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ABSTRACT

IPTV is increasingly being deployed and offered as a commercial
service to residential broadband customers. Compared with tra-
ditional ISP networks, an IPTV distribution network (i) typically
adopts a hierarchical instead of mesh-like structure, (ii) imposes
more stringent requirements on both reliability and performance,
(iii) has different distribution protocols (which make heavy use of
IP multicast) and traffic patterns, and (iv) faces more serious scala-
bility challenges in managing millions of network elements. These
unique characteristics impose tremendous challenges in the effec-
tive management of IPTV network and service.

In this paper, we focus on characterizing and troubleshooting
performance issues in one of the largest IPTV networks in North
America. We collect a large amount of measurement data from
a wide range of sources, including device usage and error logs,
user activity logs, video quality alarms, and customer trouble tick-
ets. We develop a novel diagnosis tool called Giza that is specif-
ically tailored to the enormous scale and hierarchical structure of
the IPTV network. Giza applies multi-resolution data analysis to
quickly detect and localize regions in the IPTV distribution hier-
archy that are experiencing serious performance problems. Giza
then uses several statistical data mining techniques to troubleshoot
the identified problems and diagnose their root causes. Validation
against operational experiences demonstrates the effectiveness of
Giza in detecting important performance issues and identifying in-
teresting dependencies. The methodology and algorithms in Giza
promise to be of great use in IPTV network operations.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—~Network management
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1. INTRODUCTION

In the past few years, we have seen a global flurry among telecom-
munication companies in the rapid roll-out of Internet Protocol
Television (IPTV). IPTV encodes live TV streams in a series of
IP packets and delivers them to users through residential broad-
band access networks. There are two key reasons behind the rapid
growth of IPTV. First, IPTV allows Internet service providers (ISPs)
to strengthen their competitiveness by offering new services such
as triple-play (digital voice, TV, and data) and quadruple-play (dig-
ital voice, TV, data and wireless). Second, IPTV offers users much
greater flexibility and interactivity and opens up opportunities for a
broad range of new applications.

Compared with traditional ISP networks, IPTV distribution net-
works exhibit several unique characteristics. First, IPTV imposes
stringent requirements on both performance and reliability. Even
a small amount of packet loss and delay could seriously impair
the video quality perceived by users (especially those viewing live
sport events). Second, IPTV networks have tremendous scale. A
large IPTV network can already have millions of residential gate-
ways today, and the number is rapidly growing. Third, IPTV heav-
ily relies on IP multicast protocols. Although multicast technolo-
gies have been available for two decades, they start to have wide-
scale deployment and use only recently, and so the operational ex-
perience of multicast is limited. These characteristics impose sig-
nificant challenges in the effective management of IPTV networks.

In this paper, we focus on the characterization and troubleshoot-
ing of faults and performance impairments in one of the largest
commercial IPTV deployments in North America. At the time of
writing this paper, the service provider had well over one million
subscribers spanning four different time zones. We collected large
amounts of diverse measurements both within the residential part of
the IPTV network and from the provider network. These measure-
ments ranged from end device usage/error logs, user activity logs,
video quality alarms and customer trouble tickets. Mining such a
vast and diverse dataset for characterization and troubleshooting is
a challenging problem.

Challenges. In order to effectively and automatically detect and
troubleshoot performance issues in IPTV networks, we need to ad-
dress the following key challenges.

1. Large number of network devices. Scalability is a big chal-
lenge in effectively managing and troubleshooting IPTV net-
works. There are a vast number of network devices (e.g., mil-
lions of residential gateways), resulting in a tremendous volume
of network data (e.g., event-series) that must be examined for
localizing and troubleshooting performance issues. Mining this
amount of data is a challenging problem.

2. Topological and routing models. Since IPTV uses IP multi-
cast protocols to distribute content to end-users, events in net-
work propagate from the root of the multicast tree towards the



end-users (i.e., leaves in the tree). It is important to take the im-
pact scope of network events into account when troubleshoot-
ing a performance problem. Blindly analyzing data without
considering the topological and routing models can easily lead
to an information “snow” of results and overwhelm the network
operations team with false alarms.

3. Skewed event distribution. The majority of individual event-
series have very small frequency count. This makes it challeng-
ing for performing statistical analysis due to insufficient sample
size. Thus, there is a need to perform aggregation of events,
both in space (across different locations) and in time (over dif-
ferent aggregation intervals).

4. Discovery of causal dependencies among events. During per-
formance troubleshooting, network operations team are inter-
ested in identifying dependencies between symptom' events
and other network events. It is challenging to accurately dis-
cover causal dependency among different events because of (i)
diversity of events, ranging from point events (e.g., router logs)
to range events (e.g., S-minute summarized SNMP data), (ii)
inaccurate event timestamps due to measurement artifacts, im-
perfect clock synchronization, and limited clock resolution, and
(iii) distributed event propagation, which may cause an event to
be recorded long after when it had impacts.

Our contributions. In this paper, we present the first characteri-
zation study of performance issues and faults in operational IPTV
networks. The study provides interesting insights into the distri-
bution of events, spatio-temporal locality, and time-of-day effects.
For fault localization and performance troubleshooting in IPTV
networks, we develop Giza, a multi-resolution infrastructure that
includes a suite of novel statistical data mining techniques.

1. To cope with a vast number of network devices and network
event-series, Giza first applies hierarchical heavy hitter detec-
tion to identify the spatial locations where the symptom events
are dominant. The hierarchy for spatial locations is created us-
ing the IPTV multicast tree structure. This greatly reduces the
amount of data for subsequent processing. Focusing on the hi-
erarchical heavy hitters also gives sufficient sample points to
perform further statistical analysis.

2. Giza applies statistical event correlation analysis at heavy hit-
ter locations to identify those event-series that are strongly cor-
related with the heavy hitter symptom. The list of strongly cor-
related event-series includes both potential root causes and im-
pacts of the symptom event.

3. Giza applies statistical lag correlation and £' norm minimiza-
tion techniques to discover the causal dependencies between
events. It constructs a causal dependency graph for each symp-
tom event-series. The graph generated by Giza is sparse and
helps network operators to effectively and automatically diag-
nose symptom events. The discovery process requires minimal
domain knowledge.

We evaluate Giza using data collected from an operational IPTV
network and service. Our data sources include both the provider
network and the customer home networks. We demonstrate that
our assumptions about multi-resolution analysis are indeed valid.
We also show that the causal discovery algorithm used in Giza out-
performs a state-of-art approach known as WISE [28]. In addition,
we apply Giza in diagnosing the causes of customer trouble tickets
and validate our conclusions against those obtained via operational

'A symptom event is an event that is indicative of a network prob-
lem and is observable to the network operations team. It is the
target event that the network operation team tries to troubleshoot
and diagnose.
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Figure 1: IPTYV service architecture.

experiences. Our results demonstrate that Giza has the promise to
be an effective tool in identifying and troubleshooting performance
problems.

Paper organization: The rest of this paper is organized as follows.
We provide an overview of a large IPTV service and characterize
interesting network activities and performance issues for both the
provider network and customer home networks in Section 2. Sec-
tion 3 presents the system design and detailed description of Giza.
We validate Giza, compare it with a previously published solution —
WISE, and illustrate the usage of Giza in a case study in Section 4.
Section 5 summarizes the related work and Section 6 concludes the

paper.

