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ABSTRACT

Traffic engineering and traffic matrix estimation are often treated
as separate fields, even though one of the major applications for a
traffic matrix is traffic engineering. In cases where a traffic matrix
cannot be measured directly, it may still be estimated from indirect
data (such as link measurements), but these estimates contain er-
rors. Yet little thought has been given to the effects of inexact traffic
estimates on traffic engineering. In this paper we consider how well
traffic engineering works with estimated traffic matrices in the con-
text of a specific task; namely that of optimizing network routing to
minimize congestion, measured by maximum link-utilization. Our
basic question is: how well is the real traffic routed if the rout-
ing is only optimized for an estimated traffic matrix? We compare
against optimal routing of the real traffic using data derived from
an operational tier-1 ISP. We find that the magnitude of errors in
the traffic matrix estimate is not, in itself, a good indicator of the
performance of that estimate in route optimization. Likewise, the
optimal algorithm for traffic engineering given knowledge of the
real traffic matrix is no longer the best with only the estimated traf-
fic matrix as input. Our main practical finding is that the combi-
nation of a known traffic matrix estimation technique and a known
traffic engineering technique can get close to the optimum in avoid-
ing congestion for the real traffic. We even demonstrate stability in
the sense that routing optimized on data from one day continued
to perform well on subsequent days. This stability is crucial for
the practical relevance to off-line traffic engineering, as it can be
performed by ISPs today.

Categories and Subject Descriptors

C.2.3 [Computer-Communications Network]: Network Opera-
tions—network management, network monitoring
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1. INTRODUCTION

Estimating an Internet traffic matrix has received considerable
attention in recent years. A traffic matrix provides the volume of
traffic between every pair of ingress and egress points over a given
time interval. Such information is essential to a variety of oper-
ational tasks ranging from router/link failure analysis to capacity
planning and traffic engineering, for instance by route optimiza-
tion.

When direct flow-level measurements are available, accurate traf-
fic matrices can be derived following the approaches detailed in
[1]. Unfortunately, direct measurements require additional infras-
tructure support and it can be prohibitively expensive to instrument
the entire IP network to collect such data. Recently, progress has
been made on traffic matrix estimation and several methods [3, 4,
5] have been proposed that attempt to derive traffic matrices from
the link load data, which can be easily obtained via the Simple
Network Management Protocol (SNMP). We call such a technique
an SNMP-based traffic matrix estimator. These algorithms have
been validated against real (but partial) traffic matrices (obtained
through direct measurements) using common metrics such as mean
error computed over all source-destination pairs. The resulting esti-
mates contain errors of varying magnitude depending on the traffic
matrix estimator applied. It is, however, not directly clear what im-
pact these errors have on operational tasks, as different tasks may
have quite different tolerance to the types and magnitude of the er-
rors. For example, if all errors were concentrated on a single critical
link, this could have a big impact on performance, yet a negligible
impact using most standard error measures.

In this paper, we attempt to establish a direct connection between
SNMP-based traffic matrix estimators and one particular network
operational task: traffic engineering to minimize congestion. That
is, we are interested in the following operational performance mea-
sure:

If traffic engineering is done based on the estimated
traffic matrix, how well does it perform on the real
traffic matrix?

Several traffic engineering techniques have been presented that op-
timize routing to minimize congestion [6, 7, 8, 9, 10, 11]. We call
such a technique a routing optimizer. It sets the routing parameters
of a network for a given traffic matrix so as to minimize conges-
tion for that traffic matrix. The routing parameters determine, for
each source-destination pair, the fraction of traffic going on differ-
ent paths from the source to the destination. Typically, in the past,
routing optimizers were evaluated using synthetic traffic matrices.
In this paper we feed the routing optimizer an estimated traffic ma-
trix while measuring the performance of the routing on the real
traffic matrix.



In this paper, as in [9], max-utilization is picked as the easiest to
appreciate measure for congestion. The utilization of a link is the
ratio of its load over its capacity, and the max-utilization is the max-
imum utilization over all links in the network. Other works have
focused on more sophisticated cost functions, summing costs over
all links in the network (see, e.g., [8, 7]), but these are less easy to
understand, and might obscure the point that the performance of es-
timation and optimization combined is not easily extrapolated from
the performance of one by itself. Some intuition may be gained
from the finding in [12] that their routing optimizer was robust to
+50% random errors, multiplying each individual demand with a
random value from [0, 2]. We consider 50% a large mean error, and
yet it only affected the max-utilization by about 10%. For contrast,
if in a large network, we only changed the demands that used a
specific highly utilized link, this would have a large impact for the
max-utilization, yet a negligible impact on the average error.

We deliberately treat both traffic estimators and routing optimiz-
ers as black-boxes that we combine in a plug-and-play manner.
Both sides are based on previously published techniques. The con-
tribution of this paper is to see what happens when the two sides
are combined. Tests were performed using simulations based on
data from an operational tier-1 ISP. We found that, in itself, the
magnitude of errors in the traffic matrix estimate was not a good
indicator of the performance of that estimate in our traffic engi-
neering tasks. Likewise, the traffic engineering algorithm that per-
forms best knowing the real traffic matrix was no longer the best
with estimated traffic matrices. Our main practical finding was
that combining the OSPF routing optimizer technique from [7] with
the tomogravity traffic matrix estimator from [4], we got close to
the minimal max-utilization for the real traffic. The above OSPF
routing can also be implemented with IS-IS and MPLS, making it
broadly applicable to todays IP network.

