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Abstract—In this paper, we present NetQuest, a flexible frame- application needs, and thus lack the flexibility to accomated
work for large-scale network measurement. We applyBayesian applications with different requirements.
experimental desigrto select active measurements that maximize To address these challenges, in this paper we develop

the amount of information we gain about the network path Net t a flexibl tf K that "
properties subject to given resource constraints. We then agp etQuest, a flexible measurement framework that can suppor

network inference techniques to reconstruct the properties of large-scale continuous network monitoring. NetQuest ist&1s
interest based on the partial, indirect observations we get throug  of two key componentsdesign of experimentand network
these measurements. . ) _inference

By casting network measurement in a general Bayesian deci- We apply Bayesian experimental design to determine the

sion theoretic framework, we achieveflexibility. Our framework t of acti ts that imize th tof
can support a variety of design requirements, including () SEt O active measurements thalt maximize the amount of in-

differentiated design for providing better resolution to certain formation we gain about the network path properties sulgect
parts of the network, (i) augmented design for conducting given resource constraintg.(, probing overhead). Bayesian
additional measurements given existing observations, and (iii) experimental design is built on solid theoretical founoias;,
joint design for supporting multiple users who are interested in - 5,4 has found numerous applications in scientific research
different parts of the network. Our framework is also scalable - . . A
and can design measurement experiments that span thousandsand _p_ractlcal z_ippllcatlons, ranging from software te_sll_og .
of routers and end hosts. medicine, to biology, and to car crash test. Recognizing its
We develop a toolkit that realizes the framework on PlanetLab. potential, we bring Bayesian experimental design intodarg
We conduct extensive evaluation using both real traces and scale network measurement. Making the experimental design
synthetic data. Our results show that the approach can accurally  ghsjicaple to such context involves addressing severat cha

estimate network-wide and individual path properties by only . L
monitoring within 2-10% of paths. We also demonstrate its lenges. First, it is not clear how to formulate the problem

effectiveness in providing differentiated monitoring, supporting Of designing network measurement under the Bayesian exper-
continuous monitoring, and satisfying the requirements of mul- imental design framework. Second, the traditional Bayesia
tiple users. experimental design often targets at a single application.
our environment, there can be many applications with differ
l. INTRODUCTION ent design requirements. How to use Bayesian experimental

. . . . design to support such diverse application requiremends is
Network measurement is essential to a wide variety ﬂﬁeresting open problem.

existing and emerging network applications, such as ISPy, aqdress the above issues, we first formulate the prob-

performance management, traffic engineering, contenti-disiem, nger the Bayesian experimental design framework. We

bution, overlay routing, an(_j peer-to-peer ap_plicationer Fihen explore a series of Bayesian design schemes, and use

example, ISPs and enterprise networks put increased f0@4gnsive evaluation to identify the design scheme bestdsui

on network performance, and demand capabilities for @taile,, e york monitoring. In addition, we develop techniques

performance measurement in networks .Of hundreds or eV&thieve flexibility by designing measurement experimemas t

thousands of nodes. Performance monitoring also becomes,imize the information gain for different design objeet

a critical capability that allows overlays and peer-toeey constraints. In particular, our approach can suppert th

networks to detect and react to changing network conditiong) o ing requirements: (iglifferentiated desigfior providing
While much progress has been made in network Megster resolution to certain parts of the network, gilgmented

surement, two significant challenges remain. First, l&t@e yoqignfor conducting additional measurements given existing

network management applications often require the aliility corations, and (iiijoint design for supporting multiple

efficiently monitor the whole network. The quadratic growth oo« interested in different parts of the network.

in the number of network paths with respect to the numberg,qaq on ohservations obtained from the measurements, we
of network nodes makes it impractical to measure evey,

h d. existi hni ft lored toff Men use inference techniques to accurately reconstrect th
path. Second, existing techniques are often tailored toipe global view of the network without requiring complete infor

This work is supported in part by National Science Foundeatjpants mation. _Our results ShOW that our measurement f.ra.mework
CNS-0627020, CNS-0546720 and CNS-0615104. An earlieforersf this can estimate network-wide average path delay within 15%

paper appeared ir2@. Different from [26], this paper presents evaluationgrror by monitoring within 2% paths. It achieves a similar
results on the performance of NetQuest using ISP topologiesovkred

by Rocketfuel 28], [27]. We also evaluate the accuracy of loss inferencgegree Pf accuracy for eStimating_ i.ndiVidual path properti
using additional metrics such as false positive and falsatiegratios. Our by monitoring 10% paths. In addition, we demonstrate the

results show that NetQuest provides accurate performatiogagi®n with low flexibility of our measurement framework in providing dif-
monitoring overhead not only for PlanetLab topologies babdbr large ISP

backbones. In addition, it is effective for identifying titdespots €.g, lossy fer?mi.ated monitor.ing, Squorting qontinuous monitgriand
paths). satisfying the requirements of multiple users.



Related work: Large-scale network measurement problemhere x is the vector of some unknown quantity, is the
consists of two components: (i) design of measurement esector of observablesd is a matrix that associateg and
periments and (ii) network inference. In SectitihC, we x (often referred to as theouting matrix. In the context of
describe the existing linear algebra-based approachesstgrd network performance monitoring; is the vector of unknown

of measurement experiments. In Sectibm , we also review performance on individual linksy is the vector of observed
the general Bayesian experimental framework, and show hperformance on a set of end-to-end paths, and the routing
it can be applied to meet network measurement requirememmtrix A = (A;;) encodes whether link belongs to path

In SectionlV, we overview several widely used inference algo;, i.e.,

rithms for solving under-determined linear inverse praise A — ) 1 ifpathi contains linkj, @)

We will compare the accuracy of these inference algorithms * 0 otherwise.

to understand how combinations of the experimental desigjye that our definition of routing matrix applies to both ene
methods and inference algorithms affect the overall imfeee way and round-trip performance measurements. For roupd-tr
accuracy. measurements, the routing matrix can work for asymmetric
Contributions: This paper makes three main contributiongoutes.
First, our work brings Bayesian experimental design intgda  The above formulation applies to any additive performance
scale network measurement. While Bayesian experimentaétric, such as delay olog{l — loss rat¢. Besides per-
design has found many applications in other scientific fieldrmance estimation, there is another type of tomography
to the best of our knowledge, this is the first time that it igroblem, commonly referred to asaffic matrix estimation
applied to designing active network measurement expetsnenwhich tries to infer end-to-end traffic demands based on

Second, building on top of Bayesian experimental desigbserved link loads. In this context,is the vector of unknown
and inference techniques, we develop a unified framewargffic demands,y is the vector of observed link loads.
within which a large class of network performance inferThere has been considerable recent progress on trafficxmatri
ence problems can be modeled, solved, and evaluated. @stimation 18], [31], [32]. In this paper, we only consider
framework is flexible, and can accommodate different desigiatwork performance inference, but the framework and the
requirements. Our framework is also scalable, and can wlesigchniques we develop can also be applied to traffic matrix
measurement experiments that span thousands of routers @swhation. We plan to explore this direction in our future
end hosts. research.