2. IPTV NETWORK PERFORMANCE
CHARACTERIZATION

In this section, we first present an overview of the IPTV service
architecture and the data sets we use in this paper. We then present
characterization results and motivate a multi-resolution troubleshoot-
ing system in troubleshooting performance issues in IPTV networks.

2.1 Overview of IPTV Service

Fig. 1 shows the architecture of how IPTV service is delivered
to residential customers by the service provider. In an IPTV sys-
tem, live TV streams are encoded in a series of IP packets and
delivered through the residential broadband access network. The
SHO (Super Head-end Office), which is the primary source of na-
tional television content, digitally encodes video streams received
externally (e.g., via satellite) and transmits them to multiple VHOs
(Video Head-end Offices) through a high-speed IP backbone net-
work. The VHOs, each responsible for a metropolitan area, in turn
acquire additional local contents (e.g., local news), perform some
further processing (e.g., advertisement insertion) and transmit the
processed TV streams to end users upon request. Depending on the
service provider, these TV streams go through a various number of
routers or switches such as intermediate offices (10), central offices
(CO), and digital subscriber line access multiplexer (DSLAM) be-
fore reaching a residential home.

Inside a home, an RG (Residential Gateway) serves as a modem
and connects to one or more STBs (Set-Top Boxes). It receives and
forwards all data, including live TV streams, STB control traffic,
VoIP and Internet data traffic, into and out of the subscriber’s home.
Finally, each STB connects to a TV.

We use the terminology and pyramid hierarchy as shown in Fig. 2
to determine events at different aggregation levels. A DSLAM
serves multiple STBs, a CO serves multiple DSLAMs, an IO serves
multiple COs, a VHO serves multiple 10s, and finally, an SHO
serves content to all VHOs.

It is worthwhile to note that live IPTV streams are delivered
from SHO to residential home via native IP multicast in order to
save bandwidth consumption in the network. In addition to live
TV channels, STBs also support advanced features such as digital
video recording (DVR), video on demand (VoD), picture-in-picture
(PIP), high definition (HD) channels, choice programming, online
gaming and chatting.
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Figure 2: Pyramid structure in IPTV network.

2.2 Data Sets

We collected a large variety of data from one of the largest com-
mercial IPTV service providers in North America. As of the end of
2008, this IPTV service provider has over one million subscribers
(i.e., residential homes), and over two million STBs in use. Our
data set consists of four types of data: customer care call records,
video quality alarms, home network performance/activities, and
provider network performance/activities.

Customer care call records. We obtained complete customer call
records from the IPTV service provider. A customer call can be
related to provisioning, billing and accounting, or service disrup-
tion. In this paper, we mainly focus on the customer calls regarding
service disruptions, each of which results in a trouble ticket associ-
ated with a type of the performance issues, the start and end times,
the customer account number, etc. The common customer trouble
tickets include picture freezing on TV screen, audio and video out
of synchronization, DVR black screen, program guide issues, high
definition issues and parental control issues.

Video quality alarms. We obtained alarms data from the video
quality monitors deployed within the IPTV service provider net-
work. The monitors gather statistics such as packet loss, packet de-
lay and outage durations. These statistics are then used as a quality
indicator for video.

Home network performance/activities. There are several event
traces collected from each STB including power state, resets, and
crashes. The STB power state logs indicate when the STB was
turned on and turned off. This data can be used to identify the active
STBs at any point of time. The STB reset logs provide information
on when the STB was rebooted by the user. Finally, the software
running on an STB may occasionally crash which is also recorded
in the log. For each crash, the log contains information about the
time and type of the event. In addition to the STB logs, we also
obtained the reboot log for each RG, which indicates when the RG
was rebooted.

Provider network performance/activities. We obtained SNMP
MIBs and traps data from every SHO, VHO, IO, and CO. The
SNMP data provide performance statistics such as packet and byte
counts, packet loss, and CPU utilization. We also obtained Syslogs
from devices at every SHO and VHO. These logs provide informa-
tion about state changes for control plane protocols and error con-
ditions of the devices. Examples include multicast neighbor loss,
OSPF adjacency state changes, and BGP session changes.

2.3 Characterizing IPTV Performance Issues

We conducted our analysis over three-month data collected in
2008. We present the characterization results focusing on spatial
and temporal patterns of various performance related events ob-
served along the paths from the SHO to STBs.

2.3.1 Customer Trouble Tickets
We analyze the trouble tickets that were triggered by customer

Ticket category Percentage
Live TV video 46.5
Requested information or upgrade 12.9
Digital video recording (DVR) 9.6
Remote control 8.2
Equipment (STB, RG, PC) 7.7
High definition (HD) 4.4
Audio 3.5
Program guide 1.6
Video on demand (VoD) 1.6
Parental control 1.6
Others 2.4

Table 1: IPTV customer trouble tickets.

calling for performance related issues. Based on the nature of the
reported performance issues, we classify customer trouble tickets
into different categories. Table 1 shows the distribution of num-
ber of tickets for the top ten categories. We observe that “live TV
video” related performance issues (e.g., video quality, blue screen
on TV, picture freezing or no picture on TV) constitute almost half
of the trouble tickets. This is not surprising because live TV chan-
nels are the basic service offered to customers. When there is any
performance issue on the IPTV service, it is likely to be noticed and
reported by customers as live TV video related problem. The cat-
egory “requested information or upgrade” ranks the second on the
list. The trouble tickets in this category indicate that the customer
was experiencing some performance issues and requested further
information. Other top categories range from DVR and remote con-
trol related issues to video on demand and parental control related
issues.

2.3.2  Video Quality Alarms

We analyze the video quality alarms reported by the video mon-
itors. The Media Delivery Index (MDI) is a measurement that
is used as a quality indicator for video and streaming media. It
comprises of two elements: delay factor (DF) and media loss rate
(MLR). The delay factor is the maximum difference between the
arrival of a packet and its playback. It indicates the time duration
over which a packet stream must be buffered in order to prevent
packet loss. The ideal DF score is the packet size. The media loss
rate is the number of lost or out-of-order packets within a time in-
terval. The ideal media loss rate is 0%. We analyze one month
worth of data and identify that the alarms related to delay factor
contribute to the majority (around 79%). Other important video
quality alarms include high media loss rate, video stream outages,
transport stream outages, high flow bit rates, high transport stream
bit rates and synchronization errors.

2.3.3 Home Network Performance/Activities

We characterize a variety of data traces collected from STB, and
RG including STB crash, reset, power state and RG reboot. Ta-
ble 2 shows the distribution of STB crash events. There are mainly
four types of crashes: managed, native, out of memory and watch
dog reboot. All managed code runs in a protected environment.
Some events in this environment are considered fatal and will ter-
minate the Microsoft Mediaroom application, generating a man-
aged crash log in the process. Native crash events occur outside
of the protected Microsoft Mediaroom common language run-time
(CLR). Examples of native crash events are the crashes in the de-
vice drivers, and low level non-application code. The managed and
native crash events are vast majority of all the STB crashes. The
watch dog reboot occurs when the STB hangs in the low level ker-
nel resulting in the watch dog timer expiry. This type of crash con-
tributes to nearly 20% of all STB crash events. Finally, there is a
small percentage of crashes caused by out of memory error. This
occurs when the STB native layers run out of memory.

Fig. 3 shows the distribution of the number of simultaneous na-
tive STB crash events occurring within a fixed time-bin of five min-



Crash Native | Managed | Watch dog Out of Others
type reboot memory
Percentage 44.9 359 18.4 0.5 0.2
Table 2: STB crash events.
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Figure 3: Number of simultaneous native STB crash events at
different spatial aggregation levels.

