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Abstract—

A key function for network traffic monitoring and analysis
is the ability to perform aggregate queries over multiple data
streams. Change detection is an important primitive which can
be extended to construct many aggregate queries. The recently
proposed sketches [1] are among the very few that can detect
heavy changes online for high speed links, and thus support
various aggregate queries in both temporal and spatial domains.
However, it does not preserve the keys (e.g., source IP address)
of flows, making it difficult to reconstruct the desired set of
anomalous keys. In an earlier abstract we proposed a framework
for a reversible sketch data structure that offers hope for efficient
extraction of keys [2]. However, this scheme is only able to detect
a single heavy change key and places restrictions on the statistical
properties of the key space.

To address these challenges, we propose an efficient reverse
hashing scheme to infer the keys of culprit flows from reversible
sketches. There are two phases. The first operates online, record-
ing the packet stream in a compact representation with negligible
extra memory and few extra memory accesses. Our prototype
single FPGA board implementation can achieve a throughput of
over 16 Gbps for 40-byte-packet streams (the worst case). The
second phase identifies heavy changes and their keys from the
representation in nearly real time. We evaluate our scheme using
traces from large edge routers with OC-12 or higher links. Both
the analytical and experimental results show that we are able to
achieve online traffic monitoring and accurate change/intrusion
detection over massive data streams on high speed links, all in
a manner that scales to large key space size. To the best of our
knowledge, our system is the first to achieve these properties
simultaneously.

I. INTRODUCTION

The ever-increasing link speeds and traffic volumes of the
Internet make monitoring and analyzing network traffic a
challenging but essential service for managing large ISPs.
A key function for network traffic analysis is the ability to
perform aggregate queries over multiple data streams. This
aggregation can be either temporal or spatial. For example,
consider applying a time series forecast model to a sequence
of time intervals over a given data stream for the purpose of
determining which flows are exhibiting anomalous behavior
for a given time interval. Alternately, consider a distributed
detection system where multiple data streams in different
locations must be aggregated to detect distributed attacks, such
as an access network where the data streams from its multiple

edge routers need to be aggregated to get a complete view of
the traffic, especially when there are asymmetric routings.

Meanwhile, the trend of ever-increasing link speed moti-
vates three highly desirable performance features for high-
speed network monitoring: 1) a small amount of memory
usage (to be implemented in SRAM); 2) a small number of
memory accesses per packet [3], [4]; and 3) scalabilty to a
large key space size. A network flow can be characterized
by 5 tuples: source and destination IP addresses, source and
destination ports, and protocol. These add up to 104 bits. Thus,
the system should at least scale to a key space of size 2'0%.

In response to these trends, a special primitive called heavy
hitter detection (HHD) over massive data streams has received
a lot of recent attention [5], [6], [4], [7]. The goal of HHD is to
detect keys whose traffic exceeds a given threshold percentage
of the total traffic. However, these solutions do not provide
the much more general, powerful ability to perform aggregate
queries. To perform aggregate queries, the traffic recording
data structures must have linearity, i.e., two traffic records
can be linearly combined into a single record structure as if it
were constructed with two data streams directly.

The general aggregate queries can be of various forms.
In this paper, we show how to efficiently perform change
detection, an important primitive which can be extended
to construct many aggregate queries. The change detection
problem is to determine the set of flows whose size changes
significantly from one period to another. That is, given some
time series forecast model (ARIMA, Holt-Winters, etc.) [1],
[8], we want to detect the set of flows whose size for a given
time interval differs significantly from what is predicted by the
model with respect to previous time intervals. This is thus a
case of performing aggregative queries over temporally distinct
streams. In this paper, we focus on a simple form of change
detection in which we look at exactly two temporally adjacent
time intervals and detect which flows exhibit a large change in
traffic between the two intervals. Although simple, the ability
to perform this type of change detection easily permits an
extension to more sophisticated types of aggregation. Our
goal is to design efficient data structures and algorithms that
achieve near real-time monitoring and flow — level heavy
change detection on massive, high bandwidth data streams,



and then push them to real-time operation through affordable
hardware assistance.

The sketch, a recently proposed data structure, has proven
to be useful in many data stream computation applications [6],
[9], [10], [11]. Recent work on a variant of the sketch,
namely the k-ary sketch, showed how to detect heavy changes
in massive data streams with small memory consumption,
constant update/query complexity, and provably accurate esti-
mation guarantees [1]. In contrast to the heavy hitter detection
schemes, sketch has the linearity properties to support aggre-
gate queries as discussed before.

Sketch methods model the data as a series of (key, value)
pairs where the key can be a source IP address, or a
source/destination pair of IP addresses, and the value can be
the number of bytes or packets, efc.. A sketch can indicate
if any given key exhibits large changes, and, if so, give an
accurate estimate of the change.

However, sketch data structures have a major drawback:
they are not reversible. That is, a sketch cannot efficiently
report the set of all keys that have large change estimates in
the sketch. A sketch, being a summary data structure based
on hash tables, does not store any information about the
keys. Thus, to determine which keys exhibit a large change in
traffic requires either exhaustively testing all possible keys, or
recording and testing all data stream keys and corresponding
sketches [3], [1]. Unfortunately, neither option is scalable.

To address these problems, in an earlier extended abstract,
we proposed a novel framework for efficiently reversing
sketches, focusing primarily on the k-ary sketch [2]. The basic
idea is to hash intelligently by modifying the input keys and/or
hashing functions so that we can recover the keys with certain
properties like big changes without sacrificing the detection
accuracy. We note that streaming data recording needs to done
continuously in real-time, while change/anomaly detection can
be run in the background executing only once every few
seconds with more memory (DRAM).

The challenge is this: how can we make data recording
extremely fast while still being able to support, with reasonable
speed and high accuracy, queries that look for heavy change
keys? In our prior abstract [2], we only developed the general
framework, and focused on the detection of a single heavy
change which is not very useful in practice. However, multiple
heavy change detection is significantly harder as shown in this
paper. Moreover, we address the reversible sketch framework
in detail, discussing both the theoretical and implementation
aspects. We answer the following questions.

e How fast can we record the streaming traffic, with and
without certain hardware support?

e How can we simultaneously detect multiple heavy
changes from the reversible sketch?

e How can we obtain high accuracy and efficiency for
detecting a large number of heavy changes?

e How can we protect the heavy change detection system
from being subverted by attackers (e.g., injecting false
positives into the system by creating spoofed traffic of
certain properties)?

e How does the system perform (accuracy, speed, efc.)
with various key space sizes under real router traffic?