Third, we develop a toolkit that implements our framework Our goal is to estimate (x), which is a function of link
on PlanetLab24]. Using the toolkit we conduct an extensivepropertiesx. One interesting example i(x) = Ax. In this
evaluation of our framework for efficient monitoring of endcase, the quantity of interest(x) represents properties of
to-end network performance. Our results demonstrate thg network paths. More specifically, whex is link delay,
effectiveness and flexibility of our framework. f(x) is delay on all network paths. Another example is
Outline: The rest of this paper is organized as followsf(x) = =[1, 1, ..., 1]1 x,n Ax, Which corresponds to a network-
We describe the large-scale network measurement problefisle average metrice(g, f(x) is the network-wide average
in Sectionll. In Sectionlll, we introduce our approach topath delay, wherx is link delay).
design measurement experiments. In Sectdnwe present  In large-scale network measurement, it is too expensive to
several network inference algorithms. We describe ourkibol directly measure network properties on all paths. So thé goa
development in Sectiol. In SectionVI and SectiorVIl, we is to select only a small subset of the paths to probe so that
present our evaluation methodology and results. Finally, we can still accurately estimate the quantity of interese W

conclude in SectiowIlII . formalize the path selection problem as follows.
Let P be the set of all network path$H| = m). Let L
Il. PROBLEM FORMULATION be the set of links appearing on pathsih(|L| = n). The

p_erformance on paths iRt and the performance on links i

In this paper, we focus on monitoring end-to-end pen‘oare related according to the linear svst Axc. where
mance in large networks. The quantity of interest is a fumcti . 9 ysten X, x

of the performance on individual links, which may not b& 3;18?9‘“” column t\'/ector,yt is a lengthem column vector,
directly observable either because those links may belong For SnaT:UESZéOg I?Dg(wi?hnz.— 1S)), let Ag be thes x

a non-cooperative administrative domain, or because ffull i b- yt' £ 4 formed b th_ ’ S dina t
strumentation of an IP network is considered cost prohibiti n sub-matrix o ormed by thes rows corresponading 1o

Large-scale network measurement is challenging became%ose path? inS. Similarly, let ys be the sub-vector of .
qrrespondmg to the observed performance on those paths in

number of paths increases quadratically with the numberé The experimental design problem is to select a subset of
nodes, and it is often impractical to probe all the netwo%athss o probe such that we can estimatéx) based on
t

paths, yet the final quantity of interest may depend on lin . . :
on all the paths. The goal is then to conduct a small number ]ei)bse;ved performangg;, As, and the linear relationship
S — ASA.

active measurements, and infer the quantity of interestcbas’ In this paper, we consider the case whx) is a (vector-
on partial and indirect observations. The problem congibts valued) Iigegr f’unction of the form

two key aspects: (iflesign of measurement experimerssd
(i) network inferencgalso commonly referred to asetwork f(x) = Fx, 3
tomography.

Formally, the problem can be specified as follows. whereF is a givenr x n matrix.

The other major aspect of network performance monitoring
y = Ax, (1) is network inference. Its goal is to infer based ondg and



ys. The major challenge in network inference is that the observed. Based gna terminal decision will be chosen
linear systemys = Agx is often under-determined due tofrom some setD. In the context of network performance
partial observations, and can thus have an infinite numbermbnitoring, the terminal decisiod is an estimate of our
solutions. quantity of interestf(x), wherex is the vector of unknown
link performance. A design refers to a set of paths,, which
I1l. DESIGN OFEXPERIMENTS we choose to probe. Through the experiment, we observe end-

Network measurement, especially when conducted at |a,1é)ée£1ci4perfo|_r|mar;lce_or;r:he sett_ of patrt1§|r];cys ' Wg'%h ?gtsflets ¢
scale, requires carefully designed measurement expetsmep{s — “1sX. Meré:ls IS the routing matrix formed Dy the set o

The design involves specifying all aspects of an experimei@VS corresponding to paths . So the goal is to estimate

and choosing the values of variables that can be controllée) P@sed on the observed end-to-end performance on the

before the experiment starts. Making the design decisisnsSFt ©f Paths inS (i.e, ys). So the whole decision process

challenging in several ways: consists of two parts: first the selection of(i.e, S, in our

First the desi s oft ite | Vol context), and then the choice of a terminal decisiofie., an
e mirst, the design space s often quite 1arge, INvoving a NUuMg; 540 of f(x), in our context). A general utility function
ber of control variables. Control variables in network meass 1he formU(d, x, 7, y) is used to reflect the purpose of the
surement include: choosing the sites to launch EXPENMERL oriment. For example, it may reflect the expected acgurac

from, choosing the subset of P‘_iths”'”ks to probe, choos!ggan estimator forf (x) in the context of network performance

the type of network characteristics to measure, choosi erence

gowtt_o ranfdomlzhe, choo_smg tthetgra_rllﬁlarlty, frequ”enc?/ an tBayesian experimental design suggests that a good solution
ura '(t)n.otheag experniment, etc. These are all relevafl ihe experimental design problem is the design that maxi-

aspects in the design. mizes the expected utility of the best terminal decisionrélo

e Second, the design is often subject to all kinds of con- : ; o
straints imposed by the network and operations, such asT rﬁ?ﬁ:z’ g%i;%ig'r\feig desigm, the expected utility of the best

accessibility of measurement infrastructure, the avaitab
of network resources, and the operational policies anqi](n) :/maX/ U(d,x,n,y) p(x|y,n) p(y|n)dxdy, (4)
restrictions. y deD Jy

e Third, the design needs to be tailored to accommodate Miylherey(-) denotes a probability density function with respect
tiple (sometimes conflicting) design objectives. Diffdreng an appropriate measure. Bayesian experimental design

users €.g, VolP gateway services, versus cable access n@fould then choose the desigyt that maximizes the above
work providers) often have different notions of performanc U(n):

and want to monitor different metrice.g, delay, loss, or

bandwidth). U(n*) = max / max / U(d,x,n,y)p(xly, n)p(y|n)dxdy.
Given the complexity involved in experimental design, man- nert Jy deb Jx )

ually making all the design decisions is both time consuming 1) Bayesian Designs for Path SelectiokVe now apply

32; err]rorrgé(;g:':n's Ejhfrse;oi;e:'g;%’hzﬁgt?gﬁ tosiﬂamnrl?a esian experimental design to solve the path selectiolo-pr
gn p y lem. Different Bayesian designs can be obtained by choosing

Not all aspects of experimental design are amenable to 'Omaﬁafferent utility functions to assess the quality of indiual
mathematical treatment. Choosing the values for the cbnt bsigns. Below we introduce two such desigBayesianA-
variables however can be expressed in a coherent mathema ?Jtimal 'desigrand BayesianD-optimal design >

framework through the use @ayesian experimental design i . ] . )

which has gained considerable popularity in the past thrB@yesian A-optimal design: For est2|mat|ngf(x) = Fx, we
decades. Below we first give a brief overview of Bayesiatfn USe the squared eripFx —Fxel|; = (F'x—Fxe)" (Fx—
experimental design (sed][ [6] for a detailed review). We £'Xe) to assess the inaccuracy of an estimatote. So a
then put it into the context of large-scale network measergm d€sign, can be chosen to maximize the following expected
and demonstrate how the general framework can be applhgﬂ'ty

to meet common design requirements. R R
on red Uatn) = = [ (Fx = F5)T (Fx ~ FR)p(y.xln)ixdy, (6)

A. Bayesian Experimental Design wherex is the estimatec under the best decision ruie

The basic idea in experimental design is that one canTo derive an easy-to-use design criterion, we will as-
improve the statistical inference about the quantitiestdriest sume a Gaussian linear system. Specifically, we assume that
by properly choosing the values of the control variabless Thy s|x, 0% ~ Asx+N(0,0%I), whereo? is the known variance
can be formally described in a Bayesian decision theorefiey the zero mean Gaussian measurement noise,/dache
framework as proposed by Lindley in 19725 page 19 identity matrix. Suppose the prior information is thgt? is
and 20]. Below we first set up the framework using decisigi@ndomly drawn from a multivariate Gaussian distributidathw
theoretic terminologies, and then put it into the context dhean vector: and covariance matri. = o?R~*, wherep

network performance monitoring. and matrixR are knowna priori.

