Vol.14 No.4 J. Comput. Sci. & Technol. July 1999

Approximation for Knapsack Problems
with Multiple Constraints

ZHANG Li’ang (337 B) and ZHANG Yin (¥)
Department of Computer Science and Technology, Peking University, Beijing 100871, P.R. China
Received July 6, 1998; revised November 24, 1998.

Abstract In this paper, the approximation for four kinds of knapsack prob-
lems with multiple constraints is studied: 0/1 Multiple Constraint Knapsack Problem
(0/1 MCKP), Integer Multiple Constraint Knapsack Problem (Integer MCKP), 0/1
k-Constraint Knapsack Problem (0/1 k-CKP) and Integer k-Constraint Knapsack
Problem (Integer k-CKP). The following results are obtained:

1) Unless NP = co— R, no polynomial time algorithm approximates 0 /1 MCKP
or Integer MCKP within a factor k%/$=° for any ¢ > 0; unless NP = P, no
polynomial time algorithm approximates 0/1 MCKP or Integer MCKP within a
factor K/~ for any o > 0, where k stands for the number of constraints.

2) For any fixed positive integer k, 0/1 k-CKP has a fully polynomial time ap-
proximation scheme (FPTAS).

3) For any fixed positive integer k, Integer k-CKP has a fast FPTAS which has

. 1 1 .
time complexity O(n + = + W—z) and space complexity O(n + (1/€°}}, and
prT e

finds an approximate solution to within ¢ of the optimal solution.

Keywords knapsack problem, approximation algoriihm, FPTAS

1 Introduction

The knapsack probler: is a well-known combinatorial optimization problem that finds
applications to capital budgeting, loading problems, solution of large optimization prob-
lems, and computer systeims. An extensive literature exists on approximation algorithms for
various forms of knapsack problem‘sll_s]. In this paper, we study the approximation for four
kinds of knapsack problems with muitiple constraints: 0/1 Multiple Constraint Knapsack
Problem (0/1 MCKP), Integer Multiple Constraint Knapsack Problem (Integer MCKP), 0/1
k-Constraint Knapsack Problem (0/1 k-CKP) and Integer k-Constraint Knapsack Problem
(Integer k-CKP).

1.1 Knapsack Problems with Multiple Constraints

A 0/1 Multiple Constraint Knapsack Problem (0/1 MCKP) is defined as follows: Given
n pairs of positive integers (v;,w;) (j = 1,2,...,n), k non-empty sets S; (S; C {1,2,...,n},
i=1,2,...,k), and k positive integers b; (i = 1,2,...,k), find z1,22,...,2z. (z; € {0,1},
j=1,2,...,n) so as to

n
max E V;Z5
i=1

s.t. ija;jgb,-, ’i=1,2,...,k
JES:

This wok is supported by The Key Project Fund of the State Ninth Five-Year Plan and the Science
Foundation of Peking University.

290 J. Comput. Sci. & Technol. Vol.14

Without loss of generality, we assume that Ule S; = {1,2,...,n}. Moreover, we can
assume that for any ¢ (1 < ¢ < k) and any j (j € S;), w; < b;. (Otherwise, item j can be
totally eliminated from the problem.) We may think of j as indexing items, with associated
values v; and weights w; (1 < j < n). The object is to find the most valuable possible
selection of items which satisfies the k& weight constraints.

In a 0/1 MCKP, if the variables z; are not restricted to 0, 1 values, but may be non-
negative integers, the resulting problem is called an Integer Multiple Constraint Knapsack
Problem (Integer MCKP).

Note. In the above two problems, k& is not fixed and can be any positive integer.

If the number of constraints in the problems 0/1 MCKP and Integer MCKP, say k,
is fixed, the resulting problems are called the 0/1 k-Constraint Knapsack Problem (0/1
k-CKP) and the Integer k-Constraint Knapsack Probiem (Integer k-CKP) respectively.