In addressing these questions, we make the following con-
tributions.

e For data stream recording, we design improved IP
mangling and modular hashing operations which only
require negligible extra memory consumption (4KB -
8KB) and few (4 to 8) additional memory accesses per
packet, as compared to the basic sketch scheme. When
implemented on a single FPGA board, we can sustain
more than 16Gbps even for a stream of 40-byte-packets
(the worst case traffic).

e We introduce the bucket index matrix algorithm to
simultaneously detect multiple heavy changes efficiently.
We further propose the iterative approach to improve the
scalability of detecting a large number of changes. Both
space and time complexity are sub-linear in the key space
size.

e To improve the accuracy of our algorithms for de-
tecting heavy change keys we apply the following two
approaches: 1) To reduce false negatives we additionally
detect keys that are not reported as heavy by only a small
number of hash tables in the sketch; and 2) To reduce
false positives we apply a second verifier sketch with
2-universal hash functions. In fact, we obtain analytical
bounds on the false positives with this scheme.

e The IP-mangling scheme we design has good statistical
properties that prevent attackers from subverting the
heavy change detection system to create false alarms.

In addition, we implemented and evaluated our system with
network traces obtained from two large edge routers with an
OC-12 link or higher. The one day NU trace consists of 239M
netflow records of 1.8TB total traffic. With a Pentium IV
2.4GHz PC, we record 1.6M packets per second. For inferring
keys of even 1,000 heavy changes from two S5-minute traffic
each recorded in a 3MB reversible sketch, our schemes find
more than 99% of the heavy change keys with less than a
0.1% false positive rate within 13 seconds.

Both the analytical and experimental results show that we
are able to achieve online traffic monitoring and accurate
change/anomaly detection over massive data streams on high
speed links, all in a manner that scales to large key space size.
To the best of our knowledge, our system is the first to achieve
these properties simultaneously.

In addition, as a sample application of reversible sketches,
we briefly describe a sketch-based statistical flow-level in-
trusion detection and mitigation system (IDMS) that we de-
signed and implemented (details are in a separate technical
report [12]). We demonstrate that it can detect almost all SYN
flooding and port scans (for most worm propagation) that can
be found using complete flow-level logs, while with much less
memory/space consumption and much faster monitoring and
detection speed.

The rest of the paper is organized as follows. We give
an overview of the data stream model and k-ary sketches
in Section II. In Section III we discuss the algorithms for
streaming data recording and in Section IV discuss those for
heavy change detection. The application is briefly discussed
in Section V. We evaluate our system in Section VI, survey



related work in Section VII, and finally conclude in Sec-
tion VIII.

II. OVERVIEW
A. Data Stream Model and the k-ary Sketch

The Turnstile Model [13] is one of the most general data
stream models. Let [ = aq,aq,..., be an input stream that
arrives sequentially, item by item. Each item a; = (a;,u;)
consists of a key a; € [n], where [n] = {0,1,...,n — 1},
and an update u; € R. Each key a € [n] is associated with a
time varying signal Ula]. Whenever an item (a;, u;) arrives,
the signal Ula;] is incremented by w,;.

To efficiently keep accurate estimates of the signals Ula],
we use the k-ary sketch data structure. A k-ary sketch consists
of H hash tables of size m (the k in the name k-ary sketch
comes from the use of size k hash tables. However, in this
paper we use m as the size of the hash tables, as is standard).
The hash functions for each table are chosen independently at
random from a class of 2-universal hash functions from [n] to
[m]. We store the data structure as an H x m table of registers
Ti[j] (@ € [H],j € [m]). Denote the hash function for the
i*" table by h;. Given a data key and an update value, k-ary
sketch supports the operation INSERT(a,u) which increments
the count of bucket hi(a) by u for each hash table h;. Let
D=3 icim | be the sum of all updates to the sketch
(the use of Lash table 0 is an arbitrary choice as all hash
tables sum to the same value). If an INSERT(a,u) operation is
performed for each (key, update) pair in a data stream, then for
any glven k 1n a data stream, for each hash table the value

[h “)] ™ constitutes an unbiased estimator for Ula] [1].

A sketch can then provide a highly accurate estimate U¢$! for
any key a, by taking the median of the H hash table estimates.
See [1] or Theorem 2 for details on how to choose H and m
to obtain quality estimates.

B. Change Detection

1) Absolute Change Detection: K-ary sketches can be used
in conjunction with various forcasting models to perform
sophisticated change detection as discussed in [1]. While
all of our techniques in this paper are easily applicable to
any of the forcast models in [1], for simplicity in this paper
we focus on the simple model of change detection in which
we break up the sequence of data items into two temporally
adjacent chunks. We are interested in keys whose signals differ
dramatically in size when taken over the first chunk versus the
second chunk. In particular, for a given percentage ¢, a key
is a heavy change key if the difference in its signal exceeds
¢ percent of the total change over all keys. That is, for two
input sets 1 and 2, if the signal for a key « is Uy[z] over
the first input and Usz[z] over the second, then the difference
signal for z is defined to be D[z] = |U;[x] — Uz|x]|. The total
difference is D = 3°, ., D[z]. A key x is then defined to be
a heavy change key if and only if D[z] > ¢- D. Note that this
definition describes absolute change and does not characterize
the potentially interesting set of keys with small signals that
exhibit large change relative to their own size.

In our approach, to detect the set of heavy keys we create
two k-ary sketches, one for each time interval, by updating

them for each incoming packet. We then subtract the two
sketches. Say S and S, are the sketches recorded for the two
consecutive time intervals. For detecting significant change
in these two time periods, we obtain the difference sketch
Sq = |S2 — S1|. The linearity property of sketches allows us
to add or subtract a sketch to obtain estimates of the sum or
difference of flows. Any key whose estimate value in Sy that
exceeds the threshold ¢ - D is denoted as a suspect heavy key
in sketch Sy and offered as a proposed element of the set of
heavy change keys.

2) Relative Change Detection: An alternate form of change
detection is considered in [3]. In relative heavy change detec-

tion the change of a key is defined to be D[z],; = gﬂi]
However, it is known that approximating the ratio of signais

accurately requires a large amount of space [14]. The work
in [3] thus limits itself to a form of pseudo relative change
detection in which the exact values of all signals U;[x] are
assumed to be known and only the signals Us[z] need to be es-
timated by updates over a data stream. Let Uy = 3, #[z],
Uz = >, [n) Uz[z]. For this limited problem, the following
relative change estimation bounds for k-ary sketches can be
shown.

Theorem 1: For a k-ary sketch which uses 2-universal hash
functions, if m = 2 and H = 4log %, then for all z € [n]

D[z]ye1 > ¢D + €U Uy = PrlUS < ¢- D] < §
D[z]ye1 < ¢D — U Uy = PrlUS > ¢- D] < §

Similar to Theorem 2, this bound suggests that our algo-
rithms could be used to effectively solve the relative change
problem as well. However, due to the limited motivation for
pseudo relative change detection, we do no experiment with
this problem.