Syslog messages Percentage
Layer-1 alarms (SONET, Ethernet) 34
IP link flaps 21.3
SAP (Session Announcement Protocol) state changes 15
OSPF routing events 8.5
Configuration changes 7.4
tmnx events 7.3
SDP (Session Description Protocol) state changes 1.5
MPLS (Multiprotocol Label Switching) state changes 0.7
RSVP (Resource Reservation Protocol) state changes 0.5
VRRP (Virtual Router Redundancy Protocol) events 0.4
PIM multicast events 0.3
BGP (Border Gateway Protocol) events 0.2
PPP (Point-to-Point Protocol) events 0.1
Others 2.8

Table 3: Syslog messages from SHO and VHOs.

utes. While there are very few simultaneous events occurring for
most of the time, there are a few time bins in which a large number
of events occurred. This observation holds at all spatial aggregation
levels.

2.3.4  Provider Network Performance/Activities

We analyze SNMP and syslog data collected from the provider
network. Table 3 shows the distribution of different types of sys-
log messages observed on devices in the SHO and VHOs. We fo-
cus only on performance related events. We observe that layer-1
alarms and IP link flaps contribute to over 55% of the events. In ad-
dition, session announcement protocol (SAP?) and session descrip-
tion protocol (SDP) related issues contribute around 16% of events.
These protocols are used for multimedia communication sessions
and their issues may potentially impact IPTV performance.

Fig. 4 shows the cumulative distribution of inter-arrival times for
the top four syslog messages in Table 3. We observe high temporal
locality from the figure.

2.3.5 Daily Pattern of Events

Fig. 5 shows the daily pattern for STB crash, STB resets, STB
tuned ON, STB turned OFF, customer trouble tickets and provider
network logs. The time is represented in GMT. We observe that
there is a lot of activity (STB events and customer trouble tick-
ets) between 00:00 GMT and 04:00 GMT, which is evening prime
time in North America, and between 12:00 GMT and 23:59 GMT
(mid-night), which is day time in North America. We also observe
that there is a relative “quiet” period between 4:00 GMT and 12:00
GMT which is the time during which the customers are sleeping.

2Session Announcement Protocol (SAP) is used to broadcast mul-
ticast session information. SAP uses SDP (session description pro-
tocol) for describing the sessions and the multicast sessions use
real-time transport protocol (RTP).
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STB turn OFF, customer trouble tickets and provider network
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During this time window, the number of syslog messages at SHOs
and VHOs in the provider network can be very high. This can be
explained by the network provisioning and maintenance activities.
Overall, we find that the more customers watch TV, the more per-
formance issues occur and are reported.

2.4 A Case for Multi-resolution Analysis

As we have shown earlier in this section, the IPTV network pro-
vides service to about a million residential customers. The network
operator needs to identify and troubleshoot performance problems
on millions of devices ranging from those in SHO and VHOs in-
side the provider network to residential gateways and STBs on cus-
tomer’s home network.

One approach to tackle this problem is to identify a few heavy
hitter devices, where the performance issues are significant. This is
a standard approach applied in IP network troubleshooting where
the operation team focuses on a few chronic problems which con-
tribute to a vast majority of the performance issues observed in the
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network. However, this observation does not hold for the IPTV
network. Fig. 6 shows the number of events observed in the IPTV
network over a three-month time period. We find that there are a
few heavy hitters, but the contribution from these heavy hitters is
only a small fraction of the total events. That is, non heavy hit-
ters contribute to vast majority of the events. Therefore, focusing
on a few heavy hitters is not sufficient to troubleshoot majority of
performance issues in an IPTV network.

In addition, we observe that the occurrence of a given event on
an individual device is extremely low. For example, as shown in
the embedded plots in Fig. 6, about half of the residential gateways
do not have a single reboot event during the three month time pe-
riod that our study is conducted. Only about 20% of set top boxes
experienced native or managed crash events. The watch dog reboot
and out of memory crashes are even rarer.

To address the above challenge, we take advantage of the multi-
cast hierarchy which is used for delivery of live IPTV channels and
propose to apply multi-resolution analysis by detecting hierarchical
heavy hitters across multiple spatial granularities such as DSLAM,
CO, Metro and Region. Note that the distribution of the number of
set top boxes and residential gateway per spatial aggregation is not
uniform (shown in Fig. 7), which indicates that we cannot directly
apply the standard hierarchical heavy hitter detection algorithms.

3. THE DESIGN OF GIZA

In this section, we present the design of Giza, a multi-resolution
data analysis infrastructure for analyzing and troubleshooting per-
formance problems in IPTV networks. Giza includes a suite of sta-
tistical techniques for prioritizing various performance issues (i.e.,
identifying prevailing and chronic performance-impacting condi-

tions), event-correlation detection, dependency-graph reduction, causal-

ity discovery and inference.
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Figure 8: Architecture of Giza.

3.1 Overview

As mentioned earlier, one of the key challenges in managing
IPTV service is its massive scale (particularly in terms of the net-
work edge devices) and hence its overwhelming amount of perfor-
mance monitoring data such as device usage and error logs, user
activity logs, detailed network alarms and customer care tickets. It
is very important for network operators to quickly focus on more
prevailing and repeating problems and to automate the process of
root cause analysis and troubleshooting as much as possible. We
design Giza to address such need of IPTV network operators.

Fig. 8 shows the overall architecture of Giza. The inputs to Giza
are performance impairment events and the specific time frame of
interest. For example, the events could be STB crashes recorded
in device logs, or CPU spikes observed at CO devices, or customer
complaints recorded in tickets, to name a few. Given the input,
Giza first performs a multi-resolution analysis and eliminates areas
of network locations that do not have significant observation of the
input symptom events. This is achieved by a hierarchical heavy hit-
ter detection component. The locations may be at any aggregation
level in the DSLAM, CO, Metro and Region hierarchy. Focusing
on the locations where symptom events are dominant greatly re-
duces the amount of data processing required for later steps. Next,
Giza explores a wide range of other event series extracted from var-
ious system logs and performance monitoring data and identifies
the ones that are correlated with the symptoms using a statistical
correlation discovery component. This is done at an appropriate
spatial granularity in which the symptom events and the diagnos-
tic events can relate. Furthermore, Giza applies a novel causality
discovery approach to deduce the causality graph and identifies the
potential root causes. The output of Giza is a causality graph that
has tremendous value in the troubleshooting efforts of network op-
erators.

3.2 Hierarchical Heavy Hitter Detection

In this subsection, we present the design of our hierarchical heavy
hitter detection component. The goal of this component is to iden-
tify spatial locations where a given performance impairment is preva-
lent and recurring, and prune the remaining locations, so as to re-
duce the complexity for the subsequent phases.

Detecting heavy hitters (i.e., locations that manifest significant
occurrences of the symptom network event) in a single dimensional
data typically involves setting an appropriate threshold. For exam-
ple, if crash on STBs is the symptom event, then heavy hitter STBs
can be defined to be those which crash more than k times in an
hour. However, considering the intrinsic hierarchical structure of
an [PTV network, a proper definition of heavy hitter should include
not only the event frequency (temporal property) but also the den-
sity concentration (spatial property). For example, a DSLAM with



10 STBs that experiences 1000 crashes is more significant than a
DSLAM with 1000 STBs having the same number of crashes in the
same period. A concentration reported at a lower level in the hier-
archy provides more specific information, hence is more valuable,
than a heavy hitter reported at a higher level. Bearing these design
considerations in mind, we next present our significance test for a
hierarchical heavy hitter.