1.2 Main Results

The following results on approximation for knapsack problems with multiple constraints
are obtained in this paper:

1) Unless NP = co — R, no polynomial time algorithm approximates 0/1 MCKP or
Integer MCKP within a factor k(}/2)=¢ for any ¢ > 0; unless NP = P, no polynomial
time algorithm approximates 0/1 MCKP or Integer MCKP within a factor k(1/4~7 for any
o > 0, where k stands for the number of constraints.

2) For any fixed positive integer k, 0/1 k-CKP has a fully polynomial time approximation
scheme (FPTAS), i.e. an algorithm which finds an approximate solution to withiu ¢ of the
optimal solution and operates in time bounded by a polynomial in the length of the encoded
input and 1/¢l®l.

3) For any fixed positive integer k, Integer k-CKP has a fast FP'TAS which has time com-
plexity O(n+1/e3+ 1/€2k+1_2) and space complexity O{n +1/<%), and finds an approximate
solution to within ¢ of the optimal solnuticn.

Comment. Complexity estimates are based on the assumption that computer word length
is sufficient to accommedaie nunbers az large as V*, b; (1 = 1,2,...,k), and n, where V*
is the value of an optimal solution. Arithmetic operations on numbers as large as these are
assumed to require constant time. Thus factors such as logh; do not appear in time and
space bounds obtained in this paper. However, we shall not assume word length on the
order of 1/¢ or n bits.

1.3 Outline of the Paper

The remainder of the paper is organized as follows. In Section 2, we examine the hardness
of approximation for 0/1 MCKP and Integer MCKP. In Section 3, we present a pseudo-
polynomial time algorithm for 0/1 k-CKP. This algorithm not only forms the foundation
of an FPTAS for 0/1 k-CKP but also provides insights into Integer k-CKP. Based on this
algorithm, we develop an FPTAS for 0/1 k-CKP in Section 4. In Section 5, we develop a fast
FPTAS for Integer k-CKP. Several efficient techniques are adopted to gain high performance.
We end the paper with an open problem.

2 The Hardness of Approximation for 0/1 MCKP and Integer
MCKP

The following two results have been presented in [10].
1) Unless NP = co — R, no polynomial time algorithm approximates Max Clique within
a factor n!=¢ for any € > 0.

No.4 Approximation for Knapsack Problems with Multiple Constraints 291

2) Unless NP = P, no polynomial time algorithm approximates Max Clique within a

factor n(*/2)=¢ for any £ > 0, where n stands for the number of vertices in the graph.

We can easily represent a Max Clique with a 0/1 MCKP. Given a graph G = (V, E),
where V = {1,2,...,n}, consider the 0/1 MCKP as follows:

n
max E T;
i=1

st.zi+z; <1, if{i,j} ¢E, i,j=1,2,...,n, i#j
z; €{0,1}, j=1,2,...,n (2.1)

It is evident that (xq,zs3,...,Z,) is a feasible solution of the above 0/1 MCKP if and
only if {jlz; =1,j=1,2,...,n} is a clique of G.

A Max Clique can also be represented with an Integer MCKP. To achieve this, we only
need to replace (2.1) with the following constraints:

€, <1, j=1,2,...,n

z; >0, integers, j=1,2,...,n

Observing that k& < n%, where k is the number of constraints in the above two knapsack
problems with multiple constraints, we have

Theorem 1 (Hardness of Approximation for 0/1 MCKP and Integer MCKP).
1) Unless NP = co — R, no polynomial time algorithm approzimates C/i MCKP or
Integer MCKP within a factor k1/2=9 for any o > 0.

2) Unless NP = P, no polynomial time algorithm approzimatess 0/1 MCKFE or Integer
MCKP within a factor KV/9=7 for any o > 0, where & stends for the number of constraints.

Theorem 1 shows that, unless NP = P, neither 0/1 MCKF nor Integer MCKP has a
polynomial time approximation algeritnta with o ccastant ratio.