As summarized inf], Lindley’s framework is the following. ~ Let D(n) = (AL As+R)~'. The Bayesian procedure yields
Suppose one wants to conduct an experiment on a system with

o b y Ua(n) = —o*t{FD(m)F"}, )

unknown parameters drawn from parameter spaédé Before
the experiment, a designmust be chosen from some &t where t{ M} (the trace of a matrix\/) is defined as the sum
Through the experiment, dagafrom a sample spac® will of all the diagonal elements af/.



imizi inimizi i 1 S=90 /l'initialize the path set to be empty
Maximizing U 4 (n) thus reduces to minimizing the function 2 foriter — 1105 Il & is the desited number of paths
3 for each pathi € {1,2,--- ,m} — S
¢A(77) = tI’{FD(n)FT}, (8) 4 /I compute the new design criterion after adding path
) ) ) ] ) 5 criteria[i] = ¢(S U {i})
which is commonly referred to as tlgayesianA-optimality. 6  endfor . o
) ] ) . 7 /I select the path that minimizes the new design criterion
Bayesian D-optimal design: It is also common to replace g de = S U {arg min; criteriali] }
the quadratic error function in Bayesiattoptimality with an 10 oS

information-theoretic metric. Specifically, one can choa
design that maximizes the expected gain in Shannon inforniég: -
tion or, equivalently, maximizes the expected Kullbackbler . o r1q 201 119 122])). which tries to reduc b
distance between the posterior and the prior distributions i(terga{ti\[/elgll (a[xc%'aggikg[pa]t)ﬁs. We have implement?fc(inlgecérov
p(Fx|y,n) exchange algorithm, which has been shown to yield the best
/ log —=————p(y, x|n)dxdy 9) isti i
p(Fx) J : performance among many existing alg_orlthrﬁﬁ][ However,
) ) o our experience suggests that the additional path exchalmes
Since the prior distribution of'x does not depend on thepot yield noticeable performance improvement in the cantex
designn, maximizing @) is equivalent to maximizing of network performance inferenc8o we disable the exchange
algorithm in the interest of efficiency.
Up(n) = /log{P(FX|yaU)}P(Y»X\U)dXdy' (10)  3) Incremental Update of Design Criteriorfor large-scale
) ] ) network measurement, it is essential for the search algorit
“Under a Gaussian linear model, the Bayesian procedygepe highly efficient, because the design space is often very
yields large due to the quadratic growth in the number of network
n n 1 . paths with respect to the number of network nodes. The major
Up(n) = ) log(2m) — 9 9 logdet{ FD(n)F"}, (11) pottleneck of the above search algorithm is computing the ne
. design criteriong(S U {i}) after adding a path (line 5 in
whereght_{_M} denotes the determlnant pf .a.matM. ._Figure 1). Recall(that {bgzhm(n) and ¢p(n) are functions
Maximizing Up(n) thus reduces to minimizing the function FD(FT = F(ALAs + R)~'FT. Given the size of

Sequential path selection for Bayesian designs.

ép(n) = det{ FD(n)FT}, (12) (ALAs + R) and F, it is ineﬁ‘icient to c.or_nputeyﬁ.(S u{i}) _

) _ ) S from scratch due to the expensive matrix inversion and matri
which we define as thBayesianD-optimality. . multiplication operations involved.

One problem with 12) is that when rank”) < r (r isthe  |n NetQuest, we significantly improve the efficiency of

number of rows inF), det{ FD(n)F"} is always0 and thus the search algorithm by applying incremental methods to
cannot distinguish different designs. Our solution is tefene  ypdate the design criterion. With such optimizations, Net€
T has successfully handled routing matricéswith 1,000,000
op(n) = Hrank(F){FD(n)F b (13) rows, 50,000 coI):Jmns, and oveB?OO0,000 non-zero entries
wherelIl, {M} is the product of the: largest eigenvalues of (corresponding to paths among 000 nodes). Below we
M. present these incremental update methods in déatie that
It is often reasonable to require that a desigmemains understanding of these methods is not required in order to
good under a small perturbation to the function of intereginderstand the remainder of this paper.
f(x) = Fx. As a result, ifF" is not full-rank, we can perturb Notations: Let S’ = S U {i}, M = ALAs + R, M’ =
F slightly to make it full-rank. Therefore, we only need toAZ, As, + R, N = FM~'FT, N’ = F(M’")~'FT. With
consider the case when rgik) = min(r,n). In this case, we these notations, we have(S) = tr{N}, ¢ (S’) = tr{N'},

can simplify (L3) into ép(S) = det{N}, ¢p(S’) = det{N'}.
det{FTF}det{D(n)} if r>n, Incremental computation of ¢4 (SU{i}): Leta] denote the
¢p(n) = { det{FD(n)FT} otherwise. (14)  j-th row vector ofA. It is easy to verify that\/’ = M +a;a .

o ~ That is, M’ can be derived from\/ using a rankt matrix

Note that when > n, minimizing ¢p(n) reduces tTO mini- ypdate. We have the following result from matrix algebra
mizing det{ D or, equivalently, maximizinglet{ Ac As +

R gdett D)} f Y got{AsAs (M= (M+a;al )t =M —ouu?, (15)

2) Search Algorithm: Once we have chosen a deSig'?;vhereu:M—la» a=1/(1+aTu).
criterion ¢(n), the next step is to find the optimal design Combine (5) “With N = zFM_lFT and N/ =
n* = arg min, ¢(n). However, the problem of finding rows F(M")~'FT, we obtainN’ = N —a(Fu)(Fu)”. As a result
of A to minimize a given design criteriop(n) is known tobe 0 have '
N P-complete and it is computationally infeasible to compute
the optimal design exactly. To address the issue, we sear¢tHN'} = tr{N} — tr{a(Fu)(Fu)”} = tr{N} — a||Ful|3.
for a good design using a simpéequential search algorithm (16)
The algorithm starts with an empty initial design and then Therefore, we can compuig (S U {i}) = tr{ N’} incre-
sequentially adds rows to the design. During each iterattonmentally by computingn = M~'a;, « = 1/(1 + alu),
greedily selects the row that results in the largest redndti  and ||Fu||3 (note thatM/—! remains fixed for different).
¢(n). The basic algorithm is illustrated in Figufe These operations are much more efficient than matrix inwersi
It is possible to further improve the design obtained bgnd matrix multiplication, which are required to compute
the sequential search algorithm using excthange algorithm ¢4 (S U {i}) from scratch.



Incremental computation of ¢ (SU{i}): Letb = /a-Fu. whereSNS, = (). We can then apply the Bayesianoptimal
We haveN’ = N —bb?. Using results in matrix algebra, weand D-optimal design criteria to find, the set of additional
have paths to probe. In addition, we also extend QR and SVD,
Nne1l R N R T which will be described in Sectiolfli-C, to support augmented
(N) = (N=bbT)™ =N""+fvvi,  (17) design by excluding the paths with successful measurements

det{N'} = det{N — bbT} - ldet{N}, (18) and applying SVD or QR to select a set of paths from the

B remaining rows.
wherev = N~'b, and3 = 1/(1 - b’v). .. Multi-user design: In large-scale network performance mon-
Therefore, we can computep(S U {i}) = det{N'} jioring, there may be multiple users who are interested in

incrementally by computing = N ~'b, and8 = 1/(1-b”v) jjfferent parts of the network and may have different fuprcsi

(note thatN —" remains fixed for different). These operations of interest. We can support such scenarios by using a linear

are much more efficient than the matrix inversion and matrpgmbpination of individual users’ design criteria as theralle

multiplication operations required for computigg, (S U {:}) design criterion. Formally, given a set of userg, - - - , u, let

from scratch. ¢i(n) be the preferred design criterion for each us@which

Further optimization: With the above incremental updatemay depend on his/her interegi(x) = F;x). We can then use

methods, we need to updadé ~! and N~! each time after ¢()) = 3", w;¢;() as the combined design criterion, where

a new path is added t&' (line 8 in Figure1). This takes ), is the weight associated with useAs a concrete example,