Significance test. Given a level of hierarchy in Fig. 2 at which
the detailed symptom events are defined, for example, STB level
for raw STB crash events, or CO level for router CPU anomalies
observed at local distribution office, we need to determine whether
any aggregation at a higher level location is significant for the given
symptom events. Consider a two-level hierarchy in which the lower
layer has n different locations. A specific top layer location has m
children locations, which have a total of ¢ events. We need to test
whether c is significant. Let x; be the number of events associated
with each of the lower level locations i (i = 1,2,...,n). We define
e = mean(x;) and v = variance(x;) as the mean and variance for x;
respectively.

Under the null hypothesis that the m children are drawn inde-
pendently and uniformly at random among lower level locations,
the total number of event count of the m children, ¢, should have
mean and variance of Exp(c) = m-e and Var(c) =m-v. If m is
reasonably large, ¢ should approximately be Gaussian distributed
according to the central limit theorem (we will validate this in Sec-
tion 4). It follows that the value of c is considered significant if

(c—m-e) ST

V.

where T is the threshold corresponding to the desired false positive

ratio. For standard Gaussian distribution, using values of T as 1.64,

1.96, or 2.33 provides a distribution tail corresponding to 5%, 2.5%,
or 1%, respectively.

When m is too small, the central limit theorem no longer applies.
In this case, we apply one-side Chebyshev inequality [29] (or Can-
telli’s inequality) to determine the heavy hitters. Specifically, under
the null hypothesis that the m children are drawn identically and in-
dependently from the same distribution with mean e and variance
v, we have

(c—m-e) 1

N TR

We can use 4.36, 6.25, or 9.95 as the threshold value of k to achieve
an expected false positive ratio of 5%, 2.5%, and 1%, respectively.

When applying heavy hitter detection, we start at the lowest pos-
sible spatial level for which the symptom event is applicable, and
follow the hierarchy upward. This allows us to detect any signif-
icant concentration of symptom events at as precise spatial granu-
larity as possible.

Prob(

3.3 Event-series Formation

Once the heavy hitters are identified, our next step is to under-
stand the performance issue of interest and to troubleshoot for the
root cause. We do so through our correlation and causality anal-
ysis with other data sources. In this subsection, we describe the
construction of the data time series that will feed to the subsequent
analysis.

Given, either symptom events or diagnostic events that we hope
to find dependency to the symptom ones, we construct a fixed-
interval binary time series as described in NICE [23]. A “1” in the
time series indicates the presence of the event in the corresponding
time interval and “0” indicates absence. We follow the same princi-
ple as in [23] in choosing the interval length that takes into account
time inaccuracy and the delayed impact due to event propagation
or timers.

For an IPTV network, we need to aggregate the low-level event-
series at different higher level in the spatial hierarchy. We define
two aggregation constructions which will be applied in different
scenarios in the paper: (i) union and (ii) concatenation. In event-
series union, we superpose multiple event-series of the same length
(e.g., one for each child location in the hierarchy) and apply either
element-wise OR or element-wise SUM. In event-series concatena-
tion, we append the multiple event-series one after another to form
a longer event-series.

When comparing event-series for correlation and causality anal-
ysis, we need to consider the spatial levels of the symptom and
diagnostic events. When both event-series are at the same level,
we may directly apply pair-wise correlation analysis. An example
is to test STB crashes against user channel changes on the same
STB. Another example is to test STB crashes against user channel
changes within the same DSLAM, in which both events-series are
first aggregated (using union) into DSLAM level event-series and
then compared against each other. When two event-series are at
different spatial levels, we first aggregate (using concatenate) the
lower-level event-series into the matching higher-level series, and
then replicate the higher-level series multiple times so that it has the
same length as the concatenated one, and finally compare the two
extended time series. An example of this case is to test for corre-
lation between STB crashes and CPU anomalies on the CO routers
with which the STBs are associated. This ensures that the result of
our correlation analysis, described next, is meaningful.

3.4 Statistical Correlation Detection

Troubleshooting a symptom event often starts with identifying
what other events took place at around the same time and might po-
tentially have had an impact on the symptom. Such co-occurrence
based approaches, albeit conceptually simple, may catch many events
that co-occur merely by coincidence, hence are ineffective due to
high false positives. In Giza, we use a statistical correlation based
approach for correlation analysis. In particular, we adopt the circular-
permutation-based correlation test proposed in NICE [23] for pair-
wise correlation test. Comparing to other statistical correlation
tests, the advantage of NICE lies in the fact that it takes into ac-
count the auto-correlation likely to be present in both symptom and
diagnosis event-series; auto-correlation, if present, can have signif-
icant influence on correlation score. Next, we briefly describe how
NICE works; for more details, please refer to [23].

Let rxy () be the Pearson’s correlation coefficient between event-
series X and the circularly shifted version of event-series Y at lag ¢.
For each lag t € [0,N), where N is the number of samples in each
event-series, ryy () is defined as

_ vazl (Xx*/le><Y(x+/) mod N —Hy)
rxy (1) = (N—T1)oxoy ’

where py and py are the means of X and Y, and ox and oy are the
standard deviations, respectively.

The circular shifting eliminates the cross-correlation between the
two event-series and preserves auto-correlation within each event-
series. We can thus use {rxy(¢)} (+ € [0,N)) to establish a base-
line for the null hypothesis that two event-series have no significant
cross-correlation. In order to test the hypothesis, we apply Fisher’s
z-transform as follows.

2(t) = Lin [”W(”].

1—rxy (1)

We note that {z(¢)} is asymptotically Gaussian for sufficiently large
N. Given this, we define the correlation score as

ore — 40 _ z(0)
score = =57 = Sddev({z(0])’
where stddev({z(¢)}) denotes the sample standard deviation of z(¢)’s.

A correlation score is considered significant if it falls outside of the



[—2.5,2.5] range. With z asymptotically Gaussian, this yields a low
false positive ratio of around 1%.

3.5 Causality Discovery

Through the correlation analysis above, we can obtain a list of
correlated event-series. The next step is to organize them into a
causality graph that provides the causal relationship among differ-
ent symptom and diagnostic events. We generate a directed edge
from event-series X to event-series Y in the causality graph if: (i)
X and Y have significant statistical correlation; (ii) X precedes Y in
a statistical sense; and (iii) X and Y are not related via other events.

There are many techniques available in the data mining literature
to discover statistical causal dependencies, such as linear regression
and partial correlations. However, they are not directly applicable
in our context due to two main problems: (i) many event-series
pairs exhibit strong cross-correlations among each other, which
causes regression and partial correlation coefficients to be inaccu-
rate (this is commonly known as the problem of multi-collinearity),
(ii) regression when used to distinguish cause and effect produces
erroneous edge directionality in noisy data. We address these prob-
lems by first identifying edge directionality using a novel statistical
lag correlation method, and then applying an edge reduction algo-
rithm to eliminate spurious correlations.

3.5.1 Edge Directionality using Lag Correlation

The key idea is to use timing information to test whether one
event-series statistically precedes the other. Given two event-series
X and Y, we generate samples of the Pearson’s correlation coeffi-
cient ryy by circularly shifting Y to different lags with respect to
X, and computing the cross-correlation coefficient between X and
the shifted Y. By comparing positive lag correlations with nega-
tive ones, we identify if Y statistically occurs before X (positive
lags dominate over negative lags), or X statistically occurs before
Y (negative lags dominate over positive lags), or the directionality
is inconclusive (positive and negative lags are comparable).