3 A Pseudo-Folynomial Time Algorithm for 0/1 k-CKP
For a 0/1 k-CKP:

n
max E VT
=1

s.t. }: wiz; <b;, i=12,....k (3.1)
JES;

z; €{0,1}, i=12,...,n

3.1 Preparations

Let S} =5;,8° =35, ={1,2,...,n} = S;,i=1,2,...,k. Let T\, T3,..., Ty (1 < 2F - 1)
k
be all the different non-empty sets with the form 'Dl S (a; € {0,1},i=1,2,...,k). The
following facts about T, (p =1,...,1) are evident:
)T,NT,=0,1<p<q<lLl.
2) Ul T, ={1,2,...,n}.
3) Each S; can be represented as the union of some Tj,.
Suppose that S; = Upea,Tp, A; € {1,2,...,1}, 1 =1,2,...,k. Let n, = |T}|, we have
!
szl N, =M.

292 J. Comput. Sci. & Technol. Vol.14

It is evident that the computation of T, and A; requires O(n) time and space (including
input space).
Let K P,(y) be an ordinary 0/1 knapsack problem as follows:

max E U;T 5

JET,

s.t. Z w;r; <Y
J€Tp

zj € {0’1}’ jeTp

Let V,(y) be the value of an optimal solution of KP,(y), p =1,2,...

3.2 Algorithm ZZ1

Step 1. For any p (p = 1,2,...,1), find all possible (V,(r), Yp(r), In(r)), r = 0,1,...,m;, where

1) Vp(r) = V7 (Yo(r));

2) for any y < Yp(r), V7' (y) < Vp(r);

3) I,(r) is an optimal solution of K Pp,(Y;(r));

4) 0 =V,(0) < V(1) < -+ < Vi(myp) < EjET vj édp, where 2 denotes “to be defined as”;

P

5) 0 =Y,(0) < V(1) < - -+ < Yp(mp).

Clearly, m, < dp < 1pUmax, Where vmax = max{v;|1 < j < n}.

Based on the dynamic programming algorithm presented in [5], we can achieve the abave com-
putation with O(n2d,) time and O(npd,) space for any p in {1,2,...,1}.

Thus, the computation for (Vp(r), Yp(r), Ip(r)) requires Z;=1 O(n2dp) time and 3 _ O (n,dp)
space. Since dp < TpUmax, We have 1) Z;:l O(n2dy) = O(n*tyax) and 2) }:i,=1 O(npdp) =
O(n2VUmayx). Therefore, Step 1 requires O(n3vmax) time ard G(n’muax) space.

Step 2. Consider the following problem:

L
max S—' Vo (125)

p==l
s.t. Z Yo(rp) < b, i=1,2,...,k (3.2)
PEA;

rp € {0,1,...,mp}, p=1,2,...,1

Find an optimal solution of (3.2), say (r},73,..., 7), by enumerating all possible (r1,72, ..., 7).
It is evident that I* = UL_;I,(r}) is an optimal solution of the original 0/1 k-CKP (3.1).
For each (r1,72,...,7:), we need to compute the value of ZPEA- Yo(rp) (1 = 1,2,...,k) and

Z:,:l Vu(rp). This requires O(kl+1) = O(1) time and O(1) space. Altogether, there are H;:l 1+
myp) = O((nVmax)') possible (r1,72,...,7). Therefore, Step 2 requires O((n - Umax)') time. Since at
any time we only need to keep the currently optimal (ry,r2,..., 1), the space required in Step 2 is
bounded by 2-O(1) = O(1).

In summary, algorithm ZZ1 finds an optimal solution of 0/1 k-CKP (3.1) in O(n®vmax) +
O((nVmax)!) = O(n(nVmax)?") time and O(n?vmay) + O(1) = O(n?vmax) space. Thus for
any fixed k, ZZ1 is a pseudo-polynomial algorithm for 0/1 k-CKP.

Comment. In algorithm ZZ1, we change a multiple-constraint problem into a group
of single-constraint problems by partitioning {1,2,...,n} into T, (p = 1,2,...,{). This
technique can not only be applied to 0/1 k-CKP but also be applied to Integer k-CKP.

4 FPTAS for 0/1 k-CKP

Based on algorithm ZZ1 and the scaling technique, we can develop an FPTAS for 0/1
k-CKP now.

No.4 Approximation for Knapsack Problems with Multiple Constraints 293

Algorithm ZZ2.