To further test the applicability of our combination, we took an
OSPF routing solution based on estimated traffic matrices from one
day, and tested this routing on the real traffic over the following
week. We found that the routing continued to perform well. Thus
our approach was not only robust to estimation, but also reason-
ably stable over time. This later property is crucial for realistic off-
line implementations in today’s IP networks, where changing link
weights frequently can result in network performance degradation.

Contents. The paper is divided as follows. In §2, we discuss the
different routing optimizers considered, and in §3, we discuss the
different traffic matrix estimators. In §4, we present our experimen-
tal methodology. Our results are presented in §5, followed by some
practical considerations in §6. Then we have some reflections over
limitations of the paper in §7, and finally we end with concluding
remarks in §8.

2. ROUTING OPTIMIZERS

In this section, we discuss the different routing optimizers con-
sidered. We note that these are all based on published work, and the
reader will be referred to the relevant publications for most techni-
cal details. The interesting new aspect is what happens when the
optimizers, viewed as black-boxes, are applied to estimated traffic
matrices and tested on real traffic matrices.

2.1 General routing with MPLS

In the most general form of routing, traffic from a source to
a destination may be split arbitrarily over all possible paths be-
tween source and destination. Finding a general routing minimiz-
ing max-utilization is an instance of the classical multicommodity
flow problem which can be formulated as a linear program [13,

Chapter 17]. As described by Mitra and Ramakrishnan [6], the
linear program solution can be implemented with the quite recent
Multi-Protocol Label Switching (MPLS) protocol [14]. Essentially,
each path used is implemented as a label-switched path that the
source uses for a certain fraction of its traffic to the destination.
We used the commercial linear programming package CPLEX ver-
sion 6.5 to solve the standard linear program to minimize the max-
utilization for a given traffic matrix, and we refer to this as the
MPLS optimizer.

The MPLS optimizer is optimal in that if applied to the true traf-
fic matrix, it gives the best possible performance among all routing
protocols with the given traffic matrix and network, using the max-
utilization as the only performance criteria. Other possible crite-
ria such as feasibility of the implementation, robustness to link-
failures, etc., are not considered.

However, what happens if the MPLS optimizer finds the optimal
MPLS solution for the estimated traffic matrix and then applies it
to the real traffic? The MPLS solution tells us exactly how traffic
should be split over different paths from source to destination, and
this splitting is now applied to the real traffic matrix. How good
is the resulting routing compared with the above optimal MPLS
routing for the real traffic matrix? Put conversely, how sensitive is
the optimal solution to errors in estimating the traffic matrix? As
we shall see, the answer is ’quite sensitive’.

In fact the MPLS optimizer can have some strange results when
the inputs have errors. The algorithm may, without penalty, allow
route loops for traffic matrix elements of small magnitude, as long
as these loops do not affect the max-utilization objective function.
This is the result of focusing the optimization on only minimizing
the maximum utilization — a loop in a small traffic matrix element
has zero penalty under such an objective function. However, if this
small traffic matrix element contains errors, the loop will amplify
the error when the traffic is routed.

For an example of a more robust optimization we tried modifying
the objective function above to include a penalty for loops, and refer
to the resulting algorithm as the MPLS™ optimizer.

We note, however, that MPLS can implement any possible rout-
ing, so even if the above concrete MPLS optimizers do not work
well with estimated traffic matrices, this does not imply that MPLS
in itself cannot be made robust with respect to estimation. Also, in
all fairness, it should be mentioned that the context for the optimal
MPLS solutions in [6] was a matrix of virtual leased lines where
the ISP commits to a certain amount of traffic for each source des-
tination pair. These commitments are fixed in contracts, and can be
honored as is.

2.2 Traditional shortest path routing

The most commonly used intra-domain Internet routing proto-
cols today are the shortest path Interior Gateway Protocols (IGP):
Open Shortest Path First (OSPF) [15] and Intermediate System-
Intermediate System (IS-IS) [16]. In these protocols, which are
functionally the same, each link is associated with a positive weight,
and the length of a path is defined as the sum of the weights of all
the links on that path. Traffic is routed along the shortest paths. In
cases of ties where several outgoing links are on shortest paths to
the destination, the flow is split roughly evenly.

By default, Cisco routers [17] set the weight of a link to be in-
versely proportional to its capacity — we refer to this setting as the
InvCap weight setting. The weights of the links, and thereby the
shortest path routes, can be changed by the network operators to
optimize network performance.

Over the years, many methods [7, 8, 9, 10, 11] have been pre-
sented that compute a set of link weights that minimize congestion



in the resulting shortest path routing of a given traffic matrix. We
shall refer to such a method as an OSPF optimizer, though the re-
sults could equally be applied to IS-1S routing. We use the approach
described in [7, 12], which is based on so-called local search tech-
niques [18]. The method uses heuristics to iteratively improve the
weight setting, changing one or a few weights in each iteration. As
a standard, we ran it for 5000 iteration, taking about 5 minutes of
simulation time. The problem of finding an optimal weight set-
ting is NP-hard [7], and so we cannot guarantee finding the true
optimum. The quality of the final weight setting is affected by ran-
dom choices made through the iterations, giving some variance in
the quality of the outcome. For example, it is possible that we, by
chance, get a better weight setting for the true traffic matrix from
the estimated traffic matrix than we would get from the real traffic
matrix itself, but the results below show that this random variation
is not very important in practice.