Focusing on the data in IPTV network in which we are interested,
there are two issues which we need to be particularly careful about.
First, the timing information in event timestamps is not 100% re-
liable due to low granularity of periodic polling, imperfect clock
synchronization, non-deterministic event propagation and record-
ing delays. This precludes us from using any inference techniques
that rely on precise timing such as in Sherlock [4]. Second, many
event-series exhibit strong auto-correlation structure, especially at
small lags — this smooths out the shape of the cross-correlation
graph, making inference difficult.

To solve these two problems, we start with the z-scores at dif-
ferent lags in our correlation analysis, which we have already com-
puted in the correlation significance test, and apply the following
either of the two heuristics.

1. Comparing the maximum in a range of positive and neg-
ative lag correlations. If the maximum in the positive lag range
max(z(ky),..,z(kp)) is greater than the maximum in the negative lag
range max(z(—k3),..,z(—k4)), meaning that the correlation score is
higher when Y is shifted in the positive direction, we deduce that Y
statistically precedes X. Similarly, if the maximum in the negative
lag range is greater than that in the positive lag range, we deduce
that X precedes Y statistically. If the maximum in both ranges are
close (within a threshold), then the directionality is inconclusive
and we leave the edge unmarked. This metric is useful when there
is a strong auto-correlation at small lags.

2. Statistical change detection between the ranges of positive
and negative lag correlations. Instead of comparing the maxi-
mum, we may also compare the mean of the distributions in pos-
itive and negative lag ranges. Let PL and NL denote the sample
score sets for positive lags and for negative lags, respectively. Let

Up and u, be the mean of the distributions respectively. Then the

standard deviations of u, and g, are denoted by o, = ﬁo;
27K
_ 1 :
and 0, = \/EGZ’ respectively.

When comparing the means of two distributions, the difference
of the means is u, — U, and the variance is the sum of individual

variances. Hence, the standard deviation is 4 /sz +62. We com-
pute the statistical change score as
:ubfﬂn

According to the central limit theorem, the range [—2.5,2.5] can
be used as the score range in which we cannot say statistically
which lag dominates with 99% accuracy. If the change score is
greater than 2.5, then positive lag dominates. If the change score is
less than -2.5, then negative lag dominates.

The above two approaches often find consistent results, as we
will see in Section 4.2.

3.5.2  Edge Reduction using (' Norm Minimization

Now that we have obtained the partially directed correlation graph
built from statistical lag correlations, our next step is to prune spuri-
ous edges if any. A statistical correlation between two event-series
X and Y is defined to be spurious if the correlation is actually due to
a third variable Z. In other words, when the events corresponding
to Z are removed, the correlation between X and Y becomes in-
significant. For example, if the correlation between packet loss and
router CPU anomalies is due to link down, then we can eliminate
the edge between packet loss and router CPU anomalies.

The key idea is to apply statistical regression and preserve edges
in which the regression coefficients are significant. We use the
symptom event-series as the predictee and each diagnostic event-
series that has a directed edge towards the symptom as the predic-
tors. A significant regression coefficient indicates that the correla-
tion between two event-series is non-spurious and we keep those
edges in the causal graph. On the other hand, an insignificant re-
gression coefficient means that the dependency between two event-
series is not strong when other event-series are considered, hence
we eliminate the corresponding edge from the causal graph.

One challenge with this edge elimination approach stems from
scale since a large number of event-series in the correlation graph
means regression coefficients for each predictor would be small and
identifying the threshold for significance becomes non-trivial. In
practice though, we expect only a few event-series to have signif-
icant causal relationship with the symptom. In other words, we
expect the vector of regression coefficients to have only a small
number of large values. To effectively identify these coefficients,
we propose a new method using ¢! norm minimization with ¢! reg-
ularization which has the ability to find a sparse solution (achieving
the approximate /9 norm minimization) [15].

The method works as follows. Let y be the vector of predictee
event-series. X, y , 1S matrix of predictor event-series with m be-
ing the length of each event-series and n being the total number of
predictors. Note that X is comprised of only those event-series that
statistically occur before y. We formulate the ¢! norm minimization
problem as:

minimize |[y — BX|[1 +A[[B|[1
where f3 is a vector of regression coefficients and A € [0,1] is the
regularization parameter. We reformulate the above minimization
problem into the following equivalent linear programming (LP)
problem:

minimize A Y;u; +Y;v;

subjectto  y= X +z
u>X,u>-X
V>Z,V>—2



Input: A Tist of k event-series

Output: Directed causal graph G = (V,E) where V is the set of
event-series with |V| = k and an edge (i, j) € E indicates i is a cause

of j
Algorithm:
1. Initially, £ = {}
Edge directionality using lag correlation
2.VieV
3. Vj(j#ievV
4. if LagCorr(i, j) is positive significant
/*LagCorr(x, y) is computed by fixing x and shifting y */

5. then E = EU(},i)
Edge reduction using ¢! norm minimization
6.VieV

7. X={jljeVand (j,i)€E}
8. B =LINormRegression(X, i)
/* beta: regression coefficients between i and all j € X */
9. R={j|B;, is insignificant }
10. VjeR
11. Remove (i, j) from E

Figure 9: Causal discovery algorithm.

To build the entire causal graph with N event-series, we run LP
for each event-series as y. The predictors for each y is identified
using the lag correlations. We now show the complete causal dis-
covery algorithm in Fig. 9.

4. GIZA EXPERIENCES

In this section, we present Giza validation using real data col-
lected from the IPTV network and demonstrate its effectiveness in
troubleshooting network issues. First, we demonstrate that our as-
sumption about Gaussianity is valid in hierarchical heavy hitter de-
tection. Second, we show that our causality algorithm that accounts
for auto-correlation and multi-collinearity performs better than the
state-of-art causality algorithm in WISE [28]. Third, we describe
our experiences in applying Giza on diagnosing customer trouble
tickets and video quality alarms, and comparing our results with the
ground truth information provided by network operators. Finally,
we present case study where Giza has been applied to discover the
causal graph and previously unknown dependencies in the provider
network.

4.1 Validating Gaussianity for HHH

We use the Q-Q (quantile-quantile) plot to validate the Gaussian
assumption we made in hierarchical heavy hitter detection. Q-Q
plot is a graphical method to identify whether there exists a statis-
tical difference between one probability distribution and another.
For our validation, we compare the normal distribution constructed
from our hypothesis test with the event count distribution at various
spatial resolutions. If the two distributions match perfectly, then the
Q-Q curves should approximate the straight diagonal line.

Fig. 10 shows one example for a particular type of STB crash
events (native crash) at three different spatial resolutions. It can be
observed that all three curves largely approximate a straight line
with the exception of a few outliers at the distribution tail. We
also have plotted Q-Q plot for all the other data sources and have
observed similar level of matches. This confirms that the Gaus-
sian approximation due to Central limit theorem works reasonably
well in our data. The deviation shown in the tail part in Fig. 10(a)
and (b) however suggests that there indeed exists a pattern of spa-
tial concentration — some COs (or Metro’s) have observed a higher
number of STB crashes that can be explained by simple aggregation
variance. Those are the genuine heavy hitters that can be identified
through our hierarchical heavy hitter detection scheme. Fig. 10 also

Total edges | Edges correctly
identified identified

WISE (Partial Correlation) + | 4903 71.9 %

Linear Regression

(T Norm + Statistical Change | 1103 84.4 %

Lag Correlation

(" Norm + Maximum Lag Cor- | 1125 853 %

relation

Table 4: Comparison of causal discovery algorithms.

shows in dotted line where the thresholds (at 1% from distribution
tail) for the hierarchical heavy hitter detection are. All data points
to the right of the dotted lines are considered heavy hitters.