Input. Any e > 0 and any instance of 0/1 k-CKP, say I.

Step 1. Let scale factor K = max(|&vmax/n], 1).

Step 2. Replace v; with u; = [v;/K], j = 1,2,...,n. Now we have a new instance of 0/1
k-CKP, say I'.

Step 3. Perform algorithm ZZ1 on I', take the solution produced by ZZ1 as an approximate
solution of 1.

Theorem 2. Algorithm ZZ2 has time complezity O(n(n2/e)2k) and space complezity
O(n?/¢), and finds an approzimate solution to within ¢ of the optimal solution. Therefore,
ZZ2 is an FPTAS for 0/1 k-CKP.

Proof. Since K(u; —1) < v; < Kuj (j =1,2,...,n), for any J C {1,2,...,n}, we have
0< K3 icsuj— 2jesvi < K |J| < Kn. Let (z},2},...,2}) be an optimal solution of
I, OPT(I) = E?:l v;z;. Let (z1,%2,...,2,) be the approximate solution given by ZZ2,
2722(I) = 3 7_,vjz;. (Note: (z1,Z2,...,2,) is an optimal solution of I'.) Let J* be
{ilz; =1,1<j <n}, J be {jlz; =1, 1< j <n}. We have:

OPT(I) - ZZ2(I) = > v; — Y v

jEJ* j€J
=(Zvj_KZuj)+ (KZUj—KZUj)+(KZUj—ZUj)
jeJ* jeJ* JEJI* J€J j€J jeJ
SKZU_,,' —Zvj < Kn
jed jeJ

For any ¢ > 0, if K = 1, it is evident that ZZ2(I) = OPT(I). Otherwise, K > 1,
observing that v, < OPT(I), we have

OPT (I) — ZZ2(I) < K'n < evy oy < cOPT(I)

The time complexity of ZZZ is Otfn(nv,vnax/K)zk) = O(n(n?/¢)2"). The space complexity
is O(n2vpax/K) = C{n/s).

5 Fast FPTAS for Integer k-CKP

In this section, we develop a fast FPTAS for Integer k-CKP. The underlying technique
of our algorithm is the same as that in algorithm ZZ1, i.e. to change a multiple-constraint
problem into a group of single-constraint problems by partitioning {1,2,...,n} into T,

(p = 1,2,...,1). In order to gain high performance, we adopt several efficient techniques
used in [5] and [6].

5.1 A Greedy Algorithm for Integer k-CKP

For any instance of Integer k-CKP, say I, let I, T}, n, (p = 1,2,...,1), Umay and A;
(i=1,2,...,k) denote the same meanings as in Section 3. Define the value density of item
jasvj/w; (j=1,2,...,n). Forallp (p=1,2,...,1), let h, be the item with the greatest
value density in set T},

Algorithm GA.

Step 1. Solve the following linear programming problem LP*(I):

1

max E Vh, Thy,

p=1

s.t. Z wh,zh, <b, i=1,2,...,k
PEA;

294 J. Comput. Sci. & Technol. Vol.14

eh, 20, p=1,2,...,1

LP*(I) has k constraints and ! variables. Since k is a constant, and [< 2* — 1, we can find an

optimal solution of LP*(I), say (Ta;,Zhs,-.-,Zh;), With O(1) time and space. Moreover, we can
ensure that at most k out of [values are non-zero.

Step 2. If 22:1 [mjvhp > Umax, then output an approximate solution (z1,z2,...,2n) of I
as:

zh, = |Zn,], p=12,...,1
z; =0, jE{1,2,...,n}—{hl,hz,...,h[}

Otherwise, suppose that v;, = Ymax, output an approximate solution (z,z2,...,%,) of I as:
Tjy = 1

itj—_—o, j#j(h 1<j<n

Clearly, algorithm GA requires O(1) time and space as long as T, h, (p = 1,2,...,1),

Umax and A; (2 = 1,2,...,k) have been prepared in advance. As for the approximation
performance of GA, we have the following lemma:

Lemma 1. Let Vy = GA(I), V* = OPT(I), we have:

vmaxSVbSV*<V0+k'vmaxS(1+k)VO

Proof. We only need to prove that V* < Vg + k - vax-
Let LPo(I) be the following linear programming problem:

n
max E ’U]'CL‘]'
=1

W .
8.4, ‘,\ ’wjfl,]'*_(bi, i=1,2,...,k

-t

IS
z; >0, 7=12,...,n

It is evident that OPT(LP*(I)) = OPT(LPo(I)), where OPT(LPo(I)) and OPT(LP*(I))

stand for the values of the optimal solutions of LPo(I) and LP*(I) respectively.
Hence, we have

l 1
Vo =GA(I) > ZLCL‘hPJ’UhP > Z Th,Vh, — k- vmax (Note: At most k values of T, are no-zero.)
p=1 p=1

=OPT(LP*(I)) — k- Vmax = OPT(LPy(I)) — k- Uax = V* — k - Umax
That is

V*<‘/O+k'umax

5.2 A Fast FPTAS for Integer k~-CKP
Algorithm ZZ3.

Input. Any ¢ > 0 and any instance of Integer k-CKP, say I.
Step 1. Preparation. Find the values of [, T, np, hp (p=1,2,...,0), A; (=1,2,...,k).
Step 2. Perform algorithm GA on I and find Vy = GA(I). From Lemma 1, we have

Vo< V" <(1+k)Vy, where V* = OPT(I).

Let scale factor K = £°Vp/(4k), value threshold T' = eV, /(2k).

No.4 Approximation for Knapsack Problems with Multiple Constraints 295

For each p (p = 1,2,...,1), let

T = {j € Tylv; > T}, ny =Ty |
T, =T, - T, = {j € Tylv; < T}

Let g be the item with the greatest value density in T2 (p=1,2,...,1).

Let Large = UL, TE, Small = UL, T}, v3.x = max{v;|j € Small}

Step 3. Scaling.

Forany j € TF, ifv; € (27T, 27T, 0 < r < |log,(V*/T)], replace v; with u; = |v;/(27K)]2".
Clearly

Kuj < v; < K'LLj +2"K = Ku,- + (ZTT)(K/T) < K'LLj +U_-,'(K/T) = Kuj +E’Uj/2

ie.
0 § v; — K’u.j § (6/2)11]'
Moreover, it is evident that if v; € (2"T,2"*'T], then u; € v;(227,227%!] and 2" |u;, ie. u; is
divisible by 2".
Let ®(t1,%2,...,tx) be the following Integer k-CKP:

max E v;T;
jESmall

s.t. E w;z; < iy, 1=1,2,...,k
jESmMallnS;

z; > 0, integers, j € Small

Step 4. For each p=1,2,...,1, compute all (Upy(r),Yp(r)), » =0.1,...,:5. Heve

1) 0=Up(0) < Up(1) < -+ < Up(2p) < V*/K < ak(k + 1)/£?

2) There exist non-negative integers z} (j € Ty’), suct cha

() 3ers w3 = Up(r)

() 3 emp w35 = Yo(r)

(iii) Yp(r) = min{xkr; Wy, SjeT,f‘ uja; = Up(r), z; > 0, integers, j € T}

Clearly, z, < 4k(k 13- 1)/¢? = O(1/€?).

It is evident that we need to retain only one item for each u; value for the computation of
(Up(r), Yp(r)), i-e. one with minimum weight. In order to provide all possible p; multiplicities
of each such item, where p; = |V*/(K - u;)], we provide |log, p;| additional copies of the
item by doubling. That is, let the i-th copy of the item j be such that

uh = 2, wi= 2w,

Then we only need to retain the smallest-weight item, or the copy of an item, for each u;
value. Since 2"|u;, for any u; € ((2/€)27, (2/€)27*!], there are at most O(1/¢) distinct u; on
the interval ((2/€)2", (2/€)27+*]. Therefore, there are at most O((1/¢)log(1/e)) items left
for the computation of (Up(r),Yp(r)). The computation of (U,(r),Y,(r)) now proceeds by
iteration over u; values (or items), from the largest to the smallest. This is the traditional
dynamic programming algorithm and can be carried out in O(1/e%) time and O(1/¢?) space.

