
On Selfish Routing in Internet-Like Environments

Lili Qiu Yang Richard Yang ∗ Yin Zhang Scott Shenker †

Microsoft Research Yale University AT&T Labs – Research ICSI
liliq@microsoft.com yry@cs.yale.edu yzhang@research.att.com shenker@icir.org

ABSTRACT
A recent trend in routing research is to avoid inefficiencies in network-
level routing by allowing hosts to either choose routes themselves
(e.g., source routing) or use overlay routing networks (e.g., Detour
or RON). Such approaches result in selfish routing, because routing
decisions are no longer based on system-wide criteria but are in-
stead designed to optimize host-based or overlay-based metrics. A
series of theoretical results showing that selfish routing can result in
suboptimal system behavior have cast doubts on this approach. In
this paper, we use a game-theoretic approach to investigate the per-
formance of selfish routing in Internet-like environments. We focus
on intra-domain network environments and use realistic topologies
and traffic demands in our simulations. We show that in contrast
to theoretical worst cases, selfish routing achieves close to optimal
average latency in such environments. However, such performance
benefit comes at the expense of significantly increased congestion
on certain links. Moreover, the adaptive nature of selfish overlays
can significantly reduce the effectiveness of traffic engineering by
making network traffic less predictable.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—Internet

General Terms
Performance

Keywords
Selfish Routing, Overlay, Game Theory, Traffic Equilibrium, Traffic
Engineering, Optimization, Relaxation

1. INTRODUCTION
For decades, it has been the responsibility of the network to route

traffic. Recent studies [32, 40] have shown that there is inherent in-
efficiency in network-level routing from the user’s perspective. In
response to these observations, we have seen an emergent trend to
allow end hosts to choose routes themselves by using either source

∗Supported in part by NSF grant ANI-0207399.
†Supported in part by NSF grants ITR-0205519, ANI-0207399, ITR-
0121555, ITR-0081698, ITR-0225660 and ANI-0196514.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’03, August 25–29, 2003, Karlsruhe, Germany.
Copyright 2003 ACM 1-58113-735-4/03/0008 ...$5.00.

routing (e.g., Nimrod [8]) or overlay routing (e.g., Detour [32] or
RON [5]). These end-to-end route selection schemes are shown to
be effective in addressing some deficiencies in today’s IP routing.
For example, measurements [10, 32, 33] from the Detour project
show that in the Internet, a large percentage of flows can find better
alternative paths by relaying among overlay nodes, thereby improv-
ing their performance. RON [5] also demonstrates the benefit of
overlay routing using real implementation and deployment.

Such end-to-end route selection schemes are selfish by nature in
that they allow end users to greedily select routes to optimize their
own performance without considering the system-wide criteria. Re-
cent theoretical results suggest that in the worst case selfish routing
can result in serious performance degradation due to lack of cooper-
ation. In particular, Roughgarden and Tardos prove that the price of
anarchy (i.e., the worst-case ratio between the total latency of self-
ish routing and that of the global optimal) for selfish routing can be
unbounded for general latency functions [31].

Despite much theoretical advance, an open question is how self-
ish routing performs in Internet-like environments. This is a chal-
lenging question, since today’s Internet is unique in the following
respects.

First, topologies and traffic demands of the Internet are not ar-
bitrary but have certain structures. The worst-case results may not
be applicable to realistic topologies and traffic demands. A general
open question is whether selfish routing results in bad performance
in Internet-like environments (i.e., under realistic network topolo-
gies and traffic demands).

Second, users in overlay networks do not have full flexibility in
specifying their end-to-end paths. Due to limited availability of
source routing support in the routers, the path between any two
network nodes is dictated by the Internet routing protocols, such
as OSPF [28], MPLS [26], or BGP [37]. While overlay networks
provide another mechanism to enable users to control their routes
by relaying through overlay nodes, the route between two overlay
nodes is still governed by the underlying routing protocol. A natural
question is how to model such selfish overlay routing and whether
selfish overlay routing results in bad performance.

Third, even if selfish overlays (i.e., overlays consisting of selfish
traffic) yield good performance, they can only be deployed gradu-
ally. As a result, background traffic and overlay traffic will interact
with each other. We call such interactions horizontal interactions.
An important question is how such selfish traffic affects the remain-
ing traffic routed using the traditional routing protocols. A related
question is whether multiple overlays result in bad performance.

Fourth, the way in which selfish users choose their routes can in-
teract with traffic engineering. We call such interactions vertical
interactions, which can be viewed as the following iterative pro-
cess. First, ISPs adjust network-level routing according to traffic
demands, using schemes in [6, 14, 15, 42], to minimize network
cost. Then selfish users adapt to changes in the underlying default
routes by choosing different overlay paths to optimize their end-

to-end performance. Such adaptation changes traffic demands and
triggers traffic engineering to readjust the default routes, which in
turn makes selfish users adapt to new routes. Given the mismatch
between the objectives of selfish routing and traffic engineering, an
interesting question is whether selfish routing interacts badly with
traffic engineering.

In this paper, we seek to answer the above questions through ex-
tensive simulations. We take a game-theoretic approach to com-
pute the traffic equilibria of various routing schemes and then eval-
uate their performance. We focus on intra-domain network envi-
ronments because recent advances in topology mapping [36] and
traffic estimation [44] allow us to use realistic network topologies
and traffic demands for such scenarios. Understanding selfish rout-
ing in inter-domain environments is also of great interest but will be
more challenging. First, we do not have realistic models for inter-
domain traffic demands. Moreover, despite some recent progress
towards understanding autonomous system relationships [17, 38],
more research efforts are needed to develop realistic models for
inter-domain routing policies. Finally, the large size of inter-domain
topologies makes it computationally prohibitive to derive traffic equi-
libria. Due to these difficulties, we defer it to future work.