Of course, as argued carefully in [12], it is not attractive to op-
timize the weight setting on-line as the demands change. As in
[12], our weight optimizer works for multiple traffic matrices. Even
more importantly we will consider the impact of using the opti-
mized routes as a permanent weight setting. This permanent weight
setting is then tested on the true traffic matrices of the subsequent
days.

3. ESTIMATING TRAFFIC MATRICES
FROM LINK DATA

This section describes three methods for estimating traffic ma-
trices from link load data. The first two methods are based on so
called “Gravity models” while the third uses (in addition) “Net-
work tomography” methods. Although it might be appealing to
test some more complex algorithms, the sub-sample of possibili-
ties presented here is sufficient to illustrate the points of interest.
What’s more we find a near optimal combination of estimation and
routing optimization algorithms in any case, so there is little to be
gained in using a more complex method.

This section is not intended to provide a detailed description of
the estimator algorithms (which may be found in [4]). This is not
intended as a study of the estimators. The novel aspect is what
happens when the estimators are combined with routing optimizers
and tested on real traffic matrices. The description here is to pro-
vide some insight into the relationship between the three algorithms
tested.

Gravity models [19, 20, 21], are often used by social scientists
to model the movement of people, goods or information between
geographic areas [20, 21]. Recently, variations on gravity models
have also been proposed for computing traffic matrices [3, 4, 5].

At the heart of the gravity model approach is a proportionality
assumption: the amount of traffic from a given source to a given
sink is proportional to the total traffic to the output sink, inde-
pendent of source. For example, in a gravity model for car traffic
between cities the relative strength of the interaction between two
cities might be modeled as proportional to the product of the popu-
lations divided by a distance related “friction” term. Similarly, the
simplest possible gravity models for the Internet assume that the
traffic exchanged between locations is proportional to the volumes
entering and exiting at those locations, though in this case we as-
sume the distance related term is a constant because interactions
in the Internet are less distance sensitive. This simple model of
the Internet is used in [22], and we refer to it as the simple gravity
model.

It is possible to generalize the simple gravity model in a number
of ways [3, 4, 5] to take into account additional information pro-

vided by detailed link classification and routing policies. [3, 4, 5]
have shown these gravity models to be significantly more accurate
than the simple gravity models. We test the generalized gravity
model of [4] in which additional information on points of ingress
and egress for traffic flows can be incorporated to explicitly model
hot-potato routing for traffic exchanged with peer networks.

By appropriate normalization, the gravity model solution is guar-
anteed to be consistent with the measured link loads at the network
edge, but not necessarily so in the interior links. Alternatively, net-
work tomography methods explicitly include the information mea-
sured from internal links. This information can be written as a set
of linear constraint equations

x = At, 1)

where x is a vector of the link measurements, t is the traffic matrix
written as a column vector, and A is the routing matrix, whose
terms give the fraction of traffic from a particular origin/destination
pair that traverse each link.

In practice this set of equations is ill-posed, and so to deal with
this difficulty tomographic techniques from other fields have been
used. For a detailed description and comparison (using simple met-
rics) of a number of these methods see [5]. We shall consider a sin-
gle such algorithm, tomogravity, [4] which displays good proper-
ties in terms of scaling, estimation accuracy, speed of computation,
and robustness to errors. The method uses the generalized gravity
model above as a prior (a kicking off point) and refines it using
a tomographic technique to select an estimate of the traffic matrix
t, that satisfies the constraint equations, but that is closest to the
gravity model according to some distance metric.

4. EXPERIMENTAL METHODOLOGY
4.1 ldeal

In this context it is possible to generate arbitrarily bad results
for any particular algorithm by choosing pathological topologies or
traffic matrices, but the important question is how well these al-
gorithms perform on real data. The ideal experiment to test the
use of traffic engineering on estimated traffic matrices would have
SNMP link traffic measurements, a perfect traffic matrix, and exact
topology information, all from exactly the same moment in time.
Finally, the new routing computed should be tested in the real net-
work back at the time when the measurements were made. Unfor-
tunately, most of this is impractical.

Each different type of data has limitations, and practical con-
straints in how it may be collected. For instance

e Currently we do not have high-resolution traces of the net-
work topology, and so we only have snapshot views of the
network;

e Flow-level data (which is the easiest starting point for deriv-
ing a traffic matrix) is not generated as a traffic time series,
but rather an overlapping set of flows, and in many cases can
only be collected on a sampled basis. Furthermore, flow-
level data can be hard to collect in places because it is a
feature of a router, and not all routers support this feature,
or its use conflicts with other features. Further, in some
cases, collecting flow-level measurements might result in a
reduction in forwarding performance (which is highly unde-
sirable). Furthermore, flow-level data for an entire network
can be vast — potentially terabytes per day — and handling
this volume of data is daunting in and of itself.



e SNMP link data have many limitations — for instance miss-
ing data (SNMP uses unreliable UDP transport), incorrect
data (through poor router vendor implementations), and a
coarse sampling interval (five minutes is typical).

e Experimenting with the routing of a real operational tier-1
ISP is not an option. We have to conduct our investigation
with simulations.

The network traffic also exhibits strong daily, and weekly cycles,
and so averaging results over intervals longer than one or two hours
is not very meaningful.