O(n?*) operations usingl@) and (L7). We can further improve consider the case where Bayesidroptimality is used by all

efficiency by maintaining the Cholesky factorization/afand the users. In this case, we hayg(n) = tf{FiD(n)FiT}- We

N (instead of M ~! and N—1), which in general are much can show

sparser and thus more efficient to update incrementallye Not

that the only use of\/~! and N—! is to compute quantities o(n) = Zwitr{FiD(n)FiT} =tr{FD(n)FT}, (20)

u = M 'a; andv = N~'b. We can compute the same i

guantities using the Cholesky factorization. For examiplee

write M = LLT, whereL is the lower-triangular factorization where F = vertca{w,’*F;} is the vertical concatenation

of M, we haveu = (L7)~'(L~'a;), which can be computed of matricesw,’F;. Therefore, the optimal design using the

efficiently using back-substitution without invertidgand 7. combined design criterion is equivalent to the Bayesign
In NetQuest, we use LDL8|, a MATLAB package highly optimal design for the combined functiofi{x) = Fx. Note

optimized for incremental Cholesky factorization of sgarshat if a subset of userd/) share a common row in their

matrices. Our experience suggests that the resultingitidgor F£;, this row will appear as multiple rows if'. These rows

achieves an order of magnitude speedup over directly umglattan be merged into a single row with a combined weight of

M-t and N1 (3 ;e wi)'/2. In the special case when;, = 1, the combined
o weight is simply|U|'/2, i.e., the square root of the number of
B. Flexibility users interested in the row.

Our Bayesian experimental design framework is very flex- Besides the above three common scenarios, our design
ible and can accommodate common requirements in largemmework can easily incorporate other constraints in the
scale network measurement. Below we cover three commaesign spacee(g, the maximum amount of paths that one can
scenarios. probe at each monitoring site, and the number of monitoring
Differentiated design: In large-scale network performancesites available). Due to space limit, we will not considectsu
monitoring, different quantities of interest may not alwayconstrained designi this paper. As part of our future work,
have the same importance. For example, a subset of pat&plan to further investigate them in the context of specific
may belong to a major customer and it is important to monit&€twork monitoring applications.
those paths more extensively than the other paths. We can ac-
commodate such differentiated design requirement in Bages ) )

A-optimality by assigning higher weights to those importarfe: Non-Bayesian Designs

rows of matrix /" in the objective functionf(x) = Fx. For performance comparison, we will also examine the fol-
Augmented design:Augmented design is useful in large-scal¢owing non-Bayesian solutions to the path selection proble
network measurement for several reasons. First, when SORE | based solution: Chenet al [2], [3] presented a linear
of the measurements In a previous design failed, we do Eebraic approach to efficient monitoring of overlay paths
want to design a new experiment completely from scratch, bMeir context, giverk overlay nodes, there aték—1) different
instead would like to leverage the data that we have alreaﬁg ' f

. €a0¥ths. SoA has k(k — 1) rows. The quantity of interest is
observed as much as possible. Second, augmented de&gn@g — Ax (i.e, the performance on all overlay paths). Let

also be used to design active measurement experiments A) denote the rank of matrix. Their solution is based

complement well with the existing passive measuremieat (
the additional information gain is maximized). Our desig
framework can naturally support the augmentation of a pre
ous design. Specifically, lef, be the set of rows we obtain
in the previous design. We just need to redefine

on the observation that any subset of ratk independent
\Eows of A, denoted asAg, are sufficient to span the space
of A: {y € R™|3x € R" s.t.y = Ax}. As a result, given
the measurements for paths corresponding to the rowksin
one can reconstruct the end-to-end performance on all paths
D(n)=(Alyg,Asus, + R) ' =(A5As + R+ A§ As,)”" exactly As we will show in SectionVIl, rank4) gives an

(19) upper bound on the number of paths that one needs to probe.



1 computeC such thats = CCT Notation | Inference algorithm Section

2 compute SVD ofAC: UVVT = AC MinL2 L2 norm minimization §IV-A

3 extract the firsts column vectors ofU: Us = [ujug - - - ug] MinL1 Ly norm minimization ¢IV-B

4 compute the QR factorization with column pivoting i : Entropy | Maximum Entropy Estimation| §IV-C
QR = (Us[E, )T (E is a permutation vector for rows df,) TABLE |

(&)

return the firsts elements offs: S = {eq, e, -, es} INFERENCE ALGORITHMS MinL2 AND MinL1 CAN OPTIONALLY
INCORPORATE THE NONNEGATIVITY CONSTRAINTS: x > 0, RESULTING
IN MinL2 _nonNegAND MinL1 _nonNeg RESPECTIVELY

Fig. 2. SVD based path selection algorithm

1 computeC such thats = cCT
2 computeG = (AC)T
3

compute the QR factorization with column pivoting 6h can out-perform the alternatives in the following regai@sit
QR = G[-, E] (E is a permutation vector for columns 6f) . . L.
4 return the firsts elements ofE: S = {e1, ez, - ,es} achieves higher accuracy when monitoring the same number

of paths as SVD and QR, (ii) it is scalable and can be applied
to networks of thousands of nodes, and (iii) it is flexible to
| Support diverse design requirements.

Fig. 3. QR based path selection algorithm

SVD based solution:Chuaet al. [4], [5] presented a statistical
framework for monitoring a linear summary of the end-to-
end path performance. Their quantity of interest is a sealar IV. INFERENCEALGORITHMS

valued linear functionf(x) = (T Ax, where/ is a weight . .
vector. When multiple (scalar-valued) quantities are afriest, The ot_her major component to the NetQuest_ frameyvork IS
network inference, which reconstructs the quantities tfrast

separate experiments have to be designed. The formulation i based on partial, indirect observatiogsby solving (1)
[4], [5] is a special case of the inference problem considerdy P ' pS oy 9 &)

in this paper. where the quantity of interest can be any vecty "c€ NetQuest selects only a small number of measurement
Paper, . q y y experiments to conduct, the number of observables can be
valued linear functionf(x) = Fx.

Chuaet al. observed that routing matrices encountered much smaller than the number of unknowns. Therefore, the
ractice enérall show si nifican? sharing of links beuweéll{hear inverse problem inij is oftenunder-determinedA |ot
P 9 y g 9 . of solutions have been developed for under-determined@dine
paths. As a result, A tends to have smaleffective rank

' ! ; inyer roblems. As we noted i man h pr I
compared to their actual matrix rank. That is, a small subsse |\e/esteh2 Sebgilafizec'is Iee?st-gc?l?arzg],prozleymsuc proposals

of eigenvalues ofA” A tend to be much larger than the rest.

Based on the observation, Chea al. proposed to select a min ||y — Ax|)? + A\2J(x), (21)
subset ofs paths such that the corresponding rows span as x
much of R(A) as possible, wheréR(A) is the subspace where || - ||, denotes theL, norm, \ is a regularization

formed by all possible linear combinations of the rows iRarameter, and/(x) is a penalization functional. Proposals
A. Algorithmically, this problem is equivalent to the subsebf this kind have been used in a wide range of fields, with
selection problem in the field of computational linear algeb considerable practical and theoretical success when ttee da
(see 12, Ch 12]). So f]] adapted the method described immatch the assumptions of the method, and the regularization
Algorithm 12.2.1 of 12, p. 574], which is based on thefynctional matches the properties of the estimand. $aefor
singular value decomposition (SVD). Subsequently ), [ a general description of regularization.