TABLE I
TABLE OF NOTATIONS
H number of hash tables
m==k number of buckets per hash table
n size of key space
q number of words keys are broken into
hi 4™ hash function
hit,hi2,...,hig q modular hash functions that make up A;
ow(x) the w?™ word of a ¢ word integer x
TTlg] bucket j in hash table ¢
[ percentage of total change required to be heavy
;7}1 an ma x (% )q table of * 2 logn bit words.
hi,i[j][k} the k" n 7 bt key in the reverse
mapping of j for h;
1
h;i} 4] the set of all x € [n4] s.t. hy (z) =3
t number of heavy change keys
t maximum number of heavy buckets per hash table
t; number of heavy buckets in hash table ¢
ti; bucket index of the j* heavy
bucket in hash table ¢
r number of hash tables a key can miss
and still be considered heavy
Ly set of modular keys occurring in heavy buckets
in at least H — 7 hash tables for the w®" word
By (x) vector denoting for each hash table the set of
heavy buckets modular key = € I, occurs in

C. Problem Formulation

Instead of focusing directly on finding the set of keys that
have heavy change, we instead attempt to find the set of keys
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Fig. 1. Architecture of the reversible k-ary-sketch-based heavy change detection system for massive data streams.

denoted as suspects by a sketch. That is, our goal is to take a
given sketch T" with total traffic sum D, along with a threshold
percentage ¢, and output all the keys whose estimates in T’
exceed ¢-D. We thus are trying to find the set of suspect keys
for T

To find this set, we can think of our input as a sketch 7" in
which certain buckets in each hash table are marked as heavy.
In particular, we denote the j” bucket in hash table i as
heavy if the value W > ¢D. Thus, the j*" bucket in
hash table i is heavy iff T[i][j] > &(D —1/m)+ D/m. Thus,
since the estimate for a sketch is the median of the estimates
for each hash table, the goal is to output any key that hashes
to a heavy bucket in more than [ £ | of the H hash tables. If
we let ¢ be the maximum number of distinct heavy buckets
over all hash tables, and generalize this situation to the case
of mapping to heavy buckets in at least H — r of the hash
tables where r is the number of hash tables a key can miss
and still be considered heavy, we get the following problem.

The Reverse Sketch Problem
Input:
e Integerst > 1, r < ﬂ;
e A sketch 7' with hash functions {h;}Z5" from [n] to
[ml;
e For each hash table 7 a set of at most ¢ heavy buckets
R; C [m];
Output: All = € [n] such that h;(z) € R; for H — r or more
values ¢ € [H].

In section IV we show how to efficiently solve this problem.

D. Bounding False Positives

Since we are detecting suspect keys for a sketch rather
than directly detecting heavy change keys, we discuss how
accurately the set of suspect keys approximates the set of
heavy change keys. Let S; = |S2 — S1| be a difference sketch
over two data streams. For each key z € [n] denote the value
of the difference of the two signals for x by D[z] = |Us[x] —
U, [z]|. Denote the total difference by D =3 e D[z]. The
following theorem relates the size of the sketch (in terms of
m and H) with the probability of a key being incorrectly
categorized as a heavy change key or not.

Theorem 2: For a k-ary sketch which uses 2-universal hash
functions, if m = & and H = 4log %, then for all = € [n]

Diz] > (p+¢)- D= PrlUS <¢-D] <6
Dir] < (¢p—¢)- D= PrlUZ" >¢-D|<$§

Intuitively this theorem states that if a key is an e-
approximate heavy change key, then it will be a suspect with
probability at least 1 — 4, and if it is an e-approximate non-
heavy key, it will not be a suspect with probability at least
1—4. We can thus make the set of suspect keys for a sketch an
appropriately good approximation for the set of heavy change
keys by choosing large enough values for m and H. We omit
the proof of this theorem in the interest of space, but refer the
reader to [3] in which a similar theorem is proven.

As we discuss in Section III-A, our reversible k-ary sketch
does not have 2-universality. However, we use a second non-
reversible k-ary sketch with 2-universal functions to act as a
verifier for any suspect keys reported. This gives our algorithm
the analytical limitation on false positives of theorem 2. As an
optimization we can thus leave the reduction of false positives
to the verifier and simply try to output as many suspect keys
as is feasible. For example, to detect the heavy change keys
with respect to a given percentage ¢, we could detect the set
of suspect keys for the initial sketch with respect to ¢ — «, for
some percentage «, and then verify those suspects with the
second sketch with respect to ¢. However, we note that even
without this optimization (setting o = 0) we obtain very high
true-positive percentages in our simulations.

E. Architecture

Our change detection system has two parts (Fig. 1): stream-
ing data recording and heavy change detection as discussed
below.

III. STREAMING DATA RECORDING

The first phase of the change detection process is passing
over each data item in the stream and updating the summary
data structure. The update procedure for a k-ary sketch is
very efficient. However, with standard hashing techniques
the detection phase of change detection cannot be performed
efficiently. To overcome this we modify the update for the k-
ary sketch by introducing modular hashing and IP mangling
techniques.

A. Modular hashing

Modular hashing is illustrated in Figure 2. Instead of
hashing the entire key in [n] directly to a bucket in [m],
we partition the key into ¢ words, each word of size % logn
bits. Each word is then hashed separately with different hash
functions which map from space [né] to [mé] For example,
in Figure 2, a 32-bit IP address is partitioned into ¢ = 4
words, each of 8 bits. Four independent hash functions are
then chosen which map from space [28] to [23]. The results of
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each of the hash functions are then concatenated to form the
final hash. In our example, the final hash value would consist
of 12 bits, deriving each of its 3 bits from the separate hash
functions h; 1, hi 2, hi 3, hia. If it Tequires constant time to
hash a value, modular hashing increases the update operations
from O(H) to O(q- H). On the other hand, no extra memory
access is needed. Furthermore, in section IV we will discuss
how modular hashing allows us to efficiently perform change
detection. However, an important issue with modular hashing
is the quality of the hashing scheme. The probabilistic estimate
guarantees for k-ary sketch assume 2-universal hash functions,
which can map the input keys uniformly over the buckets.
In network traffic streams, we notice strong spatial localities
in the IP addresses, i.e., many simultaneous flows only vary
in the last few bits of their source/destination IP addresses,
and share the same prefixes. With the basic modular hashing,
the collision probability of such addresses are significantly
increased.

For example, consider a set of IP addresses 129.105.56.%
that share the first 3 octets. Modular hashing always maps the
first 3 octets to the same hash values. Thus, assuming our small
hash functions are completely random, all distinct IP addresses
with these octets will be uniformly mapped to 23 buckets,
resulting in a lot of collisions. This observation is further
confirmed when we apply modular hashing to the network
traces used for evaluation (see Section VI). The distribution
of the number of keys per bucket is highly skewed, with most
of the IP addresses going to a few buckets (Figure 3). This
significantly disrupts the estimation accuracy of the reversible
k-ary sketch. To overcome this problem, we introduce the
technique of IP mangling.

B. Attack-resilient IP Mangling

In IP mangling we attempt to artificially randomize the input
data in an attempt to destroy any correlation or spatial locality
in the input data. The objective is to obtain a completely
random set of keys, and this process should be still reversible.