Our key contributions and results can be summarized as follows.
First, we formulate and evaluate selfish routing in an overlay net-
work. Selfish routing in an overlay network is different from tra-
ditional selfish source routing in that (i) the route between any two
overlay nodes is dictated by network-level routing, and (ii) differ-
ent overlay links may share common physical links and therefore
traditional algorithms to compute traffic equilibria do not apply.

Second, we find that in contrast to theoretical worst cases, selfish
routing in Internet-like environments yields close to optimal average
latency, which can be much lower than that of default network-level
routing. This is true for both source routing and overlay routing.
Moreover, we show selfish routing achieves good performance with-
out hurting the traffic that is using default network-level routing.

Third, we show that the primary impact of selfish routing on
Internet-like environments is the fundamental mismatch between
the objectives of selfish routing and traffic engineering. In partic-
ular, our results show that the low latency of selfish routing is often
achieved at the expense of increased congestion on certain links.
Moreover, the adaptive nature of selfish routing makes traffic de-
mands less predictable and can significantly reduce the effectiveness
of traffic engineering.

The rest of the paper is organized as follows. In Section 2, we re-
view related work. In Section 3, we present our network model. In
Section 4, we specify the routing schemes we evaluate and present
the algorithms we use to compute their traffic equilibria. In Sec-
tion 5, we describe our evaluation methodology. We study the per-
formance of selfish source routing in Section 6 and that of selfish
overlay routing in Section 7. In Section 8 and Section 9, we investi-
gate horizontal and vertical interactions, respectively. We conclude
in Section 10.

2. RELATED WORK
A number of recent studies have reported that network-level rout-

ing is inefficient from the user’s perspective. For example, Savage
et al. [33] use Internet measurements to show that the default rout-
ing path is often suboptimal in terms of latency, loss rate, and TCP
throughput. The suboptimal performance of network-level routing
is inevitable due to routing hierarchy and policy [40], as well as dif-
ferent routing objectives used by network operators, whose goal is
to avoid high utilization. Moreover, stability problems with routing
protocols, such as BGP [37], could make things even worse. As a
result, there has been a movement to give users more autonomy in
choosing their routes by using source routing (e.g., Nimrod [8]) or
overlay routing networks (e.g., Detour [32, 33] and RON [5]).

Recently a series of theoretical results show that selfish routing
can result in extremely suboptimal performance in worst cases. The

pioneering work in this area is by Koutsoupias and Papadimitriou [22],
who compare the worst-case Nash equilibrium with a global optimal
solution in minimizing network congestion in a two-node network.
Roughgarden and Tardos are interested in a different performance
metric – latency. In [31], they prove that the price of anarchy (i.e.,
the worst-case ratio between the average latency of a Nash equi-
librium and that of the global optimal) depends on the “steepness”
of the network latency functions. They show that the price of an-
archy is unbounded for a general latency function such as M/M/1.
In contrast to the theoretical studies, our study focuses on a prac-
tical setting, by using realistic network topologies and traffic de-
mands; different from the measurement studies, our study considers
a more general setting and investigates networks with a large amount
of selfish traffic, under different network configurations (including
both static and dynamic network controls).

Although the price of anarchy can be high in the worst-case, some
theoretical studies have also shown that the degradation is less se-
vere from some other perspectives. For example, Friedman shows
that for “most” traffic rate vectors in a range, the price of anarchy
is lower than that of the worst cases [16]. He also analyzes the ef-
fects of TCP rate adaptation in a parallel-link network and shows
that the performance loss is small. Roughgarden and Tardos [31]
show (essentially) that the performance degradation due to selfish
routing can be compensated for by doubling the bandwidth on all
links. However, this is often not a practical option for the Internet at
least in the short-term.

There are also other ways in which end users can selfishly opti-
mize the performance of their traffic. For example, a user can greed-
ily inject traffic into a network. A number of papers (e.g., [2, 35])
consider such a congestion game. In practice, it is possible to have a
hybrid game that consists of a route selection game and a congestion
game, but we defer it to future work.

3. NETWORK MODEL
In this section, we describe our network model, especially the

network-level routing protocols. In the next section, we describe the
schemes of how traffic demands are routed through the network. In
Section 5, we describe the network topologies, traffic demands, and
latency functions that we use to instantiate our network model.
Physical network: We study the performance of realistic physical
networks. We model a physical network as a directed graph G =
(V, E), where V is the set of nodes, and E the set of directed links.
We assume that the latency of each physical link is a function of
its load. The exact latency functions we use will be described in
Section 5.3.
Demands: We partition network traffic into demands. A demand
represents a given amount of traffic from a source to a destination.
In particular, we identify a special type of demand, called infinites-
imal demand. A collection of infinitesimal demands models a large
aggregation of independent, small transactions such as web transac-
tions, and the generator of each transaction makes an independent
decision.
Overlays: An overlay consists of overlay nodes, directed overlay
links, and a set of demands originated from the overlay nodes. The
overlay nodes agree to forward each other’s traffic along one or more
overlay links. The physical route for an overlay link is dictated
by network-level routing and may involve multiple physical links.
Different overlay links may share one or more physical links. The
overlay nodes and overlay links form the overlay topology. To limit
the parameter space, we only consider the fully connected overlay
topology in this work. That is, we assume there is an overlay link
between every pair of overlay nodes. We plan to investigate the ef-
fects of different overlay topologies in our future work.