Chua et al. extends their algorithm to incorporafe, the  |n this paper, we compare the accuracy of several widely
covariance matrix ok. It assumes thaf is a diagonal matrix ysed inference algorithms (summarized in Tab)leThe goal

(but allows diagonal elements to be different). The resglti js to understand how combinations of different experimenta

algorithm is summarized in Figur2 _ design methods and inference algorithms affect the overall
Path selection under general link covariancée.g, when jnference accuracy.

link performance has spatial dependency) is left apan

problem in p]. Our Bayesian experimental design framework

works for any link covariance matrix, and therefore solés t A. Lz Norm Minimization

problem. A common solution to X) is L, norm minimizationwhich
QR based solution: The third alternative solution is directly corresponds to1) with .J(x) = [|x||3.

based on QR factorization with column pivoting. It is one _ 5 2n 12

of the two algorithms proposed by Golut al. [11] for m,lnHy_AX”? + AT (22)
selecting numerically independent rows/columns (the other L . . A
algorithm is the SVD based solution described above). As!f We have prior information thak is close to an initial
noted in [L1], the QR based solution is generally more efficierto!Ution 1, we can replace]x[> with [x — ull> in (22),
than the SVD based solution and often achieves comparaffi§ulting in

performance. We extend the algorithm ihl] to incorporate : -~ 2 2w 112

the link covariance matrix. when ¥ is a diagonal matrix. m::n”y Axllz + A% = pllz- (23)

The resulting algorithm is illustrated in Figue (23) is also commonly referred to as the Tikhonov reg-

Summary: Rank based solution requires monitoring reAk ularization [L3]. It can be efficiently solved using standard
number of paths, which can be expensive in large networlslvers for linear least-squares problems. If desired, care
SVD and QR based solutions can monitor fewer paths at timeorporate the non-negativity constraints> 0 into (23).
cost of higher error. We further enhance the flexibility oThe resulting non-negative linear least-squares problam c
SVD and QR by extending them to support augmented desidpe. solved using PDCO2p], a MATLAB package highly
Nevertheless, as we will show, Bayesian experimental desigptimized for problems with sparse matricds



B. L; Norm Minimization measurements, gather the results and return them back to the
Another common solution tolf is L; norm minimization master. While our current implementation is based on one

which corresponds to2() with J(x) = ||x|; (e, the L, ™Master and multiple slaves, our architecture is extendible
norm of x). multiple masters and multiple slaves.
: o 2 2
min ”y AXH2 + A HX”l (24) ’ User Interface ’ User Interface LA ’ User Imerface‘
L, norm minimization is often used in situations wherés Nevgjests ! !

’ Controller ‘

sparse i.e, x has only very few large elements and the other

elements are all close 1. This can happen, for instance, [esing i —"Tseeciedans —"IERA0S T

in loss inference, where most links have close)twss rate Topology Experimentor Analyzer
(and thuslog{1 — loss raté is close to0). In such scenarios, Generato

A ) . . TraceroutéT reguests Perform!nc%probe re PerbrmanceT results
ideally on.elwlogld like to find the sparsest solution yto= ’ Communioator

Ax by minimizing the Ly norm ||x||o (i.e., the number of — =l
nonzeros inx). But since theL, norm is not convex and is 1L e

notoriously difficult to minimize, one often approximatég
norm withyanL1 norm. As shown ing], the min?rgaILl norm | screduier || [ scheduier ||
solution often coincides with the sparsest solution forard | Eveouter || || Executer |
determined linear systems. We have successfully apdlied
norm minimization to network anomaly inferencgd[. Fig. 4. Our toolkit architecture.

As in [30], we solve the following variant of24) As shown in Figuret, the master consists of the following
min ||y — Ax||; + A|x|;. (25) five modules: (i) cont_roller, which accepts user measurémen
x requests, schedules jobs, and manages the other master mod-
An advantage of45) is that it can be cast into an equivalentlles, (ii) topology manager, which generates and maintains
Linear Programming (LP) problem, for which solutions arghe routing matrix, (iii) experimenter, which applies one o
available even with large-scalé, owing to modern interior- the experimental design algorithms in Sectitinto identify
point LP methods. The LP formulation also allows one twhich paths to probe, and issues measurement requests to the

incorporate additional linear constraints, such as the- no¥Prresponding slave nodes, (iv) analyzer, which applies on
negativity constraintsc > 0. Finally, if we have prior infor- Of the inference algorithms in Sectidw to infer the network

mation thatx is close to an initial solutio, we can replace performance based on the obtained measurement data, and (v)

lx||x with ||x — |1 in (25), yielding communication module, which takes care of communication
) between slaves and masters.
min [y — Ax||1 + Allx — 1. (26)  sSlave side of the toolkit accepts measurement commands

both from topology manager and experimenter. The request
is queued at its scheduler, and executed according to the
] o ] specified frequency and duration. When a set of measurement
For inference under the non-negativity constrairts- 0, experiments has finished, the results are sent back to the com
another commonly used solution asaximum entropy estima- mynjication module of the master. For safety and convenjence
tion, which uses the negative entropy function/ds) in (21). e use scriptroute2d] for conducting traceroute. The toolkit
) Ascl? 32 | _— 07 runs contin.u'ously to measure and infer performance on the
min [y — Ax|| + ZZ:% ogz;, x=>0. (27) paths specified by the users.

C. Maximum Entropy Estimation

If we know x is close to an initial solutiony = VI. EVALUATION METHODOLOGY
(1o - -+ )T, we can instead minimize the relative entropy, Accuracy Metric

, resulting in . . . .
[7 g We quantify the inference accuracy using normalized mean

m,in |y — Ax]||2 + A2 sz 1Og%7 x>0. (28) absolute errorNIAE) , which is defined as

. >, linferred; — actual;|
(28) can be efficiently solved by PDCQ%], which has been normalizedMAE = >, actual; ’
highly optimized for sparse matrices. We have successfully
applied @8) in the context of traffic matrix estimatior8Z).

(29)

wherein ferred; andactual; are the inferred and actual end-
to-end performance for path A lower value of normalized
MAE indicates better accuracy.
V. TOOLKIT DEVELOPMENT Another set of metrics we use to quantify the accuracy of

We develop a toolkit on the PlanetLaB4] to measure and loss inference, are false positive rateP] and false negative
infer network path properties. Our toolkit is programmed imate EN). We consider a path is lossy if its loss rate is above
MATLAB, Perl, and C++, altogether with around 25,000 lines certain threshold. In our evaluation, a path with over 2%
of code. The toolkit design is based on master-slave modeelss rate is considered as lossy. False positive rate ré&fers
The master accepts measurement requests from users,edlyn fraction of paths that are inferred to be lossy but actu-
measurement experiments, issues measurement commandslyoare not lossy, i.e.Pr(inferred lossy|actual not lossy).
the slaves, and collects and analyzes the results. Thesslavalse negative rate refers to the fraction of paths that
accept measurement commands from the master, condaure inferred to be not lossy but are actually lossy, i.e.,



Pr(inferred not lossy|actual lossy). As MAE, lower FN rate. In the Bernoulli model, each packet is dropped with a

and FP indicate higher accuracy. fixed probability determined by the loss rate of the path. In
the Gilbert case, the path moves between a good state and a
B. Dataset Description bad state, where no packets are dropped at the good state and

aH_packets are dropped at the bad state. Followi1ig, [ 23],
WE use 35% as the probability of remaining in the bad state.

thetic data.Note that the real traces use rourld—trlp perfor-The other state-transition probabilities are determioetiatch
mance measurements, whereas the synthetic data use

way performance measuremendss noted in Sectiorl, the ?Hg'average loss rate with the loss rate assigned to thelfink.
problem formulationy — Ax works for both one—wa’y and both cases, the end-to-end loss rate is com_puted based on the
round-trip measurements transmission of 100_00 pa_ckets. Our evaluatl_on shows theat th