Here we only give a brief introduction to the computation of (Up(r), Yp(r)). Our method
is the same as the one presented in [6]. Interested readers can refer to [6] for more details.

Step 5. For all possible (r1,72,...,7),0< 1, < 25, p=1,2,...1,

1) examine if (r1,72,...,7:) violates any of the k constraints: ZPGA.' Yo(rp) <bi (2 =1,2,...,k);

2) if none of the above k constraints is violated, then compute U(r1,rz,...,7) = Z;:I Up(rp);

3) let y; (r1,72,...,m) stand for ZpeA,' Y, (rp) obtained in 1). Compute G(r1,72,...,71), where
G(r1,72,...,7) is defined as GA (®(by — y1 (r1,72,...,71),-. -, b& —ya(r1,r2,...,71))).

Step 6. Find (r},r3,...,r;) which maximizes (K - U(r1,r2,...,7) + G(r1,r2,...,71)).

Based on the backtracing technique presented in [6], we can find non-negative integers
zy (j € TF) which satisfy:

296 J. Comput. Sci. & Technol. Vol.14

(@) Z “jm; = Up(";) (#1) Z wja:; = YP(T;)
JETE JETE
This can be carried out in O(1/¢e®) time and space. We omit once again the details, which
can be found in [6]. Combine z} (j € TL, p=1,2,...,1) with the approximate solution of
by — (v}, r3, o)y b — Yk (71, 75,. .., 7)) given by GA in Step 5. Output them as
an approximate solution of I. It is evident that this can be done in O((1/¢)log(1/¢)) time
and space.

Theorem 3. Algorithm ZZ3 has time complexity O(n+ (1/e3)+1/(¢2"" ~2)) and space
complezity O(n + (1/€3)), and finds an approzimate solution to within € of the optimal
solution.

Proof. Our proof consists of 3 parts: error analysis, time complexity, and space com-
plexity.

Error analysis. Let x? (j =1,2,...,n) be an optimal solution of I, and V* stands for the
value of the optimal solution. Let V; be the value of the solution given by ZZ3. Let V,J =

* * l *

EjGT:' ’Uj(l??, (1 <p< l) Let V.‘;:mall = ZjeSmall ’UJ(E(]) Clearly, V= VSmall + Zp:l VP '

Obviously, for any p (1 < p < [), there exists an integer 7, (0 < r, < 2p), such
that Upy(rp,) = ZjeT,{- u;zl. According to the definition of Y,(rp), we have Yp(rp) <
ZjeTPL wjx?- Hence, ZjeSmallﬂS.- U)jﬂ:? <b - ZpeA,- ZjeTPL wjm? <b; - ZpeA, Yp(rp) =
bi — Y (lrla LR arl)'

Therefore, l‘? (j € Small) is a feasible solution of ®(b;y — y1,...,br — yx), where y; is
abbreviated from y; (r1,...,71),i=1,2,..., k. It follows that

Viman SOPT(®(by — y1,-. -, bk — yi)) < G(r1,...,m) + & max v;

j€ymall

<G(ry,...,m)+k-T=G(ry,...,m) + klc-Vo/(28) < C{r1,...,m) +e- VT2

We have

1
V*— Vi SV - Y Upirp) = G(ry,. .. ,m)
p=1
4

=NV~ K - Up(rp)) + (Viman — Glri, ..., 1))

p=1
!
= Z (Z :L‘O(’UJ -K- uJ)) + (Vs*mall - G(Tlr ©e ,’I‘l))
p=1 GeTE

Time Complexity. Step 1 requires O(n) time. In Step 2 we need O(1) time to get Vj and
O(n) time to get v>,, and Tzf’, TE, gp (p=1,2,...,1). Step 3 requires O(n) time. Step 4
requires O(1/¢®) time. In Step 5, for each possible (rq,...,7;), we need O(k-l) = O(1) time to
examine if (ry,72,...,7) violates any of the k constraints, and O(l) = O(1) time to compute
U(ri,r2,...,11) = Z;zl Up(rp). Since A, Tl;g,qp and v2 . have already been prepared in
Step 1 and Step 2, we only need O(1) time to compute G(ry,rs2,...,7). Altogether there
are Hi,:l(l + z,) = (O(1/?))! = 0(1/€2k+1_2) possible (r1,72,...,7;), so Step 5 requires
0(1/52k+1‘2) time. Step 6 requires O(1/e%) time. In summary, the time complexity for
algorithm ZZ3 is bounded by O(n + (1/¢3) + (1/2""7-2)).