It is difficult to overstate the importance of consistency in the
data. We do not wish the results here to be due to artifacts in the
data, but the above problems make it seemingly impossible to gen-
erate a realistic, completely consistent set of test data. However, [4]
presents an alternative methodology when testing their estimation
algorithm, which we adapt here. In the following section we de-
scribe the data we have available, and the methodology used to test
how well traffic engineering works using estimated traffic matrices.

Also, comparisons against the current routing in the real network
are interesting, but would reveal proprietary information. Instead,
as a benchmark, we here compare our performance against Cisco’s
[17] default InvCap weight setting for OSPF.

4.2 Inputs

This paper does not directly consider SNMP data for the reasons
above. It would be unreasonably difficult to collect SNMP traffic
statistics consistent with the traffic matrix and topology information
available. The approach used here is to use

o sampled flow-level data, and
e topology and routing information as derived from [23].

The flow-level data contains details of numbers of packets and bytes
transferred between source and destination IP addresses, and also
gives information such as the interface at which the traffic entered
our network. Combined with topological and routing information
(as in [1]) one may derive a traffic matrix from such information.

As noted above it is hard to have complete flow-level coverage
of the network. In the data sets used here we cover around 80%
of the edge of a large tier-1 IP network, including all the traffic on
inter-peer links. The traffic matrices generated using this data will
therefore be partial, in the sense that we are missing some rows
from the true traffic matrix. However, the resulting traffic matrix
is still a real traffic matrix (covering around 80% of the network
traffic) on the real network topology, and so is as good a possible
set of measurements as are currently available (for instance in [5]
only three rows of the traffic matrix were available). This traffic
matrix is what we shall refer to as the true traffic matrix throughout
the rest of the paper.

The nature of flow-level data makes it only possible to approx-
imate time-series data. Flow-level information contains the start
and stop time of the flow, and the number of packets/bytes, but not
when the packets were sent within the flow. Given that some flows
can continue for hours, it is only practical to look at time series
of the order of the timeouts used to flush current flows. Note that
there is no inherent reason why the timeouts will occur at the same
time at different routers, and so to use commensurate time series,
one must average over longer intervals than the timeout to obtain
useful data (using a more sophisticated interpolation scheme runs
the risk of introducing artifacts into the data). In Cisco Netflow,
the timeouts are of the order of 15 minutes, and so we consider
time series at a one hour time scale, allowing (with not too much

approximation) for these intervals to be offset at different routers.
Over longer intervals the traffic is non-stationary (showing strong
diurnal cycles) and so we do not wish to use longer time averages
if possible.

The topology and routing information are derived from infor-
mation gathered from the same network using the methods of [1].
Given these traffic matrices and the network topology, we need only
a consistent set of link load measurements to proceed.

4.3 Methodology

The problem of providing a consistent set of traffic, topology and
link measurement data can be solved as follows. We simulate the
OSPF routing using the existing topology and link weights (and
area structure). The existing link weights are those currently set by
the network operator. From this we may compute a routing matrix
A, and then derive a set of link measurements x from (1). Thus the
traffic matrix t, the routing matrix A and the measured link loads
x are all consistent.

We can then perform the estimation procedure to compute ¢, the
traffic matrix estimate. This approach allows us to work with a
problem for which we have both a real estimate and the true traffic
matrix.

To help the reader understand the issues involved, we shall sum-
marize the errors in the estimated traffic matrices in Section 5.1.
However, the point of this paper is that simply looking at these er-
rors is not enough to understand whether a traffic matrix estimate
is “good”. To really understand whether an estimate is good, one
must assess how well it performs in operational tasks.

The task we assess here is traffic engineering — in particular
the task of optimizing the network routing to make the network
more efficient in its use of resources (and hence reduce congestion).
To do this we use one basic approach. We compute routing by
applying a routing optimizer to the estimated traffic matrix. We
then assess how well these routes work for the real traffic matrix.

Specifically, consider the task of optimizing the OSPF weights
in a network. Based on the traffic matrix estimate, we optimize the
weight setting:

w = OSPF-weight-optimizer(t).

An OSPF simulator takes the new weights and finds the corre-
sponding optimized routing matrix

A = OSPF-route-simulater(v)

Finally, we apply this new routing to the original true traffic matrix
t so as to get a set of link loads:

x=At.

The max-utilization optimized for the estimated traffic matrix t but
applied to the true traffic matrix t is then

max-utilization(; £) = max 2—
where C; are the link capacities. The whole procedure behind the
experiments is illustrated in Figure 1.

We will also compare the results with those under alternative
routing, for instance, using a routing matrix derived using MPLS
optimization from the true or estimated traffic matrix, and the Inv-
Cap routing. The only difference is the mechanism used to generate
the optimized routing matrix A from the estimated traffic matrix €.

We concern ourselves with optimizing the routing of the inter-
PoP backbone-router network containing on the order of one hun-
dred routers, with a few links per router. Link based traffic matrix
estimates are difficult to obtain on any finer granularity than this,
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Figure 1: Diagram over experiment.

and OSPF allows a hierarchical routing based on areas, which can
naturally be used to isolate the routing of local intra-PoP traffic
from inter-PoP traffic.

5. RESULTS

The results shown here are derived from the backbone of a tier-1
ISP network. We present results over the course of one day (the
17th of August 2002) to show the effects of the changing matrix
over the course of the day. We will also show results from a sep-
arate segment of data to illustrate the performance of routing pre-
diction. The data is broken into one hour data sets over which the
traffic matrix is approximately stationary.