Users: We assume that the network consists of a collection of users.
Each user decides how its traffic should be routed. The objective of
a user is to minimize the average latency of its traffic. We choose

to use latency as the optimization objective of selfish routing for the
following reasons: 1) many applications such as short Web transfers
and IP telephony require low latency; 2) most previous theoretical
analyses are based on latency, and one of the major objectives of this
study is to investigate whether the theoretical worst-case results ap-
ply to Internet-like environments. We plan to investigate the effects
of alternative routing objectives (e.g., loss [3]) in our future work.
Route controller: Besides users, we also have a route controller,
which controls the network-level routing in the physical network.
(We use network-level routing and physical routing interchangeably
in this paper.) We consider several types of network-level routing.
We assume that the route controller uses a routing protocol based on
either OSPF[28], which uses shortest-path with equal-weight split-
ting, or MPLS[26], which uses the more general multi-commodity
flow routing. For OSPF routing, we consider three weight assign-
ments:

• Hop-count OSPF routing, which assigns a unit weight to each
physical link;

• Random-weight OSPF routing, which assigns a random weight
to each physical link;

• Optimized-compliant OSPF routing, which has OSPF weights
set to minimize network cost [14] (see Section 5.4), when
assuming all traffic is compliant, following the routes deter-
mined by the network. The network cost is a piece-wise linear
convex function over all links. This metric has been consid-
ered as a good objective for traffic engineering because it not
only avoids overloading physical links, but also avoids taking
very long paths [14, 15].

We represent network-level routing by a routing matrix R, where
R[p, e] specifies the fraction of traffic between the source-destination
pair p that goes through the physical link e. The routing matrix R is
computed by the routing protocol under study.

In our study, the route controller can change network routing to
optimize overall network performance; in other words, it can per-
form traffic engineering. For MPLS, the route controller can di-
rectly adjust the routing matrix R; for OSPF, the route controller
will adjust the weights of the physical links to influence network
routing [14, 15].

4. ROUTING AND TRAFFIC EQUILIBRIA
We evaluate each selfish routing scheme by computing its per-

formance at traffic equilibria. Using a game-theoretic approach, we
define a traffic equilibrium as a state where no user can improve the
latency of its traffic by unilaterally changing the amount of traffic it
sends along different network paths. One possible way of comput-
ing traffic equilibria is through simulation. More specifically, one
could simulate the moves of each individual user and wait until the
system reaches equilibrium. However, given the size of the net-
work we are considering (see Section 5.1), such simulation-based
approach may take a prohibitively long time to converge. Instead,
we compute traffic equilibria directly. Below we introduce the rout-
ing schemes, and specify the algorithms we use to compute the traf-
fic equilibria. See Appendix for further details on the algorithms.

For a comprehensive study, we consider the following five routing
schemes: (i) source routing, (ii) optimal routing, (iii) overlay source
routing, (iv) overlay optimal routing, and (v) compliant routing. Be-
low we describe these routing schemes in details.

4.1 Routing on the physical network
The first two routing schemes allow a user to route its traffic di-

rectly through any paths on the physical network.
Source routing: Source routing results in selfish routing, since

the source of the traffic makes an independent decision about how
the traffic should be routed. The selfish routing scheme studied in
most previous theoretical work is source routing.

Optimal routing: Optimal routing refers to latency optimal rout-
ing. It models a scenario where a single authority makes the routing
decision for all the demands to minimize the average latency.

A traditional algorithm to compute the traffic equilibria of source
routing and optimal routing is the linear approximation algorithm, a
variant of the well-known Frank-Wolfe algorithm [13, 29, 34] (see
Appendix for more details).

4.2 Overlay routing
The next two routing schemes are the overlay versions of source

routing and optimal routing.
Overlay source routing: Overlay source routing is selfish rout-

ing through overlay nodes. Similar to source routing, it is the traffic
source that controls the routes.

Overlay optimal routing: Overlay optimal routing refers to over-
lay latency optimal routing. It models a scenario where the demands
in the overlay have complete cooperation in minimizing the average
latency.

As mentioned in Section 1, overlay routing is different from rout-
ing directly on the physical network. In particular, the physical route
for an overlay link is dictated by network-level routing and may in-
volve multiple physical links. Moreover, different overlay links may
share common physical links and therefore may interfere with each
other. Therefore, we cannot apply the traditional linear approxima-
tion algorithms to compute traffic equilibria for such schemes.

We use the following approach to compute traffic equilibria for
overlay routing. For each overlay, we build a logical network from
the physical network. The nodes in the logical network consist of
the union of the nodes in the overlay and the nodes that are the
destinations of nonzero demands in the overlay. The links in the
logical network consist of all the overlay links, as well as a link
from each overlay node to each node that is the destination of some
traffic demands but does not belong to the overlay.

Given this model, each logical link can be mapped to a collection
of physical links. More specifically, assume that the logical link p
is for the source-destination pair p (we use the same symbol p to
denote the logical link p and the source-destination pair p), then the
logical link consists of all the physical links e such that R[p, e] > 0.
If a demand sends f units of traffic through a logical link p, then
each physical link e will carry f · R[p, e] amount of traffic for this
demand. Figure 1 shows an example of a physical network, and the
logical network for an overlay formed by nodes 2, 3, and 5.

1

2

4

5

6

7
8

(a) Physical Network

3

9

(b) Logical Network of an overlay

7

6

3

2

5

Figure 1: A physical network and the logical network for the
overlay formed by nodes 2, 3, and 5. Nodes 6 and 7 are not
overlay nodes but nodes 2, 3, and 5 have demands to them. The
logical link from node 2 to 5 consists of two physical paths: 2 to
9 to 5, and 2 to 8 to 5, if hop-count OSPF routing is used.

Using such logical networks, we can compute the traffic equilibria
of overlay routing by either a modified linear approximation algo-
rithm or a relaxation algorithm (see Appendix for details). When
there are multiple overlays, we use the relaxation framework pro-
posed in [23, 41] to ensure convergence (see Appendix for details).

4.3 Compliant routing
For comparison, we also consider the default network-level rout-

ing, which we term compliant routing.
Compliant routing: Traffic demands using compliant routing

follow the routes determined by the network-level routing protocol.

5. EVALUATION METHODOLOGY
In this section, we first describe the network topologies, traffic

demands, and link latency functions used in our evaluation. Then we
discuss the performance metrics that we use as a basis for comparing
the efficiency of different routing schemes.