’ inference accuracy is similar under Bernoulli and Gilbess|

PlanetLab traces: We collected RTT traces among PlanetLabodels. So in the interest of brevity, we only show the rasult
using our toolkit on Oct. 1, 2005 for 10 minutes, with &om Gilbert loss models.

probing frequency of one probe per second for every mop- . § . i
itored path. We also collected loss traces on PlanetLab Xnthetlc power-law topologies:To further test the scala

. . . lity of our approach, we generate large synthetic power-
Jan. 22, 2006 for 15 minutes, with a probing frequency of o 2 . )
probe per 300 milliseconds for every monitored path. Table lSaV\:agi?i'((\;I:I)Irk t\(,)v[()aolog:]eesr‘;selngv 5ﬁg%rgﬂzgggs?nenet[]aem?o[uter-
summarizes the traces, whenedesinclude both end hosts Ieli)/el Bara)lgasi-Algert model in B£|TEg(WhiCh isg configured
and intermediate routers on the end-to-end paths,oaeday 9

nodesonly include end hosts among which the end-to-e tagllgvﬁ/egﬁ?ﬂ;Zﬁzggdagogglegéﬁ?:o?oeixe:zt'cvge nl?sdeeS)'l.'he
performance needs to be monitored or estimated. polog '

BRITE topology generator assigns each link with a delay

Fioded # overlay node# pathd # Tinks | rank(A) based on its physical Qista.nce. We; emphgsize that we use larg
PlanefLab-RTT| 2514 61 3657 | 5467 | 769 BRITE topologies primarily for illustrating the scalalbyli
PlanetLab-Loss| 1795 60 3270 | 4628 690

of our approach as opposed to evaluating its performance
in realistic scenarios. The PlanetLab traces and RocKetfue

. . . topologies are used to achieve the latter goal.
We construct routing matrix4, using traceroute measure-

TABLE I
SUMMARY OF PLANETLAB TRACES USED FOR EVALUATION

ments. We.derive the a_ctual .RTT based on the mean over # noded # overlay nodes# paths # Tinks | rank(A)
60 probes in every 1-minute interval, and derive the actual [ Brite-n1000-0200] 1000 200 39800 2883 | 2051
Brite-n5000-0600| 5000 600 359400 14698 9729

loss rates based on the mean over 300 probes in every 90-

second interval. We use the following approach to derive the

inferred RTT and loss rates: for the paths that are monitored

we assume we know the true RTT and loss rates; for the Yo- .
. . . . C. Experimental Parameters

monitored paths, we use the inference algorithms described ) ) ]

in Section|V to infer based on the observed performance of There are several parameters in Bayesian experimental

monitored paths. For each interval, we use normaliggkE design and network inference. Below we present the values
to quantify the inference error. that we use for these parameters in our evaluation.

Rocketfuel topologies:We also evaluate the performance oPrior information for Bayesian experimental design (R):
NetQuest on ISP topologies discovered by Rocketf@g],[ Recall that the design criteria for both Bayesidn and D-

[27]. Specifically, we use two large router-level ISP backborptimality are functions ofD(n) = (AsAl + R)~'. To
topologies as our underlay topologies: Sprint (in US), arstimate R, one needs to estimate both the variance of the
Tiscali (in UK). Both topologies have been annotated witfeasurement noise{) and the covariance matrix of the link
inferred link weights and link latencies as describedif][ performance ¥ = o®R~") through network measurement.
For each underlay topology, we randomly selediédtouters However, the estimation of such second-order statistics in
to form an overlay. The route between two overlay nodddrge-scale network measurement can be both expensive and
is computed as the shortest path on the underlay (using thaccurate (due to measurement artifacts and non-staitiesa
inferred link weights). Tabldll summarizes the Rocketfuelin Internet path properties).

TABLE IV
SUMMARY OF BRITE TOPOLOGIES USED FOR EVALUATION

topologies we use. In NetQuest, we avoid such difficulties by settifg= € I,
wheree is a small constant andl is the identity matrix. Our
__[# nodeq # overlay node$# pathg # links| rank(A) results suggest that this simple choicefdyields designs that
Rocketfuel-Sprint | 315 60 3540 | 622 518 istentl t f th It ti desi clarsid
Rocketfuel-Tiscali| 161 60 3540 | 398 | 286 consistently out-periorm the alternative designs we csTs
TABLE Il (see SectionVIl). Moreover, the resulting design is highly
SUMMARY OF ROCKETFUEL TOPOLOGIES USED FOR EVALUATION insensitive to the choice of. In our evaluation, we set =

To evaluate loss inference, we assign a loss rate to e&f01, which yields good results. Finally, note that a similar
link in the following way as in 23], [3], [33]. A fraction of approach has been taken in the literature of Bayesian super-
links were classified as “good”, and the rest as “bad’. Trturated desigrilf.
loss rate for a good link is picked uniformly at random in th@rior information for network inference ( p): In this paper,
0-1% range and that for a bad link is picked in the 5-10%nless noted otherwise, we assume no prior informationtabou
range. Once each link has been assigned a loss rate, we dexivdhat is, we sety = 0 (an all0 vector) for L, and
the true loss rate for each path. Then we use Bernoulli 8 norm minimization (both with and without non-negativity
Gilbert loss process at each path to derive the observed lessstraints), ang = 1 (an all-1 vector) for maximum entropy



0.35 PR ———— As shown in Figures, the performance difference among

0.3 MinLl nonNeg - | various inference algorithms is larger for loss rate infer-
o Minls nomeg B ence. The inference algorithms that enforce non-neggtivit
S 025w\ Entropy ] constraints out-perform those that do not enforce such con-
§ 0.2t ] straints. In addition, the inference error under thoserétlyns
2 .15 without non-negativity constraints does not decrease with
%’ an increasing number of monitored paths. Since loss rates
g 02 take non-negative values, intuitively enforcing non-riegst

0.05 constraints should give better inference. In comparisba, t

effect of non-negativity constraints is much smaller fotagle

100 200 300 400 500 600 700 800

# monitored paths

inference. This is because all paths have delay larger them O
even without enforcing non-negativity constraints moskdi

Fig. 5. Comparison of inference algorithms for estimating gth delay in  are assigned positive delay. Finally, MinlrionNeg consis-
PlanetLab-RTT using A-optimal design. tently out-performs the other inference schemes. As desri
— —— in SectionIV-B, MinL1_nonNeg effectively maximizes the
MinLl_nonNeg —%— | sparsity of link loss rate, which matches well with the fact
MintS onteq o that few links on the Internet are lossy.

0.08 ¢ 5 . Based on the above results, in the remainder of the paper,
unless noted otherwise, we use MinlobnNeg for both delay
and loss inference.

2) Comparison of Measurement Desigiéext we evaluate
different algorithms for designing measurement experisen
We consider inferring two types of quantities: network-gvid
performance and individual path performance.