For proprietary reasons, max-utilizations reported in this paper
are scaled so that their absolute value for the operational backbone
cannot be deduced. Such scaling does not affect the relative perfor-
mance of the different schemes. Proprietary reasons also prevent us
from exposing the performance of the OSPF weight settings used
in the operational network.

5.1 Errors in Traffic Matrix Estimates

A detailed general analysis of the errors in the different traffic
matrix estimates is presented in [4]. For reference in this paper
we provide some simple measurements of the errors. In Figure 2
we present relative error of estimated traffic matrices versus true
traffic matrices. That is, for each hour we compute the sum (over
the source-destination pairs) of the absolute value of the error be-
tween estimated and true traffic, and divide this sum by the total
traffic. We see that tomogravity is more than twice as good as gen-
eral gravity, which is more than twice as good as simple gravity.
These findings are consistent with those reported in [4].

In Figure 3 (a) we present an alternative representation of the
estimates more comparable with later figures on max-utilization.
A simple-minded hypothesis is that optimizing over the true traf-
fic matrix, the max-utilization is going to be proportional to mean
traffic and that if we optimize over an estimated traffic matrix, the
performance is degraded by mean error. Figure 3 (a) shows the
mean traffic plus the mean (absolute) errors for each of the data
sets over the course of the day. If our simple-minded hypothesis
is true, the curves should roughly match those of max-utilization
achieved with the estimated traffic matrices.

5.2 Max-utilization versus mean errors

We now test how well the estimated traffic matrices perform on
max-utilization. We apply the OSPF optimizer to each estimated
demand matrix, including the true traffic matrix, and test the result-
ing routing on the true traffic matrix. The resulting max-utilizations
are depicted in Figure 3 (b). At this stage, we could also have ap-
plied an MPLS optimizer, but as we shall see shortly, these are not
as reliable. Averages and maximums over the 24 hours are con-

70

60 B
501 T
g
<]
£ 40 j
c
I
Q
€
g0 1
K
[
20 1
10+ ; i
—e~ tomogravity
—A— general gravity
—— simple gravity
0 . . . . . T T
0 3 6 9 12 15 18 21 24

time

Figure 2: Relative error for the different traffic estimates for
each of the 24 hours. The circles show the tomogravity estimate,
and the A and <7 show the general and simple gravity model
estimates. For tomogravity, the average relative error is 0.13,
for general gravity it is 0.30, and for simple gravity it is 0.67.

tained in Table 1 along with other data. More precisely, the table
reports the

e Average Max-Utilization (AMU): the average over all hours
of the max-utilization for the relevant method.

e Max Max-Utilization (MMU): the largest max-utilization
for the method over all hours.

Both quantities are reported as percentages of the MMU for Inv-
Cap (recall that we for proprietary reasons cannot give the abso-
lute numbers). The former metric gives an average view of perfor-
mance, while the latter is a type of worst case comparison.

The most interesting thing to observe is that when it comes to the
max-utilization in Figure 3 (b), the performance of simple gravity
and general gravity is roughly the same. As calculated in Table 1,
simple gravity slightly outperforms general gravity both on the av-
erage and in the worst-case. This is in sharp contrast to the findings
in §5.1 that the errors of general gravity are half as large as those
of simple gravity. Hence, the error improvement of general gravity
does not help reduce the max-utilization. The error measurements
in [4] also rate general gravity over simple gravity, so this is a strong
counter example to the idea that one can use simple error measure-
ments to make general conclusions about the performance of traffic
estimates in traffic engineering.

The above being said, we do see that the tomogravity estimates
perform best both with respect to errors and with respect to max-
utilization, on the average getting within 6% of OSPF optimization
based on the true traffic matrix. This is quite small compared with
the 13% average error shown in Figure 2. \We also note that we
actually perform slightly better with the estimated than with the
true traffic in hour 8. This clearly illustrates the point from §2.2
that the OSPF optimizer is only a heuristic, not guaranteed to find
optimal solutions.

5.3 Sensitivity of optimizers to estimates
We next see how well the OSPF optimization compares with:

e inverse capacity weights: in this default weight setting the
weights are the inverse of the capacity of links. This is a
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signs show the OSPF optimization using the true traf-
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(d) As before, the "x’s show the optimal possible rout-
ing, and the squares show the result of inverse capac-
ity OSPF weights. The stars show the result of using
the estimated traffic matrix in MPLS optimization,
and then applying the results to the true traffic matrix.
Note that in one case the result is several times worse
than can be displayed on this graph, and goes off the
scale. Similarly, the **’s show the performance of the
modified MPLS algorithm.

Figure 3: Results for the 1 hour data sets over the 17th of August 2003. Figure (a) shows a comparison of errors in the estimates,
(b)-(d) show the maximum utilizations of the network under various routing optimization. Note that the y-axes for (b)-(d) are all
scaled in the same way so that the MMU of the InvCap weights is 100.



reasonable attempt at optimization given no other network
information.

e MPLS and MPLS* optimization: both optimally minimizing
the max-utilization with respect to the given traffic matrix.

e true traffic matrix: in which we apply the optimization algo-
rithms above to the true traffic matrix elements.

Figure 3 (c) shows the maximum utilizations for each hour of
the day, under various routing schemes. The *x’ signs show the
optimal possible routing, i.e., the result of applying the MPLS opti-
mizer to the true traffic. The "+’ signs show the OSPF optimization
using the true traffic matrix, and the squares show the result of in-
verse capacity OSPF weights. The "0’s show the result of the true
traffic matrix being applied with weights from OSPF optimization
using the estimated traffic matrices using the tomogravity method.