The general framework for the technique is to use a bijective
function from key space [n] to [n]. For an input data set
consisting of a set of distinct keys {z;}, we map each
x; to f(x;). We then use our algorithm to compute the
set of proposed heavy change keys C' = {y1,¥2,...,¥c}
on the input set {f(z;)}. We then use f~! to output
{F 721, £~ (92)s -+, f ~1(ye)}. the set of proposed heavy
change keys under the original set of input keys. Essentially,
we transform the input set to a mangled set and perform all
our operations on this set. The output is then transformed back
to the original input keys.

1) Attack-resilient Scheme: In [2] the function f(x) =
a -z (mod n) is proposed where a is an odd integer chosen
uniformly at random. This function can be computed quickly
(no taking mod of a prime) and is effective for hierarchical
key spaces such as IP addresses where it is natural to assume
no traffic correlation exists among any two keys that have
different (non-empty) prefixes. However, this is not a safe
assumption in general. And even for IP addresses, it is
plausible that an attacker could antagonistically cause a non-
heavy-change IP address to be reported as a false positive
by creating large traffic changes for an IP address that has a
similar suffix to the target - also known as behavior aliasing.
To prevent such attacks, we need the mapping of any pair of
distinct keys to be independent of the choice of the two keys.
That is, we want a universal mapping.
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Fig. 3. Distribution of number of keys for each bucket under three hashing
methods. Note that the plots for direct hashing and the GF transformation are
essentially identical.

We propose the following universal hashing scheme based
on simple arithmetic operations on a Galois Extension
Field [15] GF(2%), where ¢ = log,n. More specifically,
we choose a and b from {1, 2, ---, 2¢ — 1} uniformly at
random, and then define f(x) = a ® x ® b, where ’®’ is
the multiplication operation defined on GF(2¢) and @’ is the
bit-wise XOR operation. We refer to this as the Galois Field
(GF) transformation. By precomputing a~* on GF(2¢), we can
easily reverse a mangled key y using f~(y) = a" '@ (y®b).

The direct computation of ¢ ® x can be very expensive,
as it would require multiplying two polynomials (of degree
¢ — 1) modulo an irreducible polynomial (of degree /) on a
Galois Field GF(2). In our implementation, we use tabulation
to speed up the computation of a®x. The basic idea is to divide
input keys into shorter characters. Then, by precomputing
the product of a and each character we can translate the
computation of ¢ ® = into a small number of table lookups.
For example, with 8-bit characters, a given 32-bit key = can
be divided into four characters: x = T3Z2212o. According to
the finite field arithmetic, we have a ® x = a ® T3T2T129 =
69?:0 a® (x; < 8 1), where *@’ is the bit-wise XOR opera-
tion, and < is the shift operation. Therefore, by precomputing
4 tables ¢;]0..255], where ¢;[y] = a ® (y < 8 ¢) (Vi = 0..3,
Vy = 0..255), we can efficiently compute a¢ ® = using four
table lookups: a®r = tg [Ig] Pty [IQ] @D tl[ZCl] &) to[ZC()].

We can apply the same approach to compute f and f~!
(with separate lookup tables). Depending on the amount of
resource available, we can use different character lengths. For



our hardware implementation, we use 8-bit characters so that
the tables are small enough to fit into fast memory (2% x
4 x 4Bytes = 4K B for 32-bit IP addresses). Note that only
IP mangling needs extra memory and extra memory lookup
as modular hashing can be implemented efficiently without
table lookup. For our software implementation, we use 16-bit
characters, which is faster than 8-bit characters due to fewer
table lookups.

In practice this mangling scheme effectively resolves the
highly skewed distribution caused by the modular hash func-
tions. Using the source IP address of each flow as the key,
we compare the hashing distribution of the following three
hashing methods with the real network flow traces: 1) modular
hashing with no IP mangling, 2) modular hashing with the
GF transformation for IP mangling, and 3) direct hashing
(a completely random hash function). Figure 3 shows the
distribution of the number of keys per bucket for each hashing
scheme. We observe that the key distribution of modular
hashing with the GF transformation is essentially the same
as that of direct hashing. The distribution for modular hashing
without IP mangling is highly skewed. Thus IP mangling is
very effective in randomizing the input keys and removing
hierarchical correlations among the keys.

In addition, our scheme is resilient to behavior aliasing
attacks because attackers cannot create collisions in the re-
versible sketch buckets to make up false positive heavy
changes. Any distinct pair of keys will be mapped completely
randomly to two buckets for each hash table.

IV. REVERSE HASHING

We now discuss how modular hashing permits the efficient
execution of the detection phase of the change detection
process. To provide an initial intuition, we start with the simple
(but somewhat unrealistic) scenario in which we have a sketch
taken over a data stream that contains exactly one heavy bucket
in each hash table. Our goal is to output any key value that
hashes to the heavy bucket for most of the hash tables. For
simplicity, let’s assume we want to find all keys that hit the
heavy bucket in every hash table. We thus want to solve the
reverse sketch problem for ¢t =1 and r = 0.

To find this set of culprit keys, consider for each hash table
the set A; consisting of all keys in [n] that hash to the heavy
bucket in the i’" hash table. We thus want to find ﬂiH:_Ol A;.
The problem is that each set A; is of expected size /-, and is
thus quite large. However, if we are using modular hashing,
we can implicity represent each set A; by the cross product
of ¢ modular reverse mapping sets A;1 X A;o X -+ A4
determined by the corresponding modular hash functions h; .
The pairwise intersection of any two reverse mapping sets is
then Al ﬂAJ = Ai11 ﬂAj,l X ALQ ﬂ Aij X X Ai,q ﬂ Aqu.
We can thus determine the desired H-wise intersection by
dealing with only the smaller modular reverse mapping sets
of size (%)% This is the basic intuition for why modular
hashing might improve the efficiency of performing reverse
hashing and constitutes the approach used in [16].

A. Simple Extension Doesn’t Work

Extending the intuitions for how to reverse hash for the case
where ¢t = 1 to the case where ¢ > 1 is not trivial. Consider
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Fig. 4. For the case of ¢ = 2, various possibilities exist for taking the
intersection of each bucket’s potential keys

the simple case of ¢ = 2, as shown in Figure 4. There are
now t1 = 2 possible ways to take the H-wise intersections
discussed for the t = 1 case. One possible heuristic is to take
the union of the possible keys of all heavy change buckets
for each hash table and then take the intersections of these
unions. However, this can lead to a huge number of keys output
that do not fulfill the requirement of our problem. In fact, we
have shown (proof omitted) that for arbitrary modular hash
functions that evenly distribute - keys to each bucket in each
hash table, there exist extreme cases such that the Reverse
Sketch Problem cannot be solved for ¢ > 2 in polynomial
time in both ¢ and H in general, even when the size of the
outputis O(1) unless P = N P. We thus are left to hope for an
algorithm that can take advantage of the random modular hash
functions described in Section III-A to solve the reverse sketch
problem efficiently with high probability. The remainder of
this section describes our general case algorithm for resolving
this problem.