5.1 Network topologies
We use both real and synthetic topologies in our evaluation.
Real topology: We use a real router-level backbone topology

from an operational tier-1 ISP, referred to as ISPTopo, with on
the order of a hundred backbone routers connected by OC48 (i.e.,
2.48 Gbps) and OC192 (i.e., 10 Gbps) links (the exact numbers are
omitted for proprietary reasons). For each link in the real topology,
we use the actual link capacity in our study. The propagation delay
of each link is estimated using the actual fiber length divided by the
speed of light.

Rocketfuel topologies: Rocketfuel applies several effective tech-
niques to obtain fairly complete ISP maps [36]. We use the POP-
level maps published by the authors, shown in Table 1, as part of
our topologies. For each Rocketfuel topology, we use two band-
width settings: all links are either OC3 (i.e., 155 Mbps) or OC48
(i.e., 2.48 Gbps). The propagation delay of each link is approxi-
mated using geographical distance divided by the speed of light.

#Non-leaf
ISP Loc. #Nodes Nodes #Edges
ATT US 108 30 282

Abovenet US 22 13 160
Exodus US 22 17 102
Level3 US 53 37 912
Sprint US 44 21 212
Verio US 122 82 620

EBONE Intl. 28 25 132
Telstra Intl. 58 8 120
Tiscali Intl. 51 38 258

Table 1: ISP topologies as measured by Rocketfuel.

Random topologies: In addition to real topologies, for diversity
we also randomly generate power-law topologies using BRITE [25],
since a number of papers [11, 39] have shown that the power-laws
capture the Internet structure quite well. We generate 100-node
router-level topologies with edge density (i.e., the number of neigh-
boring nodes that each new node connects to) varying from 2 to 10.
In the following sections, we use PowerDn to denote a power-law
topology with edge density n. For each power-law topology, we use
two bandwidth settings: all links are either OC3 or OC48. The prop-
agation delay of each link is drawn uniformly between 0 − 10 ms.

5.2 Traffic demands
We use both real and synthetic traffic demands in our evaluation.
Real traffic demands: Our real traffic demands are estimated

from SNMP link data using the tomogravity method [44], which has
been shown to yield accurate estimates especially for large traffic
matrix elements. We use the backbone router to backbone router
traffic matrices during three randomly chosen hours in November
2002.

Synthetic traffic demands: The real traffic demands are only
available for ISPTopo. For the other topologies, we generate syn-
thetic traffic demands as follows. For a Rocketfuel topology, we
generate synthetic traffic by randomly mapping POPs in ISPTopo

to non-leaf nodes in the Rocketfuel topology, using several differ-
ent random seeds. Specifically, let m(.) denote a random mapping
from the cities in ISPTopo to those in a Rocketfuel topology. Let
T (s, d) denote the traffic demand from city s to city d in ISPTopo.
Then the traffic demand from city m(s) to city m(d) in the topology
under study is set to T (s, d). For synthetic power-law topologies,
we perform similar mappings at the router level to derive demands.

Load scale factor: To control system load, we scale up the de-
mands so that when all the traffic is compliant and routed based on
shortest hop-count, the maximum link utilization is 100·F%, where
F is a load scale factor (sometimes abbreviated as LSF).

5.3 Link latency functions
As shown in [30], link latency functions play an important role in

determining the effectiveness of selfish routing. In our evaluations,
we use five representative latency functions: M/M/1, M/D/1 [18],
P/M/1, P/D/1 [19], and BPR [9]. We also implement piecewise-
linear, increasing, convex functions to approximate any other la-
tency functions. In all latency functions, we include a term for
propagation delay (Section 5.1 shows how we determine its value
for each physical link).

Our first two latency functions belong to the general M/G/1 class
of latency functions: M/M/1 and M/D/1. For a M/G/1 queue, the

latency can be expressed as l(x) = 1
µ

+ x·(1+σ2µ2)
2µ(µ−x)

+ prop, where
x is the traffic load, µ the link capacity, σ the standard deviation
of the service time, and prop the propagation delay. The M/M/1
latency function is M/G/1 with σ = 1

µ
; therefore l(x) = 1

µ−x
+

prop. The M/D/1 latency function is M/G/1 with σ = 0; therefore
l(x) = 0.5

µ−x
+ 0.5

µ
+prop. To avoid the discontinuity when the load

approaches capacity, we approximate the M/M/1 or M/D/1 function
with a linear function beyond 99% utilization. To test sensitivity
to the threshold, we also try 90% and 99.9%. The results are very
similar, and in the interest of brevity we present the results using
99% as the threshold.

Our next two latency functions, P/M/1 and P/D/1, have heavy-
tail inter-arrival times. Here P stands for Pareto. We set the shape
parameter β = 1.5 so that the resulting distribution has infinite vari-
ance. Since there is no closed-form expression for either P/M/1 or
P/D/1, we approximate each of them using a piecewise-linear, in-
creasing, convex function. We use the results in [19] to approximate
P/M/1. For P/D/1, we derive a linear approximation of its shape
using ns-2 [27] simulations. Specifically, we generate Pareto traffic
to compete for a single bottleneck link with a large FIFO drop-tail
queue and observe the latency as we vary the load.

For comparison purposes, we also run some experiments with
the latency function BPR [9], which is used as a standard latency
function in transportation networks. The expression for this latency

function is l(x) = prop ·
[
1 + 0.15 (x

µ
)4

]
. Table 2 summarizes the

above five latency functions.

Notation Latency function
M/M/1 l(x) = 1

µ−x
+ prop

M/D/1 l(x) = 0.5
µ−x

+ 0.5
µ

+ prop
P/M/1 approx. with Pareto β = 1.5, see [19]
P/D/1 approx. with Pareto β = 1.5

BPR l(x) = prop ·
[
1 + 0.15 (x

µ
)4

]

Table 2: Link latency functions.

5.4 Performance metrics
We use the following performance metrics to evaluate routing

efficiency: (i) average latency, (ii) maximum link utilization, and
(iii) network cost. The first metric reflects end-to-end user perfor-
mance, while the next two reflect the perspective of network op-

erators, who aim to avoid link overloads in their networks. These
performance metrics are computed from traffic equilibria, as we dis-
cussed in the previous section.