4.2 Comparing Causal Discovery Algorithms

Next we show through comparative evaluation that considering
multi-collinearity is important for discovering causal dependencies.
We compare Giza with WISE [28] which are multi-variate analy-
sis techniques. We do not present comparison with Sherlock [4],
Orion [7], or NICE [23] because they only rely on pair-wise cor-
relations. A qualitative comparison of all these techniques is pro-
vided in Section 5.

To compare Giza and WISE, we use one-week worth of syslog
data aggregated at VHO and SHO resolutions. We consider 80 dif-
ferent VHOs and SHOs in which we construct 1318 different types
of event-series including layer-1 alarms (Ethernet, SONET, port er-
rors), protocol state changes (MPLS, OSPF, BGP, PIM, SAP, SDP),
link flaps, configuration changes, and CPU activities. To set up
ground truth, we have resorted to domain experts and have con-
structed 482 causal rules (indicated by the presence of edges and
their directionality in causal graph). An example rule is “a link
down causes OSPF protocol to change state”. We consider these
rules as a subset of the causal relationships that should be identified
by the causal discovery algorithm — the complete set of the causal
relationships requires perfect domain knowledge and is nearly im-
possible to obtain.

Table 4 compares the causal discovery result generated by the
three algorithms: (i) WISE partial correlations plus linear regres-
sion (a widely used approach in data mining, such as in [9, 10]),
(ii) ¢! norm minimization combined with lag correlation using sta-
tistical change detection, and (iii) ¢! norm minimization combined
with lag correlation using maximum in the ranges. The latter two
are what we have described in Section 3.5.2. In the cases where
we cannot conclusively determine the causal direction of an iden-
tified correlation, we construct two directional edges between the
pair of events (two different rules). We determine the accuracy of
the above algorithms by comparing their results with our subset of
ground truth. An edge (out of the 482 rules) is considered a match
if both its existence and its directionality have been correctly iden-
tified. We observe that either of our approaches significantly out-
performs the partial correlation and linear regression approach in
accuracy. Since accuracy solely does not reflect the performance
of the inference algorithm, (for example, a dummy algorithm that
blindly mark all edges in the causal graph would achieve 100% ac-
curacy), we also need to consider the false positives. Since we do
not have the complete ground truth, we can use the total number of
edges identified as a reference point. We observe that partial cor-
relation and linear regression identifies more than four times of the
edges while still achieving around 13% less accuracy compared to
our approaches. This demonstrates the strength of our approaches
— the high degree of multi-collinearity of the data has been properly
accounted for.

The two lag correlation and ¢! norm minimization based ap-
proaches have highly similar performance. We include both in Giza
as method for causal dependency discovery for completeness.
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Figure 10: Q-Q plots at spatial resolutions of CO, Metro and Region for STB crash events of type native.

4.3 Validation by Operational Experiences

We describe our experiences in applying Giza on the data col-
lected from the IPTV network (both the provider network and the
customer home network) over one month period in 2008. We demon-
strate how can we apply the suite of techniques in Giza to help
operations in IPTV network.

In this experiment, we consider the performance issues reported
in the customer trouble tickets (Section 4.3.1) and video quality
alarms (Section 4.3.2) as our input symptom event-series. These
are the most direct measures reflecting the IPTV performance im-
pairments. We apply Giza in diagnosing these symptoms. We find
Giza particularly useful in prioritizing these performance issues as
it offers a big-picture view on the scale and frequency of the prob-
lem. This is an important factor in large-scale network services
such as IPTV - conducting detailed diagnosis and troubleshooting
of every performance problem would exhaust service and opera-
tion resource and become infeasible. Looking at the result, Giza
identifies some expected correlation such as home network faults
and user interface problems correlating strongly with some trou-
ble tickets. Quite interestingly, a small number of provider net-
work events have also been identified correlating with certain type
of trouble tickets. To further understand this, we drill in our in-
vestigation and apply Giza to identify causal dependencies among
provider network events. Our discovery is presented in Section 4.4.

4.3.1 Customer Trouble Tickets

We focus on customer trouble tickets logged by the IPTV net-
work operators. Each ticket indicates performance related issue
reported by a customer and the time it is reported. Each problem
reported is categorized into one of the ten types of performance
issues: live TV video, audio, digital video recording (DVR), equip-
ment, high definition, video-on-demand (VoD), parental control,
program guide, remote control and games. We create a symptom
event-series of interest for each of the above types and correlate
the defined symptom event-series with other event-series in home
networks such as STB crash, STB reset and RG reboots, as well as
event-series constructed from the syslogs of the provider network
devices.

We first observe a high degree of sparsity for each type of trou-
ble ticket — a small portion of customers have communicated with
the IPTV provider about performance issue that results in a ticket
created. Moreover, there is little repetition of tickets at each in-
dividual customer. We cannot directly apply the correlation and
causality analysis for individual customers as it does not provide
sufficient statistical significance. Both observation call for a multi-
(spatial) resolution heavy hitter detection approach, which allows
us to quickly focus on a spatial region in which the given type of
trouble ticket is prevalent, applicable for correlation and causality
analysis. Fortunately, such capability is handily available in Giza.

Hierarchical heavy hitter detection results. Table 5 shows at
the four different levels of spatial aggregation and for ten different
types of customer trouble tickets, the customer coverage ratio — the

percentage of the total number of customers in the identified heavy
hitter locations (top table), and the symptom coverage ratio — the
percentage of the total number of symptom events in the identified
heavy hitter locations (bottom table). We have used the detection
thresholds that corresponds to 1% at the distribution tail for Table 5.
Note that we use 0 to denote the case in which no heavy hitter can
be identified at the given spatial level.

We observe that for the ticket types of DVR, equipment, and re-
mote control, there is hardly any heavy hitters identified, indicated
by the extremely low number of customer coverage. This makes
sense since these problems should be independent of any network
components that the DVR, STB, or remote control associates to,
and hence are expected to be distributed evenly at random over spa-
tial locations. For the rest types of customer ticket, there are some
level of spatial concentration observed. In these cases, Giza is able
to identify a small number of heavy hitter locations. Comparing the
symptom coverage ratios to their corresponding customer coverage
ratio, we find that those heavy hitter locations indeed experience
the symptom problem much more severely — it may be due to a
faulty network component, an undesirable protocol condition, etc.,
at the specific heavy hitter locations. With the help of hierarchical
heavy hitter detection in Giza, operators can then quickly focus on
these few locations to investigate the root causes in detail. There are
sufficient concentration of symptom problems at these locations, to
which statistical correlation and causality analysis in the Giza tool
suite can then be applied.

Correlation results. We now try to discover dependency to the
various types of customer ticket using the correlation engine in
Giza. We first create a composite time series for each type of trou-
ble tickets at each heavy-hitter location — the value of the time series
being the total count of symptom tickets associated in the sub-tree
of the heavy-hitter location during the time bin, or in the binary ver-
sion, the value being the predicate of whether there is at least one
symptom ticket in the sub-tree during the time bin. Since customer
tickets are entered manually into the system, the time reported on
the ticket can be significantly delayed from the time at which per-
formance problem has started (by from few minutes to few hours).
In our experiments, we use a time lag of four hours as the correla-
tion margin. That is, we look for co-occurrences between trouble
tickets and other event-series within a four-hour window. The cor-
relation algorithm then outputs event-series pairs that manifest a
strong statistical correlation.