No.4 Approximation for Knapsack Problems with Multiple Constraints 297

Space Complezity. Step 1 requires O(n) space (including input space). In Step 2 we need
O(1) space to get Vp and v3,, O(n) space to store TPL,TPS, and ¢, (p=1,2,...,1). Step 3
requires O(n) space. Step 4 requires O(1/e?) space. In Step 5, for each possible (ry,...,7),
the operation requires O(1) space. Since at any time, we only need to keep the currently
optimal (ry,...,7;), Step 5 requires 2 - O(1) = O(1) space. Step 6 requires O(1/e%) space.
In summary, the space complexity for algorithm ZZ3 is bounded by O(n + 1/¢?).

Now, we have completed our proof.

Note. For k = 1, the time complexity and space complexity of ZZ3 become O(n +1/ %),
which are the same as the results for the unbounded knapsack problem achieved in [6].

6 An Open Problem

In this paper, we have succeeded in developing a fast FPTAS for Integer k-CKP. Here, by
“fast”, we mean that the algorithm is a linear-time algorithm for any fixed €. (In fact, the
space complexity of our algorithm is also linear to the length of encoded input for any fixed
€.) An open problem is as follows: Can we find a fast FPTAS for 0/1 k-CKP7? It seems that
the major difficulty here lies in how to find an efficient greedy algorithm for 0/1 k-CKP.

References

[1] Chandra A K, Hirschberg D S, Wong C K. Approximate algorithms for some generalized knapsack
problems. Theoret. Comput. Sci., 1976, 3: 293-304.

[2] Magazine M J, Oguz O. A fully polynomial approximation algorithm for the 0-1 knapzack problem.
European Journal of Operational Research, 1981, 8: 270-273.

[3] Gens G V, Levner E V. Computational complexity of approximation algorithms for combinztoriai prob-
lems. In Proc. 8th International Symposium on Mathematical Fovndations of Coriputer Science.
Lecture Notes in Computer Science 74, 1979, pp.292-300.

[4] Sahni S. Approximate algorithms for the 0/1 knapsack prebiem. J. AGH, 1975, 22: 115-124.

[5] Ibarra O H, Kim C E. Fast approximation algonthms for the knzpsack and sum of subset problems. J.
ACM, 1975, 22: 463-468.

[6] Lawler E L. Fast approximatica algerithms for knapsack problems. In Proc. 18th Annual IEEE Symp.
Found. Comp. Science, 197", pp.206-213.

[7] Zhang Li’ang. The complexity of approximation for - KNAPSACK. In Proc. International Workshop on
Discrete Mathematics and A.gorithms, Su Yunlin (ed.), pp.177-180, Jinan University Press, Guangzhou,
1994.

[8] Zhang Li’ang, Li Luyang, Huang Xiong. Approximation for multi-knapsack problem. Chinese Science
Bulletin, 1996, 41: 1042-1045.

[9] Garey M R, Johnson D S. Strong NP-completeness results: Motivation, examples and implications. J.
ACM, 1978, 25: 499-508.

[10] Hastad J. Clique is hard to approximate within nl~¢. In Proc. 37th Annual IEEE Symp. Found.
Comp. Science, 1996, pp.627-636.

ZHANG Li’ang graduated from Department of Mathematics at Peking University in 1965.
He is now a Professor of Department of Computer Science and Technology at Peking University.
His research interests include computational complexity and approximation for NP-hard problems.

ZHANG Yin received his B.S. degree from Department of Computer Science and Technology

at Peking University in 1997. He is now a Ph.D. candidate in Department of Computer Science,
Cornell University.