B. Notation for the General Algorithm

We now introduce our general method of reverse hashing
for the more realistic scenarios where there are multiple heavy
buckets in each hash table and we allow for the possibility that
a heavy change key can miss a heavy bucket in a few hash
tables. That is, we present an algorithm to solve the reverse
sketch problem for any ¢ and r that is assured to obtain the
correct solution with a polynomial run time in ¢ and H with
very high probability. To describe this algorithm, we define
the following notation.

Let the i'" hash table contain ¢; heavy buckets. Let ¢ be
the value of the largest ¢;. For each of the H hash tables h;,
assign an arbitrary indexing of the ¢; heavy buckets and let
t;,; € [m] be the index in hash table ¢ of heavy bucket number
j. Also define o, (z) to be the w'" word of a ¢ word integer
x. For example, if the j®* heavy bucket in hash table i is
ti,j = 5.3.0.2 for q = 4, then UQ(tiﬁj) =3.

For each ¢ € [H] and word w, denote the reverse mapping
set of each modular hash function h; ,, by the mi x (%)% table
h; . of 21ogn bit words. That is, let A, [j][k] denote the k"
ne bit key in the reverse mapping of j for h; . Further, let
Bl = (& € [n9] | hiwl(a) = 7}.

Let I, ={z |z € U’;;_Ol hi_’i)[crw(ti,j)] for at lfeast H-—r
values ¢ € [H]}. That is, I, is the set of all € [n4] such that

2 is in the reverse mapping for h; ,, for some heavy bucket in
at least H — r of the H hash tables. We occasionally refer to
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Fig. 5. Given the g sets I, and bucket index matrices B,, we can compute
the sets A, incrementally. The set A2 containing ({a,d), (2,1,4,x,3)),
((a,dy,(2,1,9,%,3)), and ({c,e),(2,2,2,1,3)) is depicted in (a).
From this we determine the set A3 containing ({a,d, f),(2,1,4,x,3)),
((a,d, g),(2,1,9,%,3)), and ({c, e, h), (2,2,2,1,3)) shown in (b). Finally
we compute A4 containing ((a, d, f, %), (2,1,4,*,3)) shown in (c).

this set as the intersected modular potentials for word w. For
instance, in Figure 5, I; has three elements and /5 has two.

For each word we also define the mapping B, which
specifies for any x € I, exactly which heavy buckets
2 occurs in for each hash table. In detail, B,(x) =
(L [0)[a], Ly[1)[e], . . L[H—1][x]) where L, [i][z] = {j €
[t] |z € h:; [ow(ti )]} U{*}. That is, L, [i][z] denotes the
collection of indices in [t] such that z is in the modular
bucket potential set for the heavy bucket corresponding to
the given index. The special character * is included so that
no intersection of sets L,, yields an empty set. For example,
B, (129) = ({1,3,8},{5},{2,4}, {9}, {3,2}) means that the
reverse mapping of the 1°%, 3%, and 8" heavy bucket under
ho,w all contain the modular key 129.

We can think of each vector B, (z) as a set of all H
dimensional vectors such that the i*" entry is an element of
Ly, [Z] [.I'] For examples B3(23) = <{1> 3}7 {16}a {*}7 {9}7 {2}>
is indeed a set of two vectors: ({1}, {16}, {*},{9},{2}) and
({3},{16}, {*},{9}, {2}). We refer to B, (z) as the bucket
index matrix for x, and a decomposed vector in a set B, (z)
as a bucket index vector for x. We note that although the
size of the bucket index vector set is exponential in H, the

bucket index matrix representation is only polynomial in size
and permits the operation of intersection to be performed in
polynomial time. Such a set like Bj(a) can be viewed as a
node in Figure 5.

Define the r intersection of two such sets to be B C =
{v € BNNC | v has at most r of its H entries equal to
* 1. For example, By, (x)(\" Bw+1(y) represents all of the
different ways to choose a single heavy bucket from each of
at least H — r of the hash tables such that each chosen bucket
contains  in it’s reverse mapping for the w?” word and y for
the w+ 1" word. For instance, in Figure 5, By (a) (" Ba2(d) =
({2},{1}, {4}, {*}, {3}), which is denoted as a link in the
figure. Note there is no such link between Bj(a) and Ba(e).
Intuitively, the a.d sequence can be part of a heavy change key
because these keys share common heavy buckets for at least
H —r hash tables. In addition, it is clear that a key z € [n] is a
suspect key for the sketch if and only if ﬂ;zlmq By(zy) # 0.

Finally, we define the sets A, which we compute in our
algorithm to find the suspect keys. Let 417 = {({(x1),v) |
21 € I and v € Bi(x1)}. Recursively define A,41 =
{(<CC1,$2, cee ;Iw+1>a 1)) | (<5€1,I2, s ,$w>,’U) € Aw and
v € Byii1(zwy1)}. Take Figure 5 for example. Here Ay
contains (a,d, f,i),(2,1,4,*,3) which is the suspect key.
Each element of A,, can be denoted as a path in Figure 5.
The following lemma tells us that it is sufficient to compute
A, to solve the reverse sketch problem.

Lemma I: A key x = x1.22.- -+ .24 € [n] is a suspect key
if and only if ((z1,x2, -+, 24),v) € A, for some vector v.

C. Algorithm

To solve the reverse sketch problem we first compute the
q sets I, and bucket index matrices B,,. From these we
iteratively create each A, starting from some base A. for
any ¢ where 1 < ¢ < ¢ up until we have A,. We then output
the set of heavy change keys via lemma (1). Intuitively, we
start with nodes as in Figure 5, I; is essentially A;. The links
between [; and I, give Ao, then the link pairs between (I3
I5) and (I3 I3) give As, etc.

The choice of the base case A, affects the performance
of the algorithm. The size of the set A; is likely to be
exponentially large in H. However, with good random hashing,
the size of A, for w > 2 will be only polynomial in H, gq,
and ¢ with high probability with the detailed algorithm and
analysis below. Note we must choose a fairly small value ¢ to
start with because the complexity of computing the base case
grows exponentially in c.

REVERSE HASH(r)

1 For each w =1 to gq, set
(I, By) = MODULAR_POTENTIALS(w,r).

2 Initialize Ay = ). For each x € I, y € I>, and
corresponding v € By (z) ()" Bz(y), insert ((x,y),v)
into As.

3 For any given A,, set
Aw+1 = Extend(Aw, Ierl, Berl).

4 Output all z1.22.- -+ .24 € [n] s.t.

((z1,...,2q),v) € Ay for some v.

MODULAR POTENTIALS(w, )



1 Create an H x n table of sets L initialized to all
contain the special character *. Create a size [n«] array
of counters hirs initialized to all zeros.

2 For each i € [H], j € [t], and k € [(7%)4] insert
hi Llow(ti;)][k] into L[i][x]. If L[i][x] was empty,
increment hits|z].