We can see in Figure 3 (c) that the OSPF optimization algorithm
(’+’s) comes very close to the optimal possible solution (*x’s) in
most cases, and is always a significant improvement over the de-
fault InvCap weights. Furthermore, weights found from the esti-
mated traffic matrix (’0’s) perform only slightly worse than weights
found from the true traffic matrix. In fact, as seen in Table 1, even
when the OSPF optimizer is applied to the tomogravity estimated
traffic matrix, it gets within 11-12% of the optimum solution. This
is clear evidence that the errors in the tomogravity estimated traffic
matrix are not very important from our particular traffic engineering
perspective, and that SNMP link statistics could be used to estimate
traffic matrices of considerable use.

Another interesting point is that whereas the optimized routings
generally follow the developments in the mean traffic (’+’s) in Fig-
ure 3 (a), the InvCap routing does not. This shows that the traffic
is not just scaled up and down during the day, but that it is also
shifted around in ways that impact InvCap differently, yet which
can be accommodated by the optimizers.

Figure 3 (d) shows the same optimal, and InvCap results, but
compares them to the MPLS and MPLS™ optimization using es-
timated data. Note that in one case using the MPLS optimization,
the result is several times worse than can be displayed on this graph.
According to Table 1 it goes off by a factor 400, and a more detailed
investigation revealed that this was due to a loop, as discussed in
§2.1. The MPLS™ optimizer avoids this problem, but given the to-
mogravity estimates, it is still twice as far from the true optimum
as the OSPF optimizer. Thus we have a strong counter example to
our simple-minded hypothesis that the optimization that performs
best given the true traffic would also perform best on estimates.

optimization traffic matrix performance (%)
method AMU MMU
InvCap N/A 79.9 100.0
OSPF simple gravity Model 57.5 67.2
OSPF general gravity model 58.6 68.1
OSPF tomogravity 47.1 57.7
OSPF true 44.4 54.1
MPLS tomogravity 17355 40259.7
MPLS* tomogravity 535 68.8
MPLS true 42.5 51.8

Table 1: The AMU and MMU of each method as a percentage
of the MMU for the InvCap weights.

5.4 Further merits

We note that many of the above results sound similar to those
reported in [7, 12], but the major difference is that the weight op-
timization is done based on an estimated traffic matrix while mea-
sured on a true traffic matrix, thus giving us the desired feed-back
on the operational value of the estimated traffic matrix.

Another very important difference to all the previous work on
OSPF optimization is that our results are based on measurements
from a real operational network. The closest to this was the work
from [7] that used a proposed AT&T WorldNet backbone with pro-
jected demands. It is only very recently that good measurements of
traffic matrices have become possible on a sufficiently large scale.
A secondary merit of this paper is thus to substantiate previous
weight optimization work the with first real data.

6. PRACTICAL CONSIDERATIONS

While the results above show the OSPF optimization to work
well with the tomogravity estimates, there are a number of consid-
erations before any method can be consider to be practical. This
section will address some of these issues.

6.1 Faster OSPF optimization

The OSPF optimization algorithm is quite fast — on the current
network it runs in around 330 seconds (for 5000 iterations in Fig-
ure 3, on a Sun 900 MHz Ultrasparc-I11 Copper processor). How-
ever, the majority of the benefits of the optimization algorithm used
here come early in the algorithm [7, 12] when applied to real data.
It is worth testing whether this is also the case when we use an esti-
mated traffic matrix. It is indeed the case, as is shown by Figure 4,
which shows the same set of data with the results of the weights
after 5000 iterations and only 1000 iterations. The relative increase
in maximum utilization (due to 5 times fewer iterations) is always
below 5%. In contrast, the time for 1000 iterations is only about
one fifth of that for 5000.
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Figure 4: Results of route optimization as in Figure 3 (c), and
with only 1000 iterations of the OSPF route optimization algo-
rithm.

6.2 Global Optimization

Frequent changes to OSPF link weights are highly undesirable.
Apart from the management complexity this induces on the net-
work, OSPF routing takes at least seconds to re-converge after each
change. While this may seem a short time, on a large network car-
rying 100’s of Terabytes per day, changing the OSPF routing each



hour could easily result in the loss of a 100 GBs of traffic or more
per day.

It is, however, possible to use the optimization method above to
compute an optimum routing for all 24, one hour traffic matrices
for one day. More precisely, in [12] a technique is described that
seeks a single global weight setting that works well for multiple
demand matrices, obtaining a good max-utilization for all of them.
We applied this technique as a black-box. This provides another in-
teresting test of how well the traffic matrix estimates perform. We
compute such a set of weights from the tomogravity estimated traf-
fic matrices for one day, and then determine how well the weights
perform for each hour of the day using the real traffic matrix. Fig-
ure 5 shows these results.
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Figure 5: Global optimization over a 24 hour period. Once
again the crosses represent the optimal solution for each one
hour data set, and the squares represent inverse capacity
weights. The points, and diamonds represent the global op-
timum weights calculated from the set of real and estimated
traffic matrices, respectively, applied to each one hour traffic
matrix.