The utilization of a link is the amount of traffic on the link di-
vided by its capacity. When a link utilization is beyond 100%, the
link is overloaded. The maximum link utilization is the maximum
utilization over all links in a network.

The maximum link utilization is an intuitive metric; however, it
is dominated by a single bottleneck, as pointed out in [14]. To get a
more complete picture, we also adopt a metric to capture the over-
all network cost. According to [14, 15], the cost of a link can be
modeled using a piecewise-linear, increasing, convex function with
slopes specified as follows:

ue(x/c) =




1 : x/c ∈ [0, 1/3)
3 : x/c ∈ [1/3, 2/3)

10 : x/c ∈ [2/3, 9/10)
70 : x/c ∈ [9/10, 1)

500 : x/c ∈ [1, 11/10)
5000 : x/c ∈ [11/10,∞),

where x is the load on link e, and c its capacity. We refer to the
points at which the slope changes (e.g., 1/3 and 2/3) as the cut-
points. The overall network cost is the sum of all links’ costs.
In [14], Fortz, Rexford, and Thorup showed that OSPF weights de-
rived from one set of cut-points and slopes also tend to give good
performance for other sets of cut-points and slopes. Therefore the
above cost function is a general metric to consider.

For all three metrics, the lower values are preferred.

6. SELFISH SOURCE ROUTING
We first investigate the performance of selfish source routing; that

is, all the demands are infinitesimal and the selfish traffic can use any
routes in the physical network. This is the type of selfish routing
scheme analyzed in most theoretical studies. As shown in [30], the
worst-case latency degradation of selfish source routing compared
with optimal routing can be unbounded due to lack of cooperation.
In this section, we seek answer to the following question: how does
selfish routing perform in Internet-like environments?

6.1 Are Internet-like environments among
the worst cases?

Effects of network load: We begin our investigation of selfish
routing by varying network load. Figure 2 shows the latency for
three representative topologies, as we vary the network load scale
factor from 0.2 to 2.

We make the following observations. First, under various loads,
selfish routing yields lower latency than compliant routing, which is
based on optimized-compliant OSPF weights. This result comple-
ments the previous findings, such as Detour [33] and RON [5], and
shows that the performance benefit of selfish routing over compliant
routing exists even in a single AS network; moreover such benefit
does not disappear even if all traffic is selfish (as opposed to just
having a small portion of selfish traffic in RON). It is not surprising
that compliant routing results in higher latency, because the OSPF
weights are optimized mainly to avoid link overloads rather than
minimize end-to-end user latency. As we will see later, the lower
latency of selfish routing comes at the cost of increased congestion
on certain links.

Second, compared with optimal routing, selfish routing yields
very similar average latency—the difference is close to 0 in most
cases and is always within 30%. In other words, unlike the theoreti-
cal worst cases, the price of anarchy in Internet-like environments is
close to 1. This is likely because under realistic network topologies
and traffic demands, traffic is spread across the network and only a
few links get congested even with selfish routing. As a result, the
average latency under selfish routing is similar to that of optimal

routing.
Effects of network topologies: Next we examine the effects of

network topologies on the latency of selfish routing. Figure 3 com-
pares the latency of different routing schemes when the link latency
function is M/M/1, the load scale factor is 1.0, and the links’ band-
width is OC3.

0

5000

10000

15000

20000

25000

A
bo

ve
ne

t

A
T

T

E
B

O
N

E

E
xo

du
s

Le
ve

l3

S
pr

in
t

T
el

st
ra

T
is

ca
li

V
er

io

P
ow

er
D

2

P
ow

er
D

5

P
ow

er
D

10

Load scale factor=1

A
ve

ra
g

e
la

te
n

cy
 (

u
s)

source optimal compliant

Figure 3: User latency for all topologies with the M/M/1 latency
function and load scale factor 1. Selfish stands for selfish source
routing; optimal stands for optimal routing; compliant stands
for optimized-compliant OSPF routing. The other figures in this
section use the same notation.

As Figure 3 shows, network topologies have a pronounced ef-
fect on the relative performance of selfish and compliant routing.
For example, in the Abovenet and power-law topologies, the latency
achieved by selfish routing is less than half of that incurred by com-
pliant routing. A detailed look at these two topologies shows that
these two topologies have mesh-like connectivity; therefore, self-
ish routing is likely to find more paths and therefore achieves much
lower latency. However, in all topologies, we observe that selfish
routing consistently yields close to optimal latency.

Effects of latency functions: Finally, we study how different
latency functions affect the latency of selfish routing. From Figure 4,
we observe similar latency across different latency functions. When
comparing the latency achieved by different routing schemes, we
see that the performance of selfish routing is close to that of optimal
routing and noticeably better than that of compliant routing.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

M
M

1

M
D

1

B
P

R

P
D

1

P
M

1

M
M

1

M
D

1

B
P

R

P
D

1

P
M

1

M
M

1

Load scale factor=0.6 Load scale factor=1

A
ve

ra
g

e
la

te
n

cy
 (

u
s)

source optimal compliant

Figure 4: User latency for ISPTopo under various latency
functions.

6.2 What is the system-wide cost for selfish
source routing?

The previous subsection shows that unlike theoretical worst cases,
selfish source routing in Internet-like environments incurs low la-
tency. A natural question is whether the low latency comes at the
expense of increased system-wide cost. We examine this issue by
comparing different routing schemes based on two metrics: (i) max-

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 la
te

nc
y

(u
s)

Load scale factor

source
optimal
compliant

(a) ISPTopo

0

2000

4000

6000

8000

10000

12000

14000

16000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 la
te

nc
y

(u
s)

Load scale factor

source
optimal
compliant

(b) Sprint from Rocketfuel

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 la
te

nc
y

(u
s)

Load scale factor

source
optimal
compliant

(c) PowerD10 from BRITE

Figure 2: Selfish source routing: comparison of user latency using M/M/1 link latency under various network loads.