Network-wide performance: A global view of the perfor-
mance aggregated over an entire network is useful for a
Fig. 6. Comparison of inference algorithms for estimating path loss in  variety of reasons. It can be used for estimating a typical
PlanetLab-Loss using A-optimal design. user’s experience (as in the Internet End-to-end Perfotman

estimation. Despite not using any prior information, owules  Monitoring Project (IEPM)), detecting anomalies, trouble
show that NetQuest can achieve high accuracy by probing offy2°0ting, and optimizing performance. The pioneering work
a small fraction of paths. in this area is done by Chua et a],[[5], which is based on
We are in the process of developing light-weight techniqu@sVD' . . . .
to obtain better priors and thus further improving the aacyr W& compare the Bayesian experimental designs with the
As an initial step, in Section/II-C we evaluate a simple other alternatlv_es fo_r mferrm_g netwolrk wide average dela
enhanced prior that does not require generating any ex'ﬁ"ﬁre the quantity of interest if(x) = - 14x, wherel is an
probing traffic. all-1 row vector of lengthm. Figure7 compares different ex-
Regularization parameter (\): Our experience 32, [30] perimental design schemes when MinL2 is used for inference,
suggests that the inference algorithms are not sensititieeto and Figures shows the results when MinLbonNeg is used.

ho N luat & — 0.01. which oi As noted in Sectiorill-A, A-optimal andD-optimal designs
choice ofA. In our evajuation, we usg = .01, WhICh gIVeS  are dentical for inferring network-wide average, so weyonl
satisfactory results.

show the results ofi-optimal.
VIl. EVALUATION RESULTS . As shown in Figure7, with the A—optima_l dgsign, the
' inference error decays very fast — the error is within 15% by
We first evaluate our basic measurement framework. Thgibnitoring only within 2% pathse(g, 77 out of 3657 paths in
we examine its capability of supporting flexible design fiegtu  planetLab-RTT, 75 out of 3540 paths in Rocketfuel-Sprit, 4
ments. Finally we study the effects of prior information.  out of 3540 paths in Rocketfuel-Tiscali). In comparisore th
inference error is 50% or higher (thatroptimal) when the
A. Basic Framework same number of paths are monitored under the other schemes.
In this section, we evaluate the two key components 8t addition, we observe that to achieve within 10% inference
our framework: (i) inference algorithms, and (i) design ofTor, the other schemes require monitoring 50% more paths
experiments. than A-optimal. Finally, as the number of monitored paths
1) Comparison of Inference Algorithmsirst, we compare increases, all the schemes converge to close to O inference
the accuracy of different inference algorithms. We useAke €rror, since in this case there are sufficient information to
optimal design criterion to determine which set of paths f#gconstruct the global network view. Random selection con-
monitor. Figure5 and Figure6 show the error of inferring Verges slower because it does not ensure the selected paths a
end-to-end delay and loss rates as we vary the numberliggarly independent. Similar results are observed in Figu
monitored paths. The x-value of the right most point on ead¥en the inference algorithm changes to MinbdnNeg.
curve corresponds to the rank of the routing matrix. Individual path performance: Figure 9 compares different
As shown in Figure5, different inference algorithms per-measurement design schemes for inferring individual path
form similarly for delay inference. Moreover, as expectib@, delay. As we can see, the rank-based approach requires
error decreases with an increasing number of monitoredspatimonitoring 286—786 paths, which is expensive. In compariso

normalized MAE

0 100 200 300 400 500 600 700

# monitored paths
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Fig. 7. Comparison of experimental design schemes for estighagtwork-wide delay using MinL2 inference algorithm.
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Fig. 8. Comparison of experimental design schemes for estighagtwork-wide delay using MinLIhonNeg inference algorithm.
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Fig. 9. Comparison of experimental design schemes for pergeltly inference using MinLlhonNeg inference algorithm.
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Fig. 10. Comparison of experimental design schemes for péripas inference using MinLhonNeg inference algorithm (simulation uses Gilbert model).

the other approaches can provide a smooth tradeoff betwéiemation. A-optimal performs very close to the other schemes.
inference accuracy and measurement overhead. Among thé&ime performance difference is much smaller than that ofytlela
A-optimal consistently performs the best, though the bendfitcause most links have close to zero loss rate, and asgignin
becomes smaller compared with network-wide performantieks with zero loss rate (even without extensive network
inference. Note thaf)-optimal performs significantly worse monitoring) can achieve low average inference error. Note
than A-optimal, and sometimes even worse than the oth#rat when the number of monitored paths is equal to the
alternatives. This suggests that the Kullback-Leibletasise rank of the routing matrix, the error is non-zero due to the
tends to under-penalize estimation errors. sampling errors when assigning true loss rates in RocKetfue
Figure 10 shows the absolute inference error in loss rate epologies. Finally, we observe that-optimal often performs
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Fig. 11. False positive and false negative rates of per-fmsth inference Fig. 12.  Comparison of experimental design schemes for pér-gpefay
using MinL1 nonNeg inference algorithm in PlanetLab-Loss. inference using MinL1nonNeg inference algorithm on large BRITE topolo-
gies.

worse than or similar tel-optimal. We observe similar results
for Bernoulli loss model and other topologies. So hereafier
will focus on Bayesiand-optimal designs.

We further quantify the accuracy of loss estimation using
false positive and false negative rates. As shown in Fig-
ure 11(a) and (b), the average false positive and false negative
rates are within 5% and 22%, respectively, even when the
number of monitored paths is 10% of the rank of the routing
matrix. Moreover, we observe that both false positive and

false negative rates decrease as the number of monitorks PR Our results show that the different inference algorithms un

increases. der study perform similarly for delay inference, whereas th

Scalability: To illustrate the scalability of our approach, algorithms that enforce non-negativity constraints penfo
Figure12 compares the performance of different measurementpetter for loss inference.

design schemes on the large synthetic BRITE topologies. Our

results show thatd-optimal is more scalable than SVD and

QR, both of which cannot handle Brite-n5000-0600, and fdil- Flexibility of Measurement Design

to run on Brite-n1000-0200 when the number of monitored |n this section, we evaluate the flexibility of our measure-
paths exceeds 1200. Therefore the SVD and QR curvesnignt framework by estimating delay on individual network
Figure 12(a) stop at 1200 monitored paths, and Figu&¢b) paths in the PlanetLab-RTT topology.

only shows the results for Bayesian experimental designsi) Differentiated Design:First we examine the effective-
and random path selection for Brite-n5000-0600. In terms Aéss of experimental designs for providing differentiatedt-
accuracy,A-optimal consistently outperforms the other desigment to a subset of paths. We apply the technique described

rable accuracy for estimating individual path properties
and achieves higher accuracy in estimating network-wide
average delay. In addition, A-optimal is much more scalable
than SVD, and can be applied to networks with thousands
of routers and end hosts. Furthermore, as we will show in
the next sectionA-optimal design provides high flexibility,
which is another major advantage over the existing SVD
approach.

schemes. . . in Sectionlll-B to achieve this goal. In our evaluation, we
3) Summary:In this section we evaluate our measurememandomly assign a subset of preferred paths with a weight
framework. Our key findings are: varying from 1 to 16, while fixing the weight on the remaining

e Design of measurement experiments is crucial for largpaths to 1. Figurel3 shows the inference error on both the
scale network monitoringA-optimal is effective in con- preferred and the remaining paths when we monitor 200 paths
structing measurement experiments for inferring networka PlanetLab-RTT topology and vary the number of preferred
wide average delay. It can achieve 15% inference error pgths from 20 to 160. We make the following observations.
monitoring only 2% paths. Moreover it is also competitivéirst, as we would expect, the inference error on the prederr
for estimating individual path performance. Compared withaths decreases with an increasing weight. When the weight
the existing approach, SVDA4-optimal achieves compa-is 4 and higher, the inference error is close to 0. This is
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(a) Inference error on the preferred paths Fig. 14. Comparison of augmented design schemes in PlanefLab-R

e We compare the following design schemes:

0.2 t e Separate design and separate inference (sep./s&agh
user individually determines the set of paths to monitod an

0.15 makes inference based solely on his/her own observations.

e Separate design and joint inference (sep./joifithis is an
0.1r 20 weighted —+— ] enhancement of the previous version. Users still indiviiglua
G0 meronrel LT decide which paths to monitor, but they make inference
0.05F 100 weighted based on the observations made from all users.