3 Foreach z € [n %] .t. hits[z] > H — r, insert x into
I,, and set B, (x) = (L[0][a], L1][a]. .., L[H — 1][x]).

4 Output (I, By).

EXTEND (A, Iy+1, Buw+1)

1 Initialize Ay1q = 0.

2 Foreach y € I,+1, ({x1,...,%4),v) € Ay, determine
if (" Buw+1(y) # null. If so, Insert ({(x1,...,%w,y) ,
v ﬂr Bw+1(y)) into Aw+1.

3 Output Ay 1.

D. Complexity Analysis

Lemma 2: The number of elements in each set I, is at most

et ()

Proof: Each element z in I,, must occur in the modular
potential set for some bucket in at least H — r of the H hash
tables. Thus at least |I,,| - (H — r) of the elements in the
multiset of modular potentials must be in /,,. Since the number
of elements in the multiset of modular potentials is at most
H-t- (% )q we get the f0110w1ng inequality.

Ll - (H =) S Hot-(2)0 = || S g5t ()5 m

Next, we will show that the size of A, will be only
polynomial in H, ¢q and t.

Lemma 3: With proper m and ¢, the number of bucket index
vectors in Ay is O(n?/9) with high probability.

In the interest of space we refer the reader to the full
technical report for the details of this proof [16].

Given Lemma 3, the more heavy buckets we have to
consider, the bigger m must be, and the more memory is
needed. Take the 32-bit IP address key as an example. In
practice, ¢t < m?2/9 works well. When q =4 and t < 64,
we need m = 2'2. For the same ¢, when ¢t < 256, we need
m = 219 and when t < 1024, we need m = 229. This
may look prohibitive. However, with the iterative approach in
Section IV-F, we are able to detect many more changes with
small m. For example, we are able to detect more than 1000
changes accurately with m = 216 (1.5MB memory needed) as
evidenced in the evaluations (Section VI). Since we normally
only consider at most the top 50 to a few hundred heavy
changes, we can have m = 2'2 with memory less than 100KB.

Lemma 4: With proper choices of H, r, and m, the ex-
pected number of bucket index vectors in A, is less than
that of A,, for w > 2.

That is, the expected number of link sequences with length
x4 1 is less than the number of link sequences with length x
when z > 2.

Proof: For any bucket index vector v € A, for any
word z € [n'/9] for word w+ 1, the probability for x to be in
the same ith (i € [H]) bucket is —-. Thus the probability for
B(z)(N" v to be not null is at most C#_ x w Given
there are n'/? possible words for word w + 1, the probability
for any v to be extensible to A1 is Cg_r X xnt/d,

1
mH-1)/q

With proper H, r and m for any n, we can easily have such
probability to be smaller than 1. Then the number of bucket
index vectors in A, 11 is less than that of A,,. [ |

Given the lemmas above, MODULAR_POTENTIALS and
step 2 of REVERSE_HASH run in time O(n?/9). The running
time of EXTEND is O(n®/?). So the total running time is
O((q —2) - n*1).

E. Asymptotic Parameter Choices

To make our scheme run efficiently and maintain accuracy
for large values of n, we need to carefully choose the param-
eters m, H, and q as functions of n. Our data structures and
algorithms for the streaming update phase use space and time
polynomial in H, g, and m, while for the change detection
phase they use space and time polynomial in H, ¢, m, and ne.
Thus, to maintain scalability, we must choose our parameters
such that all of these values are sufficiently smaller than n.
Further, to maintain accuracy and a small sketch size, we need
to make sure the following constraints are satisfied.

First, to limit the number of collisions in the sketch, for any
choice of a single bucket from each hash table, we require
that the expected number of keys to hash to that sequence be
bounded by some small parameter €, 7 < €. Second, the
modular bucket size must be bounded below by a constant,
mq > c. Third, we require that the total sketch size mH be
bounded by a polynomial in log n. Given these constraints we
are able to maintain the following parameter bounds. For an
extended discussion motivating these parameter choices please
see the full technical report [16].

q =loglogn m = (logn)®™
n% = nloslosn H = O(lolgologn)

F. Iterative Detection

From our discussion in Section IV-D we have that our
detectlon algorithm can only effectively handle ¢ of size at
most m 4. With our discussion in Section IV-E this is only a
constant. To handle larger ¢, consider the following heuristic.
Suppose we can comfortably handle at most ¢ heavy buckets
per hash table. If a given ¢ percentage results in ¢ > ¢ buckets
in one or more tables, sort all heavy buckets in each hash table
according to size. Next, solve the reverse sketch problem with
respect to only the largest ¢ heavy buckets from each table.
For each key output, obtain an estimate from a second k-ary
sketch independent of the first. Update each key in the output
by the negative of the estimate provided by the second sketch.
Having done this, once again choose the largest ¢ buckets from
each hash table and repeat. Continue until there are no heavy
buckets left.

One issue with this approach is that an early false positive
(a key output that is not a heavy change key) will cause large
numbers of false negatives since the (incorrect) decrement of
the buckets for the false positive will potentially cause many
false negatives in successive iterations. To help reduce this we
can use the second sketch as a verifier for any output keys to
reduce the possibility of a false positive in each iteration.

G. Comparison with the Deltoids Approach

The most related work to ours is the recently proposed
deltoids approach for heavy change detection [3]. Though



TABLE II
A COMPARISON BETWEEN THE REVERSIBLE SKETCH METHOD AND THE DELTOIDS APPROACH. HERE ¢’ DENOTES THE NUMBER OF HEAVY CHANGE
KEYS IN THE INPUT STREAM. NOTE THAT IN EXPECTATION ¢ > t.

Update Detection
memory memory accesses | operations memory operations
o) T 3
Reversible Sketch || O( %) O lolgoig —) O(logn) || ©(nleslogn -loglogn) | O(nlegloen -loglogn - t)
Deltoids O(logn - t') O(logn) O(log n) O(logn - ') O(logn - t')

developed independently of k-ary sketch, deltoid essentially
expands k-ary sketch with multiple counters for each bucket
in the hash tables. The number of counters is logarithmic to
the key space size (e.g., 32 for IP addresses), so that for
every (key, value) entry, instead of adding the value to one
counter in each hash table, it is added to multiple counters
(32 for IP addresses and 64 for IP address pairs) in each hash
table. This significantly increases the necessary amount of fast
memory and number of memory accesses per packet, and is
not scalable to large key space size such as 214 discussed in
Section I. Thus, it violates all the aforementioned performance
constraints in Section 1.

The advantage of the deltoids approach is that it is more
efficient in the detection phase, with run time and space usage
only logarithmic in the key space n. While our method does
not achieve this, its run time and space usage is significantly
smaller than the key space n. And since this phase of change
detection only needs to be done periodically in the order of
at most seconds, our detection works well for key sizes of
practical interest. We summarize the asymptotic efficiencies
of the two approaches in Table II, but omit details of the
derivations in the interest of space. Note that the reversible
sketch data structure offers an improvement over the deltoids
approach in the number of memory accesses per update, as
well as the needed size of the data structure when there
are many heavy buckets (changes). Together this yields a
significant improvement in achievable update speed.