The figure also gives the results optimized over the true traffic
matrices for the 24 hours, and the hourly optimum. The results
for the estimated and true traffic matrices are good, even in com-
parison to the hourly optimum. Comparing to the latter is unfair
in this case because it is easier to optimize for a single hour than
over the whole day. We use them instead of the global optimum
MPLS solution because the computational cost for the global opti-
mum MPLS solution was prohibitive (it involves a linear program
with order 30 million variables and 50 million constraints). The
OSPF optimization algorithm, on the other hand, is still quite fast.
It is considerably slower when optimizing over 24 traffic matrices,
taking around 6500 seconds to run 5000 iterations, but this is in fact
better than 24 times the speed of the individual hourly optimization,
which actually reduces the overall computation for the day.

Table 2 summarizes the results, and provides a comparison to
those in the previous section. We can see that the global solution is
very close to the individual solution in performance.

6.3 Predictive Optimization

As noted in §6.2 it is highly desirable to change link weights in-
frequently. In the previous section we showed that we could derive
a set of weights which work well for an entire day’s set of traffic
matrices. The question arises “how often need one change these
weights?” Clearly, the answer is no more than once per day. How-

optimization traffic matrix | performance (%)
method AMU MMU
Global OSPF tomogravity 48.1 57.7
Global OSPF true 454 52.4
Adaptive MPLS  true 425 51.8

Table 2: The AMU and MMU of the global routing optimiza-
tion over one day.

ever, if one wishes to change them even less frequently, we must be
concerned with how well today’s set of weights will perform in the
future, that is, the predictive strength of the optimized weights.

This is a much harder problem than we have considered so far
because any large, operational network changes continuously: new
links are added, and old links re-homed, or retired. Note that in our
data-sets we obtain routing and topology information at 24 hour
intervals, so for the purposes of the previous examples the network
appeared unchanged over the 24 hour period, although in fact it
may have changed. Hence, even for 24 hour global optimization
the estimated weights must be robust against network changes.

Obviously, in a full system for optimizing network routing there
would be careful consideration given to weights for new links, and
some kind of readjustment when the topology of the network is
otherwise changed. However, we shall consider the very simple
case where we assign maximal possible weights to new links (cost
them out), which results in routing only over the previously existing
network. This is obviously sub-optimal, but as we shall show, the
weight optimization algorithm still performs well.

Figure 6 (a) shows the result of applying the weights derived
from global optimization of the estimated traffic matrices from the
1st of July, 2002, to the real traffic on a series of days from the
1st to the 8th of July. We chose this period because there were no
backbone network changes until the 8th, when a large link change
occurred. For comparison Figure 6 (b) shows the result of inverse
capacity weighting using the same scale for the y-axis.

The results show that the method consistently and significantly
outperforms inverse capacity weighting, despite using weights op-
timized for a different day. This is despite the changes in the traffic
matrices, which typically exhibit strong weekly variations as well
as daily variations. Most notably, some sudden change in traffic
behavior occurred between midnight and 1am on Saturday the 7th,
causing high maximum utilization under inverse capacity weight-
ing (the first cross in Figure 6 (b)). Despite such a sudden change,
the method works very well, reducing the maximum utilization by
nearly 50%.

The results also show that the inverse capacity weighting per-
formance varies considerably during the week. As we know the
network does not change during the period before the 8th, these
changes must be the result of changes in the traffic matrix. For
instance, because of the weekly cycle in the traffic, or potentially
because of changes in the the Border Gateway Protocol (BGP) pol-
icy, which controls routing along a large part of the edge of the
network, and hence where traffic departs the network.

The stability of the weight setting chosen using the estimated
traffic matrices in the face of such changes in the traffic is a pro-
found benefit of this approach.

These results shows that the results above are not just theoretical
possibilities, but provide a robust and stable solution to a real traffic
engineering problem. The solution is based on the traffic matrices
estimated from link data (such as one would get from SNMP link
measurement), and is practical both in computational load, and ro-
bustness to typical sources of variation found in real networks.
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Figure 6: Results based on tomogravity estimates and OSPF optimization on the 1st of July, 2002. The results show the maximum
utilization for the true traffic matrix on each of five days, over the course of a week, using the weights from the first day. Figure (a)
shows the OSPF optimization weights, and (b) shows the InvCap weights — note that both figures have the same y-axis scale.

7. REFLECTIONS

In this section we reflect over limitations in the results presented,
addressing various natural points of criticism.

7.1 Max-utilization

As mentioned in the introduction, we picked max-utilization traf-
fic engineering objective because it is easy to understand and appre-
ciate, not because it is the best or most important traffic engineering
objective. Indeed, there is no single most important objective. Fo-
cusing on max-utilization, we have produced some very promising
results, and we hope that this will inspire others to perform similar
studies for other important traffic engineering objectives.

7.2 Proprietary scaling

For proprietary reasons, we have scaled all max-utilization by a
secret factor so as to hide the true max-utilization in our network.
Obviously, the absolute value is interesting. For example, a typical
operational requirement is that the max-utilization is below 60%.
Hence, improving the MMU as in Table 1 from 100% with inverse
capacity to 57.7% is really important. However, if the scaling was a
factor 2, then the corresponding improvement from 50% to 28.8%
is irrelevant. Nevertheless, traffic grows over time and ability to
improve max-utilization means that we can accommodate far more
growth before we have to invest in new equipment.

7.3 The InvCap bench-mark

There are several reasons why we have used InvCap as a bench-
mark. First, it is a vendor recommended default, hence a natural
starting point for traffic engineering. Second, in [7], InvCap was
found to be a good default in the sense being as good or better then
other simple heuristics like unit weights, or link weights propor-
tional to physical lengths.