- e Augmented design and joint inference (aug./joirit) the

normalized MAE

*
=
120 weighted -—-#---
160 weighted -—-©&

0 2 1 & 5 10 12 12 16 augmented design, we first design measurement experiments
weight for user 1, and then apply the the augmented design (in
(b) Inference error on the remaining paths SectionVII-B2) to construct measurement experiments for

Fig. 13. Use differentiated design based #roptimal design to provide a USQI‘ 2. We contlnl_Je_ th? process fOI’_ all _th_e other us_ers.
higher resolution in estimating a subset of preferred pattRlanetLab-RTT. e Union design and joint inference (union/jointh the union
design, we take a union of all the paths that are interesting

L to at least one user, and then apply the (basic) measurement
because when the weight is high enough, the performance ofjggjgn,

many preferred paths is either directly monitored or eyact} joint design and joint inference (joint/jointnlike in the
reconstructed from the monitored paths. Second, we observgnion design, where all interesting paths are treated bgual
that the inference error on the remaining paths increasesy, joint design we set a path’s weight to be the square root
slightly, because as we pay more attention to the preferredyt the number of users who are interested in the path (see
paths, the remaining paths are monitored less extensketya Sectionlll-B).

similar reason, the inference error of the remaining pahdg All the design algorithms can work in separate, augmented,

to increase slightly with an increasing number of preferre‘,jq1d union modes. In additior-optimal can also support joint
paths. esign.

d

2) Augmented DesigriNext we consider augmented design |y oyr evaluation, we have 16 users, each interested in 50
for Supportlng continuous m0n|t0r|ng. Our eVaIUa“O” |Sém aths_ There are a common set Of paths that are interesting
on the _foIIowing scenario. Suppc_)se we id_entify a set of paths 5| users. Figurel5(a) compares thed-optimal design in
to monitor, and some of them fail to provide us measuremeg various design modes for inferring individual path gedes
data €.g, due to software or hardware failures at monitor sitgfe number of common paths is varied from 0 to 40. The re-
or at their incoming/outgoing links). In this case, we neeghaining paths interesting to a user are randomly selected fr
to identify the addltlongl measurements to conduct giveat thy)| the non-common paths. In the order of accuracy ranking,
we have already obtained the measurement results from f@i%t/joint > union/joint ~ aug./joint> sep./joint> sep./sep.
unfailed paths. In particular, sep./sep. incurs significantly higher etham the

In our evaluation, we first usel-optimal to identify 100 others, because in this case different users do not share the
paths to monitor in PlanetLab-RTT. Then we vary the numbgbservation. Enabling information sharing in sep./joeduces
of failed paths from 10 to 80, and apply different augment&gle normalizedMAE by 0.2 or higher. A further reduction
design algorithms to determine the additional paths to toeni js achieved by incorporating users’ interest into measeregm
Figure 14 shows the average inference error under differefesign. Interestingly, augmented design performs sityikar
schemes. As we can sed;optimal yields the lowest error. ynion design, even though the former is an online version
Moreover, its inference error is similar for a varying numbeof the latter {.e. the i-th user determines its measurement
of failed paths. In comparison, the inference error of theept experiments without considering theth user’s interest for
schemes tends to increase with an increasing number ofifaile~ ;). The performance of joint/joint is even better, and its
paths. This suggests that th&-optimal design is the most penefit over separate design grows as the number of common
effective in augmenting existing designs. paths increases. This is attributed to the fact that it ndy on

3) Multi-user Design:Now we study the multi-user scenar-ncorporates all users’ interest in designing measureniernt
ios, where each user is interested in a certain part of nktwoalso it biases measurement towards paths that interest more
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(b) vary # monitored paths (with # common paths fixed at Fig. 16. Comparison of different design schemes using theit in@des on
25) PlanetLab-RTT.
Fig. 15. Comparison of different design modes in handling rudér 0.35
scenarios using PlanetLab-RTT, where all modes usedtioptimal design. 0.3
=]
. . g 0.257
users. Figurel5(b) compares the inference error as we vary - g
the number of monitored paths. As before, joint/joint ygeld § 02
the best performance among all the schemes. The performance - o0.15
gap is largest with a small number of monitored paths. This § o1
suggests that experimental design is especially impoutaar s -
tight measurement resource constraints. 0.05r e S
Next we compare the performance across different design o b : : : : : Y
schemes. Figuré6 (a) and (b) show the inference error of 100 200 300 400 500 600 700 800
H H H H # monitored paths
various design schemes under their best design modes. Tpisyﬂ Effects of the enhanced prior on PlanetLab-RTT.

all use joint inference. As they showi-optimal yields the
lowest error, up to 80% lower than the alternatives. ) ) )
4) Summary:To summarize, we demonstrate the flexibilitgverage link performance. An advantage of this method is tha
of our measurement framework using the real trace. Ourteesuil iS extremely simple and requires no extra measurement.
show that it can effectively support differentiated design Figure17 shows the accuracy of delay inference for differ-
augmented design, and joint design. Such capabilities @@t measurement design schemes using the above enhanced
useful for a variety of network monitoring applications. prior. Compared with Figuré(a), we make the following
observations. First, the enhanced prior improves the enfe
accuracy for all measurement design schemes. It reduces
C. Effects of Prior Information the normalizedMAE by up to 0.07 (or about 25%). The
So far we assume no prior information abautn our future Improvement is largest when the number of monitored paths is
work, we plan to develop light-weight techniques to obtaimall. This is because the enhanced prior information istmos
better priors and thus further improving the inference sacyr  helpful to compensate for incomplete monitoring inforroati
As a first step, below we develop a simple method fdp comparison, with extensive monitoring we can accurately
obtaining an enhanced prior. Specifically, we consider aiape €Stimate performance even without prior. Second, theivelat
form of prior whose elements are all equal:= = - 1, where anking of different design schemes remains the same as be-
2 is an unknown, and is an alli column vector of length fore. A-optimal design continues to yield the highest aacyr
n. We can estimater by solving an over-determined least- On the other hand, the enhanced prior only yields very little
squares problemy = Ay = (Al)z, yielding z = (”Ajmzy_ accuracy |mproyement_fqr loss mferenpe (results omltqaue
- _ _ (AD)Ty _ > interest of brevity). This is not surprising, because mistsi
Intuitively, the resulting prioru = TATE 1 estimates the have very low loss rate, making = 0 a good prior.




In this paper, we develop NetQuest, a flexible framework
for large-scale network measurement and inference. ltistsns [17]
of two major components: the design of measurement exper-
iments, and network inference. For the former, we leverags]

VIII. CONCLUSION

powerful tools developed in the field of Bayesian experiraknt

design. For the latter, we build on top of a number of existingg,
network tomography techniques to infer network properties

based on partial, indirect observations. Our framework &0l
flexible, and can accommodate a variety of design objectives;,

such as differentiated, augmented, and multi-user desigiss

also highly scalable and can design measurement expesEm
that span thousands of routers and end hosts.

There are several avenues for future work. First, we plan to
further enhance the robustness of our experimental design &3!
inference by making the desidault tolerant Specifically, we [24)
want a design that minimizes thveorst-casedesign criterion [25]
in the presence of multiple faulty paths.e( paths that
experience either failures or major routing changes). &&co
we are interested in applying our techniques to estimating
other network properties, such as traffic matrix estimatiolf’]
In particular, we may use Bayesian experimental design (g

identify strategic locations to place additional measigem

capabilities to enhance the accuracy of traffic matrix eSJE'g]

mation. Third, we would like to extend our framework t

incorporate additional design constraints and to handle nd30]
linear metrics by leveraging the existing work on non-line
Bayesian experimental desigd][ Finally, we are interested

in developing light-weight techniques to obtain betteropri :
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