Fig. 11 illustrates some strong statistical dependencies between
different types of customer trouble tickets and various STB Crash,
STB Reset and events extracted from provider network syslogs. An
edge in the graph indicates the presence of strong statistical corre-
lation between the pair of event series. For example, trouble tickets
related to live TV video, digital video recording (DVR), video on
demand (VoD), and games have strong statistical correlations with
both STB crashes and resets. Some of the correlations can be ex-
plained by user’s response in trying to resolve the service problem —
considering the case when a STB crash causes service interruption



Resolution | Live TV | Audio DVR Equipment | HD | VoD | Parental Control | Program Guide | Remote Control | Games
DSLAM 0.004 0.03 0.0003 0.0001 0.02 | 0.03 0.03 0.001 0.009 0.08
Cco 0 0.21 0.0003 0.002 0.04 | 0.42 0.44 0.35 0 0.89
Metro 0 0 0.0003 0.002 0.04 | 0.59 0 0.39 0 0.75
Region 0 0 0 0 0 0.60 0.43 0.55 0 0.19
DSLAM 0.22 0.87 0.04 0.0T 052 T 3.55 3.39 0.14 0.44 60.27
(e[¢] 0 1.53 0.01 0.02 0.31 | 3.90 3.23 3.24 0 41.09
Metro 0 0 0.01 0.02 0.31 | 4.44 0 3.38 0 15.07
Region 0 0 0 0 0 3.55 2.24 4.04 0 2.74

Table 5:
at different spatial levels.

I Parental Control Program Guide l I Remote Control

Customer Trouble Tickets

I Equipment l ILiveTV Video|

I DVR l I VoD l IGumsa l

Customer Trouble Tickets

Figure 11: Dependencies between customer trouble tickets and
other events in home network and provider network.

or performance degradation, customer resets the STB in the hope
of clearing the problem; when this fails to work, the customer calls
service center, triggering a service ticket created; operators con-
sequently perform certain diagnosis routine remotely, which may
produce more STB resets/reboots. While such correlation may be
less interesting from operator’s point of view, the correlation for
each subtype of STB crashes (captured in the crash logs) would
offer insight for debugging STB software. Moreover, we also dis-
cover some significant correlations of several type of tickets (such
as HD, Audio, Live TV video, and Games) to the provider network
side events (such as link downs, SAP/SDP state changes, multicast
neighbor loss, and MPLS path re-routes) — we will examine the
causal graph of these network side events in Section 4.4. Know-
ing these dependencies allows us to better understand the impact
of various network side issue on customer perceived performance.
It also helps in identifying signature for network problems, which
customer care personnel needs to be informed of, so that they can
communicate better to customers complaining about certain type of
problems.

Validation against mitigation action. Customer care tickets also
record the mitigation actions taken in resolving the reported prob-
lem. Although there are many different mitigation actions, for sim-
plicity, we classify them into three main categories: user interface
related (e.g., adjusting TV or volume settings, replacing remote
control), home network related (e.g., residential gateway resets, re-
placing set top boxes), and provider network related (e.g., mainte-
nance or outage).

Table 6 shows how the mitigation actions for each type of trouble
tickets are distributed (in percentage) across different categories.
We find the result very much echos our statistical correlation re-
sult using Giza. For example, trouble tickets about parental control
are typically resolved by explaining the service features to the cus-
tomer (87% in user interface category). Thus they do not have any
significant correlation with either home network events or provider
network events. Tickets on remote control problem are least likely
to relate to a provider network issue (1.2%). Consistently, Giza
reports no correlation between the two. On the other hand, video
on demand tickets have many escalation to network care operators
(39%), which supports the high correlation score identified in Giza.

Customer coverage ratio (top) and symptom coverage ratio (bottom) at heavy hitter locations for customer trouble tickets

User Home Provider | Others
Interface | Network | Network

Live TV Video 13 70 55 11.5
Audio 10.1 69 5.5 15.4
DVR 14 75 4.5 6.5
Equipment 0 91 6 4

High Definition 17 57 6 20

Video on Demand 28 17.2 39 15.8
Parental Control 87 8.3 4.1 0.6
Program Guide 19.1 58 17 59
Remote Control 70 25 1.2 3.8
Games 60.4 0.4 29 10.2

[ Total [ 21.1 [ 563 ] 5.3 [ 177 ]

Table 6: Trouble ticket characterization by problem (row) and
mitigation actions (column). Each entry represents a percent-
age.

4.3.2  Video Quality Alarms

In this subsection, we focus on symptom series from alarms gen-
erated by the video quality monitors deployed inside the IPTV ser-
vice provider network. An alarm indicates an impairment in video
quality due to problems such as excessive delay factor (DF), media
loss rate (MLR), video stream outage, transport stream outage, IP
flow bit rate thresholding crossing, transport stream synchroniza-
tion errors and transport stream bit rate thresholding crossing. The
video quality monitors are deployed at VHOs. Each VHO is re-
sponsible for a geographical region, which is the highest spatial
level defined in Giza. We consider each type of alarms as a symp-
tom event-series and correlate it with other event-series extracted
from router syslogs at the VHO and the trouble tickets from cus-
tomers that are associated with the VHO.

Correlation results. We perform the correlation analysis for data
collected over one month. The correlation time window is set as
60 seconds. When correlating alarms data with customer tick-
ets, we use a time lag of four hours. We observe strong statis-
tical correlations between video quality alarms and syslog events
in the provider network such as configuration changes, SAP port
state changes, SDP bind status changes, BGP session downs, PPP
/ RSVP / SONET link downs, multicast neighbor loss, MPLS path
re-routes and layer-1 link flaps. However, most types of the video
quality alarms do not statistically correlate with customer trouble
tickets. This is partially because the alarms from the monitoring
device are too low-level — the intention of the alarms is for moni-
toring the health of video distribution network as opposed to mon-
itoring customer perceived performance. The alarmed short term
packet losses or delay jitters can be automatically repaired by FEC
or retransmission of RUDP without introducing interruption on de-
coding of the video stream, hence have no impact to customers. By
looking at the significance of the correlation result, we can easily
distinguish the alarms that would produce severe performance im-
pairment of the video stream delivered to customers from those that
would not. For example, the alarm on long term (24 hour) excessive
media loss rate are likely due to a persistent video feed problem and
is identified to be correlated with customer complaints. We have
also validated the discovered dependencies of video quality alarms
on network events (extracted from router syslogs) with network op-
erators. We will further investigate the causal relationships among
the network events in the next section.



Number of | Pairs to Strong (T + statistical | ¢! +max lag
event-series | correlate pair-wise change lag correlation
correlations correlation
1318 867,903 3352 960 972

Table 7: Provider network syslog correlation and causality re-
sults.
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Figure 12: Causal graph between certain network syslog event-
series.

4.4 Case Study: Provider Network Events

As discussed in Section 4.3.1, we observe statistical correla-
tion between certain provider network syslog events (such as link
downs, SAP/SDP state changes, multicast neighbor loss, MPLS
path re-routes) and different types of trouble tickets. In this sec-
tion we further investigate statistical dependencies of these events
on other provider network events.