More interestingly, [12] found that InvCap weights were as good
as a set of weights optimized for one traffic matrix t1 and applied to
an independently generated traffic matrix t2. The test tells us that
using a clue-less weight setting is at least as bad as the InvCap de-
fault. Hence, improvements over InvCap indicate how much better
our routing is compared to a clue-less one.

As a matter of fact, with no clue about the traffic, we are not
aware of any general technique performing better than InvCap in
practice, not even with general MPLS routing. Recently [24], there
has been interesting theoretical work on oblivious routing that gives
max-utilizations within a factor O(log® n) from optimality for all
possible demand matrix. This is very surprising and impressive the-
oretical result, but in practice, for realistic IP networks and demand
matrices, it appears that InvCap gets within a factor 2 from opti-
mality, which is much better. The difference is, of course, that the
theoretical result has to take all the most pathological networks and
demand matrices into account. Recently in [25], oblivious routing
has been tested on some concrete networks, getting within a factor
2 from optimality for all possible demand matrices. This is again
theoretically interesting, but the method is too slow to deal with
networks with more than 40 nodes. Moreover, an MPLS imple-
mentation of the solution would require a cubic number of labels,
which is prohibitive for large networks. For contrast, this paper is
focused on techniques that work in practice for large ISP networks.
Indeed the methods are already in use in a decision support sys-
tem for the human network operators responsible for the network
configuration.

7.4 The data sets

There are two major problems in the experiments reported. First,
it is unfortunate that our basic data are proprietary so that other re-
searchers cannot reproduce our results and continue the work with
these data. Also, all our data are from the same network. We did
perform many experiments with this network. For example, there is
more than a month and many topological changes between the ex-
periments reported in §5 and those reported in §6. Nevertheless we
would like to see realistic experiments from other networks. Un-
fortunately, for real networks, most of these data are proprietary.

From [26] we do have good public estimates of the basic topol-
ogy of many major IP networks, except that link capacities are not
S0 easy to obtain. Also, we have established models for generating
synthetic topologies like those in [27].

The main problem, however, is to get good traffic matrices. Real
networks are highly tuned to the expected traffic so one cannot just



generate the traffic matrix independently. We simply don’t know
of any good method for generating demand matrices to go with the
topologies from [26]. Simple minded ideas like saying that high
degree routers originate a lot of traffic don’t work, for these could
just be hubs in the middle of nowhere.

In [7, 12], a noisy gravity based model from [28] is used to gen-
erate synthetic traffic matrices to go with the synthetic topologies
from [27]. It is easy to test our techniques on these data, but there
is a major caveat; namely that when we use a gravity based method
for generating the traffic, then the simple gravity estimation will be
very accurate. In fact, we get very similar results to those reported
in [12] for noisy data. The answer is that for these kinds of syn-
thetic data, simple gravity gets within a few percent of optimality,
which is much better than what we reported for our real network.

The above illustrates an inherent difficulty in generating syn-
thetic demand matrices for our kind of experiment. If we know
the generator, we cheat if we exploit that in our estimation, but we
also cheat ourselves if our estimator does not exploit the generation.
The basic point is that an estimator is supposed to exploit what we
think is a good model for how traffic arises, and this thinking is
difficult to model.

One could, of course, argue that our data sets are too thin, and
that research in traffic engineering should wait until someone has
found a way of getting better data. Finding better data is clearly
a very important problem of independent interest, but why wait?
Even though our data are not conclusive, they are promising enough
to be of interest for other ISPs. As they get applied, we will get a
better understanding of how they work in the real world. Also, as
better public data emerges, it is trivial to test them in our frame-
work. We just have to rerun the programs.

8. CONCLUSION

We set out in this paper to provide a genuine measure for as-
sessing the practical accuracy of traffic matrix estimation. Simple
metrics are unsatisfactory because one may form any number of
them, and they may return different results, depending on what as-
pect of the traffic matrix is given importance. Hence we wished to
provide a direct connection to a practical problem as a means of
assessing the quality of the results. The means chosen was to test
the routing optimization based on estimated traffic matrices when
used with the true traffic matrix.

Experimenting with data from a large tier-1 ISP, we found some-
thing more, namely that the combination of tomogravity and OSPF
weight optimization was a powerful and practical method for traffic
engineering.

The result arose because the OSPF optimization method was
quite robust to the types of errors found in the traffic matrix es-
timates. MPLS style optimization designed to obtain the very best
possible routing was much less robust. Hence, even if MPLS is
used, it makes sense to use a more robust method to determine the
routes, for instance IGP routing.

The OSPF optimization method had other desirable properties,
such as the ability to optimize weights for a range of traffic matrices
(say over a day) and also to provide weights that worked a whole
week into the future.

The other side of these results was the finding that the perfor-
mance of the traffic matrix estimates was not a direct function of
the magnitude of the errors in the traffic matrix estimates. This
shows the importance of considering the combination of traffic es-
timation and route optimization before making any conclusions on
how they will work together. Arbitrary error measurements are use-
ful for superficial comparison, but do not tell the true story as far as
practical applications goes.

In the future we wish to examine alternative optimization meth-
ods, and traffic matrix estimation algorithms, but given the quality
of the results here, for the data considered, we do not see much hope
for improved algorithms, only additional insight into the problem.
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