0

20

40

60

80

100

120

140

160

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
ax

im
um

 li
nk

 u
til

iz
at

io
n

(%
)

Load scale factor

source
optimal
compliant

(a) ISPTopo, max. util.

0

20

40

60

80

100

120

140

160

180

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
ax

im
um

 li
nk

 u
til

iz
at

io
n

(%
)

Load scale factor

source
optimal
compliant

(b) Sprint from Rocketfuel, max. util.

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
ax

im
um

 li
nk

 u
til

iz
at

io
n

(%
)

Load scale factor

source
optimal
compliant

(c) PowerD10 from BRITE, max. util.

Figure 5: Selfish source routing: comparison of maximum link utilization using M/M/1 link latency under various network loads.

imum link utilization and (ii) network cost, both defined in Sec-
tion 5.4.

Effects of network load: We start by examining the impact of
network load. Figure 5 shows the maximum link utilization for the
same network configurations as those in Figure 2. From Figure 5,
we observe that in compliant routing, maximum link utilization in-
creases linearly with offered load. This is expected since we use the
same set of weights to scale the traffic (see Section 5.2). In com-
parison, both optimal routing and selfish routing can cause high link
utilization even when the overall offered load is low. For exam-
ple, in both ISPTopo and PowerD10 topologies, at a load factor
of 0.2, the maximum link utilization of optimal routing is close to
90% and that of selfish routing is close to 100%. This result oc-
curs because both optimal routing and selfish routing aim to choose
shortest paths; thus they are more likely to cause congestion there,
whereas compliant routing more uniformly spreads traffic across the
entire network to avoid link overloads at the cost of longer end-to-
end paths. The high network utilization is undesirable, since many
backbone networks are kept at a load well below 50% so that there
are enough backup paths during link or router failures [20].

Effects of network topologies: Next we verify the above obser-
vations by varying the network topologies. As shown in Figure 6,
selfish routing consistently yields the highest maximum link utiliza-
tion and network cost in all topologies. For example, in the Exodus
network, the maximum link utilization achieved by selfish routing
is 40% higher than that of optimal routing and 80% higher than
that of compliant routing; for the same network, the network cost of
selfish routing is over an order of magnitude higher than that of op-
timal routing or compliant routing. These results suggest that selfish
routing may make a network much more vulnerable to overload, es-
pecially when failures occur.

Effects of latency functions: The results based on other latency
functions are qualitatively the same, as shown in Figure 7. Since
both latency and network cost/utilization are not very sensitive to
latency functions for the topologies that we consider, in the follow-
ing sections we focus on the M/M/1 latency function. Moreover, we
show only the maximum link utilization, since it is more intuitive
and it gives consistent results as network cost.

0
20
40
60
80

100
120
140
160

A
bo

ve
ne

t

A
T

T

E
B

O
N

E

E
xo

du
s

Le
ve

l3

S
pr

in
t

T
el

st
ra

T
is

ca
li

V
er

io

P
ow

er
D

2

P
ow

er
D

5

P
ow

er
D

10

Load scale factor=1

M
ax

im
u

m
 li

n
k

u
ti

liz
at

io
n

 (
%

)

source optimal compliant

(a) Maximum link utilization (%)

1

10

100

1000

10000

A
bo

ve
ne

t

A
T

T

E
B

O
N

E

E
xo

du
s

Le
ve

l3

S
pr

in
t

T
el

st
ra

T
is

ca
li

V
er

io

P
ow

er
D

2

P
ow

er
D

5

P
ow

er
D

10

Load scale factor=1

N
et

w
o

rk
 c

o
st

source optimal compliant

(b) Network cost

Figure 6: Selfish source routing: comparison of maximum link
utilization and network cost using M/M/1 link latency across dif-
ferent network topologies.

6.3 Summary
To summarize, in this section we compare the performance of dif-

ferent routing schemes using realistic network topologies and traffic
demands. Our results show that unlike the theoretical worst cases,

0
50

100
150
200
250
300
350
400
450
500

MM1 MD1 BPR PD1 PM1 MM1 MD1 BPR PD1 PM1

Load scale factor=0.6 Load scale factor=1

M
ax

im
u

m
 li

n
k

u
ti

liz
at

io
n

 (
%

)

source optimal compliant

(a) Maximum link utilization

1

10

100

1000

10000

100000

M
M

1

M
D

1

B
P

R

P
D

1

P
M

1

M
M

1

M
D

1

B
P

R

P
D

1

P
M

1

Load scale factor=0.6 Load scale factor=1

N
et

w
o

rk
 c

o
st

source optimal compliant

(b) Network cost

Figure 7: Selfish source routing: comparison of maximum link
utilization and network cost across different latency functions.

selfish source routing in Internet-like environments is very effective
in choosing shortest paths, and yields close to optimal average la-
tency. On the other hand, this often comes at the cost of overloading
links on the shortest paths. This suggests that selfish routing may
potentially have a negative impact on traffic engineering. We will
further investigate the issue in Section 9.

7. SELFISH OVERLAY ROUTING
The previous evaluations consider selfish source routing. How-

ever, as we discussed in Section 1, in practice, end users often do not
have complete routing control. We initially expected that reducing
routing flexibility would increase both latency and link utilization,
since users lose fine-grained control over routing. However, as we
will see, this is often not the case.

7.1 Does selfish overlay routing perform well
when every node is in the overlay?

We first consider an overlay that consists of all network nodes.
Note that even if the overlay includes all network nodes, routing on
an overlay is still different from routing on the physical network in
that the latter has access to all network resources, but this may not
be the case for the former. For example, the network-level routing
can easily prevent any overlay traffic from using a particular link
by setting its corresponding column in the routing matrix to 0 (in
OSPF this can be achieved by assigning a large weight to the link).
As a result, certain physical routes cannot be implemented by any
overlay routing schemes.