V. APPLICATIONS

A. General Framework

The key feature of reversible sketches is to support aggre-
gate queries over multiple data streams, i.e., to find the top
heavy hitters and their keys from the linear combination of
multiple data streams for temporal and/or spatial aggregation.
Many statistical approaches, such as Time Series Analysis
(TSA), need this functionality for anomaly/trend detection.
Take TSA as an example. In the context of network appli-
cations, there are often tens of millions of network time series
and it is very hard, if not impossible, to apply the standard
techniques on a per time series basis. Reversible sketches help
solve this problem. Moreover, in today’s networks, asymmetric
routing, multi-homing, and load balancing are very common
and many enterprises have more than one upstream or down-
stream link. For example, it is quite impossible to detect port
scans or SYN flooding based on {SYN, SYN/ACK} or {SYN,
FIN} pairs on a single router if the SYN, SYN/JACK and FIN
for a particular flow can travel different routers or links. Again,
the linearity of reversible sketches enables traffic aggregation
over multiple routers to facilitate such detection.

B. Intrusion Detection and Mitigation on High-speed Net-
works

Global-scale attacks like viruses and worms are increasing
in frequency, severity and sophistication, making it critical
to detect outbursts at routers/gateways instead of end hosts.
With reversible sketches, we have built a novel, high-speed
statistical flow-level intrusion detection and mitigation system
(IDMS) for TCP SYN flooding and port scan detection. In
contrast to existing intrusion detection systems, the IDMS
1) is scalable to flow-level detection on high-speed networks
(such as OC192); 2) is DoS resilient; 3) enables aggregate
detection over multiple routers/gateways. We use three dif-
ferent reversible sketches to detect SYN flooding and the
two most popular port scans: horizontal scans (for most
worm propagation) and vertical scans (for attacking specific
target machines). Reversible sketches reveal the IP addresses
and ports that are closely related to the attacks. Appropriate
counter-measures can then be applied. Take port scans and
point-to-point SYN flooding for example. We can use ingress
filters to block the traffic from the attacker IP. The evaluation
based on router traffic as described in Section VI-B demon-
strates that the reversible sketch based IDMS significantly
outperforms existing approaches like Threshold Random Walk
(TRW) [17], TRW with approximate caches [18], and Change-
Point Monitoring [19], [20]. For more details, please refer
to [12].

VI. IMPLEMENTATION AND EVALUATION

In this section, we first discuss the implementation and
evaluation of streaming data recording in hardware. We then
introduce the methodology and simulation results for heavy
change detection.

A. Hardware Traffic Recording Achieves 16Gbps

The Annapolis WILDSTAR Board is used to implement the
original and reversible k-ary sketch. This platform consists
of three Xilinx Virtex 2000E FPGA chips [21], each with
2.5M gates contained within 9600 Configurable Logic Blocks
(CLBs) interconnected via a cross-bar along with memory
modules. This development board is hosted by a SUN Ultra-
10 workstation. The unit is implemented using the Synplify
Pro 7.2. tool [22]. Such FPGA boards cost about $1000.

The sketch hardware consists of H hash units, each of
which addresses a single m-element array. For almost all
configurations, delay is the bottleneck. Therefore, we have
optimized it using excessive pipelining. The resulting maxi-
mum throughputs for 40-byte-packet streams for H = 5 are:
For the original k-ary sketch, we achieve a high bandwidth of
over 22 Gbps. For the reversible sketch with modular hashing
we archive 19.3Gbps. Even for the reversible sketch with IP
mangling and modular hashing, we achieve 16.2 Gbps.



B. Software Simulation Methodology

1) Network Traffic Traces: In this section we evaluate our
schemes with Netflow traffic traces collected from two sources
as shown in Table III.

TABLE III
EVALUATION DATA SETS

Collection Location || A large US ISP | Northwestern Univ.
# of Netflow records 330M 19M

peak packet rate 86K/sec 79K/sec

avg. packet rate 63K/sec 37K/sec

In both cases, the trace is divided into 5-minute intervals.
For ISP data the traffic for each interval is about 6GB. The
distribution of the heavy change traffic volumes (in Bytes)
over 5 minutes for these two traces is shown in Figure 6. The
y-axis is in logarithmic scale. Though having different traffic
volume scales, the heavy changes of both traces follow heavy-
tail distributions. In the interest of space, we focus on the ISP
data. Results are the same for the Northwestern traces.
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Fig. 6. The distribution of the top heavy changes for both data sets

2) Experimental Parameters: In this section, we present the
values of parameters that we used in our experiments, and
justify their choices.

The cost of sketch updating is dominated by the number of
hash tables, so we choose small values for H. Meanwhile, H
improves the accuracy by making the probability of hitting
extreme estimates exponentially small [1]. We applied the
“grid search” method in [1] to evaluate the impact on the
accuracy of estimation with respect to cost, and obtained
similar results as those for the original sketches. That is, it
makes little difference to increase H much beyond 5. As a
result, we choose H to be 5 and 6.

Given H, we also need to choose r. As in Section II-C,
our goal is to output any key that hashes to a heavy bucket
in more than |£ | of the H hash tables. Thus, we consider
r < | 2| and the values H =5, 7 =1;and H =6, r = 1 or
2.

Another important parameter is m, the number of buckets in
each hash table. The lower bound for providing a reasonable
degree of error threshold is found to be m = 1024 for normal
sketches [1], which is also applicable to reversible sketches.
Given that the keys are usually IP addresses (32 bits, ¢ = 4)
or IP address pairs (64 bits, ¢ = 8), we want m = 29 for an
integer . Thus, m should be at least 2'2.

We also want to use a small amount of memory so that the
entire data structure can fit in fast SRAM. The total memory
for update recording is only 2 X (number of tables(H)) x
(number of bins(m)) x 4bytes/bucket. This includes a re-
versible k-ary sketch and an original k-ary sketch. In addition
to the two settings for H, we experiment with two choices
for m: 2'2 and 2'6. Thus, the largest memory consumption
is 3MB for m = 26 and H = 6, while the smallest one is
160KB for m = 2'2 and H = 5.

We further compare it with the state-of-the-art deltoids ap-
proach (see Section IV-G), with the delfoids software provided
by its authors. To obtain a fair comparison we allot equal
memory to each method, i.e., the memory consumption of the
reversible sketch and the verifying sketch equals that of the
deltoids.

3) Evaluation Metrics: Our metrics include accuracy (in
terms of the real positive /false positive percentages), execution
speed, and the number of memory accesses per packet. To
verify the accuracy results, we also implemented a naive
algorithm to record per-flow volumes, and then find the heavy
changes as the ground truth. The real positive percentage is the
number of true positives reported by the detection algorithm
divided by the number of real heavy change keys. The false
positive percentage is the number of false positives output
by the algorithm divided by the number of keys output by
the algorithm. Each experiment is run 10 times with different
datasets (i.e., different 5-minute intervals) and the average is
taken as the result.