The provider network syslog data contains a diverse set of events.
Creating a separate time-series based on each unique message type
results in the creation of hundreds of individual event-series from
syslogs at every VHO or SHO. This provides us with a perfect op-
portunity to apply our statistical lag correlation and ¢! norm mini-
mization algorithms, to analyze how well they cope with the scale.

We use one week worth of data to perform the causality analy-
sis on 80 VHO and SHO routers within the provider network. We
focus on four symptom event-series that demonstrate strong corre-
lations with trouble tickets: (i) link down, (ii) SAP state changes,
(ii1) multicast neighbor loss, (iv) MPLS path re-routes.

'VRRP Packet
Discards

Correlation and causality discovery results. Table 7 shows the
correlation and causality discovery results for the provider network
syslog data. There are a total of 1318 syslog event-series at several
VHO and SHO locations. The total number of pairs to correlate is
867,903 (= MZUW), out of which 3352 have strong correlation.
For correlation, we perform the analysis for events that occur at
the same VHO or SHO. This achieves a reduction of 99.6% com-
pared to the number of pairs for correlation. ' norm minimization
along with lag correlation further reduces the number of pairs and
achieves around 99.89% reduction.

A part of the causal graph reported by Giza is shown in Fig. 12.
As can be seen in the figure, the root cause for link downs is layer-
1 alarms. Link downs in turn cause SAP port state changes, OSPF
interface state changes, SDP bind status changes, MPLS interface
state changes, and multicast neighbor loss. These conclusions are
consistent with domain knowledge, and with how the network tech-
nologies were designed to operate. The advantage of Giza is that it
can discover the causal graph with minimal domain knowledge.

Findings. For the week analyzed, MPLS path re-routes had their
major root cause as in configuration changes. As would be ex-
pected, the strong statistical correlation is observed during the main-
tenance time-window - the time during which network operations
personnel are executing planned maintenance activities. Multicast
neighbor losses demonstrated strong correlations with both link
downs and configuration changes.

We also observed an interesting previously unknown dependency
between multicast neighbor loss and VRRP packet discards. VRRP
stands for virtual router redundancy protocol and is used for in-
creased network reliability. It is achieved by advertising a virtual
router as a default gateway to the hosts instead of one physical
router. Two or more physical routers are configured to act as a vir-

tual router. When the primary physical router is down, the back-up
router takes over.

The strong statistical correlation between VRRP packet discards
at VHO and SHO and multicast neighbor loss was due to pack-
ets looping within the network that causes the multicast protocol
to timeout and resulting in neighbor loss. The behavior was more
prevalent within the SHO and at VHOs closer to the SHO. Interest-
ingly, when VRRP packet discards have a temporal correlation (or
join) with multicast neighbor loss, we do not observe link downs.
Thus, the packet looping does not appear to have been caused by
link failures. We are currently collaborating with the operations
team to analyze this scenario to further understand the behavior.

5. RELATED WORK

In this section, we present related work.

IPTYV, P2P, VoD Analysis. Cha et al. [6] present the first large-
scale study of user behaviors in IPTV system. They characterize
user behaviors such as channel popularity and dynamics, viewing
sessions, geographic locality and channel surfing probabilities. Qiu
et al. [24] develop a model that captures the dynamics of channel
popularity in IPTV network. There are many previous measure-
ment studies on VoD [8, 19, 31], P2P IPTV [18, 25].

Our study, on the other hand, focuses on characterizing perfor-
mance impairments and faults in a large-scale IPTV system. We
believe, this is the first characterization study aiming to understand
the performance issues in large-scale operational IPTV networks.

Hierarchical Heavy Hitter (HHH) Detection. There has been
a great deal of work on finding heavy hitters at multiple aggrega-
tion points in network traffic data. Their goal is to identify source-
destination prefixes at multiple hierarchies that contribute to a large
fraction of the total network traffic. Cormode ef al. [12] was the
first to extend the idea of heavy hitters to multiple dimensions. Aut-
oFocus [16] presents several heuristics to detect interesting traf-
fic clusters corresponding to anomalous traffic conditions. [13]
presents online algorithms to identify approximate HHHs in one
pass. [1, 32] propose algorithms to discover changes in hierarchi-
cal summaries.

The key difference of our significance test for detecting hierar-
chical heavy hitters is our ability to handle the diversity of distribu-
tion of spatial components across different aggregation levels.

Network Troubleshooting using Statistical Analysis. Recently,
there has been an increasing interest in applying statistical anal-
ysis for network troubleshooting. The goal is given a symptom
problem, identify the set of root-causes that can best explain the
symptom. SCORE [22] applies bipartite graph to solve the fault
diagnosis problem. Shrink [21] extends this model to deal with
probabilistic settings. Sherlock [4] proposes a multi-level graph
inference to learn the dependencies in enterprise networks. eX-
pose [20] learns communication rules in edge networks using spec-
tral graph partitioning that is useful in monitoring and intrusion
detection. WISE [28] is a what-if analysis tool that estimates the
effects of possible changes to network configuration on service re-
sponse times.

Yemini et al. [30] present an event correlation library that de-
scribes faults and the symptoms of faults using a codebook. Net-
Diagnoser [14] performs fault localization using Boolean tomogra-
phy. Orion [7] uses delay spike analysis to discovery pair-wise de-
pendencies in network traffic. NICE [23] focuses on troubleshoot-
ing undesirable chronic network conditions using Pearson’s corre-
lations. NetPrints [2] uses decision-tree learning for troubleshoot-
ing home network mis-configurations. [27] is a white paper that
discusses recent research efforts at Alcatel Lucent for designing
end-to-end diagnosis capabilities in IPTV. Causal modeling is an
area of active research, with rich literature in data mining and ma-
chine learning [3, 5, 9, 11, 17, 26].



Property

[ Sherlock [ Orion [ NICE [ WISE [ Giza |

Auto-correlation X X N4 X N4
Multi-variate analysis X X X V/ v/
Multi-collinearity X X X X vV
Automated edge directionality N4 N4 X V/ N4
Multi-resolution analysis X X X X vV

Table 8: Troubleshooting Infrastructure Taxonomy.

We provide a qualitative comparison of several recently pro-
posed troubleshooting infrastructures in Table 8. As you can see,
Sherlock and Orion focuses mainly on pair-wise correlation analy-
sis and aims to automatically discover the directionality of the cor-
relation. NICE addresses the auto-correlation within each event-
series and reduces false alarms when discovering the correlation
graph. WISE is the first to apply multi-variate correlation tech-
niques. However, WISE does not address auto-correlation and multi-
collinearity when discovering causal dependencies. This leads to
lower accuracy as we show in Section 4. Giza addresses auto-

correlation, goes beyond pair-wise analysis, handles multi-collinearity

problem when performing the regression, discovers edge direction-
ality automatically and performs multi-resolution analysis.

6. CONCLUSIONS

In this paper, we presented the first characterization study of
faults and performance impairments in the infrastructure of a large
IPTV service provider in North America. Our analysis spanned
routers in the backbone to set top boxes (STB) and residential gate-
ways (RGs) in home networks, hardware and software crashes to
video quality impairments. To deal with the scale and heterogene-
ity of the IPTV network, we proposed and designed a novel multi-
resolution data analysis approach termed Giza that enables fast de-
tection and localization of problems. We also proposed novel tech-
niques comprising of statistical lag correlations and ¢! norm min-
imization for effective and scalable causal discovery. Our experi-
ence with applying Giza in the IPTV network has been very posi-
tive. The infrastructure promises to be of immense value to IPTV
network operators in automatically detecting and troubleshooting
important performance issues.
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