In our evaluation, we use the same network setting as before, ex-
cept that the routes between any pair of overlay nodes are no longer
determined by end users, but by the network-level routing. We adopt
OSPF for network-level routing and use the three OSPF weight as-
signments as described in Section 3.

Figure 8 shows the performance of overlay source routing for the
ISPTopo network, as we vary network load. In both figures, three

of the four curves overlap, namely source routing, overlay source
routing when the network-level routing uses optimized-compliant
OSPF weights, and overlay source routing when the network-level
routing uses hop count. This suggests that routing constraints, whether
based on hop-count or optimized-compliant weights, have little ef-
fect on user latency or system-wide cost. This result came as quite
a surprise since our initial conjecture was that routing constraints
would degrade performance. In contrast, when the network-level
routing uses random weights, we observe much higher delay and
link utilization. To understand this result, below we introduce a no-
tion called direct link shortest (DLS).

0

2000

4000

6000

8000

10000

12000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 la
te

nc
y

(u
s)

Load scale factor

source routing
overlay-src: opt-weight
overlay-src: hop-count
overlay-src: rand-weight

0

20

40

60

80

100

120

140

160

180

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
ax

im
um

 li
nk

 u
til

iz
at

io
n

(%
)

Load scale factor

source routing
overlay-src: opt-weight
overlay-src: hop-count
overlay-src: rand-weight

(a) Latency (b) Maximum link utilization

Figure 8: Selfish overlay routing: comparison of user latency
and maximum link utilization for the ISPTopo topology.

DEFINITION 1 (DIRECT LINK SHORTEST). We consider a
network-level routing scheme to be direct link shortest (DLS), if for
any physically adjacent nodes A and B, all the traffic from A to B is
routed through the direct link AB without involving any other links.
As an example, hop-count-based OSPF is a DLS routing scheme.

Our key observation about DLS routing schemes is as follows. In
an overlay that covers all network nodes and satisfies DLS, routing
on the overlay has as much routing flexibility as directly routing on
the underlying physical network. This is because, by definition of
DLS, the overlay can force traffic to follow any given physical path
N1N2...Nk by specifying an overlay path with the same node se-
quence: N1 → ... → Nk, where nodes Ni and Ni+1 are physically
adjacent. Given this observation, since hop-count-based OSPF sat-
isfies DLS, it performs as well as source routing. As for optimized-
compliant OSPF weights, our verification shows that such weights
satisfy DLS to a large extent, thus it also performs well.

One implication of the above observation is that the only way
in which a network-level routing scheme can affect the amount of
selfish overlay traffic on a given link AB is by violating DLS. In the
context of OSPF, this can only be achieved by choosing the weights
so that an alternative path from node A to B has a total weight that
is either lower than or equal to the OSPF weight of AB. When the
alternative path has a lower total weight, AB is effectively pruned
from the network, since no overlay traffic can ever use it. When
there is a tie, some load balancing can be achieved. However, such
ties are very rare in our experiments. Therefore, such violations of
DLS effectively reduce the network resources available to the selfish
overlay and can lead to higher latency and link utilization.

With random OSPF weights, violations of DLS are common and
therefore the network resources available to the overlay are signif-
icantly reduced. This explains why we see substantially higher la-
tency and maximum link utilization with random OSPF weights.
We will show later in Section 9 that selfish overlay routing interacts
poorly with OSPF optimizer for exactly the same reason.

We further verify the above observations by using different net-
work topologies; the results are shown in Figure 9. As before, ran-
dom OSPF weights continue to yield substantially higher delay and
maximum link utilization, while the performance of the other three
is close to each other. This confirms our previous findings. When
comparing the performance across different routing schemes, we

observe that selfish routing continues to result in close to optimal
average latency. Moreover, it yields noticeably lower latency than
compliant routing in most cases. However, this lower latency often
comes at the cost of higher maximum link utilization.

load scale factor = 1

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

so
ur

ce

ov
er

la
y:

op
tW

t

ov
er

la
y:

ho
pt

C
nt

ov
er

la
y:

ra
nd

W
t

so
ur

ce

ov
er

la
y:

op
tW

t

ov
er

la
y:

ho
pt

C
nt

ov
er

la
y:

ra
nd

W
t

so
ur

ce

ov
er

la
y:

op
tW

t

ov
er

la
y:

ho
pt

C
nt

ov
er

la
y:

ra
nd

W
t

so
ur

ce

ov
er

la
y:

op
tW

t

ov
er

la
y:

ho
pt

C
nt

ov
er

la
y:

ra
nd

W
t

so
ur

ce

ov
er

la
y:

op
tW

t

ov
er

la
y:

ho
pt

C
nt

ov
er

la
y:

ra
nd

W
t

Abovenet ATT Level3 Sprint PowerD10

A
ve

ra
g

e
la

te
n

cy
 (

u
s)

source optimal compliant

(a) Latency
load scale factor = 1

1

10

100

1000

so
ur

ce
ov

er
la

y:
op

tW
t

ov
er

la
y:

ho
pt

C
nt

ov
er

la
y:

ra
nd

W
t

so
ur

ce
ov

er
la

y:
op

tW
t

ov
er

la
y:

ho
pt

C
nt

ov
er

la
y:

ra
nd

W
t

so
ur

ce
ov

er
la

y:
op

tW
t

ov
er

la
y:

ho
pt

C
nt

ov
er

la
y:

ra
nd

W
t

so
ur

ce
ov

er
la

y:
op

tW
t

ov
er

la
y:

ho
pt

C
nt

ov
er

la
y:

ra
nd

W
t

so
ur

ce
ov

er
la

y:
op

tW
t

ov
er

la
y:

ho
pt

C
nt

ov
er

la
y:

ra
nd

W
t

Abovenet ATT Level3 Sprint PowerD10

M
ax

im
u

m
 li

n
k

u
ti

liz
at

io
n

 (
%

)

source optimal compliant

(b) Maximum link utilization

Figure 9: Selfish overlay routing: comparison of user latency
and maximum link utilization for different network topologies.