C. Software Simulation Results

1) Highly Accurate Detection Results: First, we test the
performance with varying m, H and r selected before. We
also vary the number of true heavy keys from 1 to 120 for
m = 4K, and from 1 to 2000 for m = 64K by adjusting ¢.
Both of these limits are much larger than the m?/? bound and
thus are achieved using the iterative approach of Section IV-F.

As shown in Figure 7, all configurations produce very
accurate results: over a 95% true positive rate and less than
a 0.25% false positive rate for m = 64K, and over a 90%
true positive rate and less than a 2% false positive rate for
m = 4K. Among these configurations, the H =6 and r = 2
configuration gives the best result: over a 98% true positive
and less than a 0.1% false positive percentage for m = 64K,
and over a 95% true positive and less than a 2% false positive
percentage for m = 4K. When using the same amount of
memory for recording, our scheme is much more accurate
than the deltoids approach. Such trends remain for the stress
tests and large key space size test discussed later. In each
figure, the z-axis is the number of heavy change keys and
their corresponding change threshold percentage ¢.

Note that an increase of r, while being less than %,
improves the true positive rate quite a bit. It also increase the
false positive rate, but the extra original k-ary sketch bounds
the false positive percentage by eliminating false positives
during verification. The running time also increases for bigger
r, but only marginally.

2) Iterative Approach Very Effective: As analyzed in Sec-
tion IV-C, the running time grows exponentially as ¢ exceeds
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m?2/4. Otherwise, it only grows linearly. This is indeed con-
firmed with our experimental results as shown in Figure 8. For
the experiments, we use the best configuration from previous
experiments: H = 6, m = 64K, and » = 2. Note that the
point of deviation for the running time of the two approaches
is at about 250 ~ m?/9(256), and thus matches very well with
the theoretic analysis.

We implement the iterative approach by finding the thresh-
old that produces the desired number of changes for the current
iteration, detecting the offending keys using that threshold,
removing those keys from the sketch, and repeating the
process until the threshold equals the original threshold. Both
the iterative and non-iterative approach have similarly high
accuracy as in Figure 7.

3) Stress Tests with Larger Dataset Still Accurate: We
further did stress tests on our scheme with two 2-hour netflow
traces and detected the heavy changes between them. Each
trace has about 240 GB of traffic. Again, we have very
high accuracy for all configurations, especially with m
64K, H = 6 and r = 2, which has over a 97% real positive
percentage and less than a 1.2% false positive percentage as

6) Few Memory Accesses Per Packet Recording: 1t is very
important to have few memory accesses per packet for online
traffic recording over high-speed links. For each packet, our
traffic recording only needs to 1) look up the mangling table
(see Section III-B) and 2) update each hash table in the
reversible and verifier sketch. (2H accesses).

[Key Iength log n (bits) [ 32 | 64 | 104 |
# of mangling table lookup, g 4 8 13
(# of characters in each key)
Size of characters in each key, ¢ 8 8 13
Mangling table size 4KB 8KB | 13KB
(2¢ X g X 4Byte)
imemory access/pkt (g + 2H) 14-16 | 18-20 | 23-25
'Avg memory access/pkt 34 66 106
(deltoids) (2 x (logn/2 + 1))

TABLE IV

MEMORY ACCESS COMPARISON: REVERSIBLE SKETCH & DELTOIDS. 104
BITS FOR 5 TUPLES (SRC IP, DEST IP, SRC PORT, DEST PORT, PROTOCOL)

For deltoids, for each entry in a hash table, there are logn
counters (e.g., 32 counters for IP addresses) corresponding to
each bit of the key. Given a key, the deltoids data structure



needs to update each counter corresponding to a “1” bit in
the binary expansion of the key, as well as update a single
sum counter. Thus, on average, the number of counters to
be updated is half of the key length plus one. As suggested
in [3], we use 2 hash tables for deltoids. Thus, the average
number of memory accesses per packet is the same as the key
length in bits. The comparison between the reversible sketch
and deltoids is shown in Table IV. Our approach uses only 20-
30% of the memory accesses per packet as that of the deltoids,
and even fewer for larger key spaces.

7) Monitoring and Detection with High Speeds: In this
section, we show the running time for both recording and
detection in software.

With a Pentium IV 2.4 GHz machine with normal DRAM
memory, we record 2.83M items in 1.72 seconds, i.e., 1.6M
insertions/second. For the worst case scenario with all 40-byte
packets, this translates to around 526 Mbps. These results are
obtained from code that is not fully optimized and from a
machine that is not dedicated to this process. Our change
detection is also very efficient. As shown in Figure 8, for
K=65,536, it only takes 0.34 second for 100 changes. To the
extreme case of 1000 changes, it takes about 13.33 seconds.

In summary, our evaluation results show that we are able
to infer the heavy change keys solely from the k-ary sketch
accurately and efficiently, without explicitly storing any keys.
Our scheme is much more accurate than deltoids, and has
far fewer memory accesses per packet, even to an order of
magnitude.

VII. RELATED WORK

Most related work has been discussed earlier in this paper.
Here we briefly examine a few remaining works.

Given today’s traffic volume and link speeds, it is either
too slow or too expensive to directly apply existing tech-
niques on a per-flow basis [4], [1]. Therefore, most existing
high-speed network monitoring systems estimate the flow-
level traffic through packet sampling [23], but this has two
shortcomings. First , sampling is still not scalable; there are
up to 264 simultaneous flows, even defined only by source
and destination IP addresses. Second, long-lived traffic flows,
increasingly prevalent for peer-to-peer applications [23], will
be split up if the time between sampled packets exceeds
the flow timeout. Thus, the application of sketches has been
studied quite extensively [9], [5], [6].

The AutoFocus system automates the dynamic clustering
of network flows which exhibit interesting properties such as
being a heavy hitter. But this system requires large memory
and can only operate offline [24]. Recently, PCF has been
proposed for scalable network detection [25]. It uses a similar
data structure as the original sketch, and is not reversible.
Thus, even when attacks are detected, attacker or victim
information is still unknown, making mitigation impossible.

VIII. CONCLUSION

In this paper, we propose efficient reversible hashing
schemes which record massive network streams over high-
speed links online, while maintaining the ability to detect
heavy changes and infer the keys of culprit flows in (nearly)
real time. This scheme has a very small memory usage and a

small number of memory accesses per packet, and is further
scalable to a large key space. Evaluations with real network
traffic traces show that the system has high accuracy and
speeds. In addition, we designed a scalable network intrusion
and mitigation system based on the reversible sketches, and
demonstrate that it can detect almost all SYN flooding attacks
and port scans that can be found with complete flow-level logs.
Moreover, we will release the software implementation soon.
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