96 C, INT96 D) {
INT96 r;
MultAddPrime89 (r, x, A
MultAddPrime89 (r, x, r,
MultAddPrime89 (r, x, r,
return Mod64Prime89 (r);

} // 59*3 + 7 = 184 instructions

14

B);
C);
D);
)

The code uses 184 instructions including 18 multiplications. Note that Mod64Prime89 only produces the 64
least significant bits of the answer.

B.6 Second moment estimation

#define NumCounters 32768 // (1<<15)
INT64 Counters[NumCounters];

// precomputed tables whose hash strings only use 15 least significant bits
INT64 *TO, *T1l, *T2;

inline void StreamUpdate2nd (INT32 ipaddr, INT32 size) {
Counters[Table32 (ipaddr,T0,T1,T2)] += size;
} // 3 instructions plus those in Table32.

double StreamEstimate2nd() {

int i;

INT64 c;

double sum = 0, sgsum = 0;

for (i = 0; i < NumCounters; i++) {
c = Counters([i];

sum += c;
sgsum += c*c;

}

// sgsum*NumCounters/ (NumCounters—1) - sum*sum/ (NumCounters-—1)
return sgsum + (sgsum — sum*sum)/ (NumCounters-1);

}

The code for updating the counters adds 3 instructions to those in Table32, including one additional lookup.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.
J. Comput. System Sci., 58(1):137-147, 1999.

[2] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In Proc. 29th ICALP,
LNCS 2380, pages 693-703, 2002.