7.2 Does selfish overlay routing perform well
when only some nodes are in the overlay?

The previous evaluation includes all of the network nodes in an
overlay. In practice, an overlay may only have partial coverage, i.e.,
only a fraction of the nodes are in the overlay. In such a case, the
routing choice is further constrained, which may have an impact on
the performance. Below we investigate this issue in detail.

Effects of only covering edge nodes: In our first experiment,
we form an overlay from all of the edge nodes in ISPTopo and
route all demands among these edge nodes through the overlay. We
then compare the performance with what we achieve when the same
set of demands is routed through an overlay that includes all of the
network nodes. As shown in Figure 10, the curves of full overlay
coverage almost completely overlap with those of partial coverage,
in terms of both latency and maximum link utilization. These results
are likely due to the fact that the Internet backbone is fairly well-
connected and well-provisioned; therefore, even though end users
can only forward traffic through edge nodes, they do not lose much
flexibility in controlling their routes.

Effects of random partial coverage: In our second experiment,
we uniformly choose a fraction of network nodes to form an overlay
and vary the fraction from 20% to 100%. As before, partial overlay
coverage yields similar latency compared to full overlay coverage.
On the other hand, as shown in Figure 11, full overlay coverage
incurs a slightly higher maximum link utilization than partial cover-
age, because as more nodes and links are included, it becomes more
likely that the overlay has popular shortcuts, which get overloaded.

7.3 Summary
To summarize, in this section we investigate the effects of overlay

routing constraints. We show that if the physical network uses a
routing scheme that satisfies direct link shortest (DLS), the overlay

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 la
te

nc
y

(u
s)

Load scale factor

all
partial

0

20

40

60

80

100

120

140

160

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
ax

im
um

 li
nk

 u
til

iz
at

io
n

(%
)

Load scale factor

all
partial

(a) Latency (b) Maximum link utilization

Figure 10: Effects of partial coverage ion the performance of
selfish overlay routing. Here edge nodes in ISPTopo belong to
an overlay, and OSPF weights are set according to hop count.

0

50

100

150

200

250

LS
F

=
0.

5

LS
F

=
1

LS
F

=
3

LS
F

=
0.

5

LS
F

=
1

LS
F

=
3

LS
F

=
0.

5

LS
F

=
1

LS
F

=
3

LS
F

=
0.

5

LS
F

=
1

LS
F

=
3

LS
F

=
0.

5

LS
F

=
1

LS
F

=
3

cover=20% cover=40% cover=60% cover=80%cover=100%

M
ax

im
u

m
 li

n
k

u
ti

liz
at

io
n

 (
%

)

all partial

Figure 11: Effects of partial coverage in ISPTopo with random
node selection on maximum link utilization.

has full control over how its traffic is routed through the physical
network. In the context of OSPF, the only way in which OSPF can
affect overlay traffic is by violating DLS, which effectively reduces
network resources and may therefore degrade both user and system-
wide performance. We also show that like source routing, overlay
source routing reduces latency at the expense of higher network cost.
Finally, we observe that the effects due to partial coverage are small
in backbone topologies.

8. INTERACTIONS AMONG COMPETING
OVERLAYS

So far we have only considered either a large number of indepen-
dent, small users using source routing (Section 6) or a single selfish
overlay (Section 7). In practice, it is possible that multiple over-
lays and background traffic will share the same physical network,
and these different traffic will compete against one another for the
shared network resources. We call such interactions horizontal in-
teractions.

8.1 What is the relative competitiveness of two
routing schemes?

We start by looking at the interactions between any two types of
traffic. The objective of this subsection is to evaluate the “friend-
liness” of different types of routing schemes. We use R1/R2 to
denote that the routing scheme of the foreground traffic is R1, and
that of the background is R2. Here Ri is either overlay source rout-
ing, overlay optimal routing, or compliant routing. We evaluate the
interactions through four sets of experiments.

Effects of network topologies: First, we study how traffic us-
ing different routing schemes compete against each other in differ-
ent topologies. In this set of experiments, we put the competing
demands at the same nodes, and we set both the foreground and
background traffic to be 50%. In other words, the two types of com-
peting traffic have the same amount of traffic and the same set of
overlay nodes. Figure 12 shows the results. We make two observa-
tions. First, the performance difference between compliant routing

and the competing overlay routing scheme varies across different
topologies. For example, the performance difference is larger in the
Abovenet and power-law topologies. This is consistent with Fig-
ure 3 and can again be explained by the better connectivity of these
topologies (see Section 6.1 for details). Comparing the results in
Figure 12 with those in Figure 3, we observe that the latency of the
compliant traffic is not substantially increased, which indicates that
selfish routing does not hurt the performance of compliant routing
in this environment. Second, overlay source routing achieves simi-
lar performance compared to overlay optimal routing. This suggests
that the performance gain of cooperative overlay optimal routing
over uncooperative overlay source routing is not significant.

load scale factor = 1

0

5000

10000

15000

20000

25000

co
m

/c
om

op
t/c

om
op

t/o
pt

sr
c/

co
m

sr
c/

op
t

sr
c/

sr
c

co
m

/c
om

op
t/c

om
op

t/o
pt

sr
c/

co
m

sr
c/

op
t

sr
c/

sr
c

co
m

/c
om

op
t/c

om
op

t/o
pt

sr
c/

co
m

sr
c/

op
t

sr
c/

sr
c

co
m

/c
om

op
t/c

om
op

t/o
pt

sr
c/

co
m

sr
c/

op
t

sr
c/

sr
c

co
m

/c
om

op
t/c

om
op

t/o
pt

sr
c/

co
m

sr
c/

op
t

sr
c/

sr
c

Abovenet ATT Level3 Sprint PowerD10

A
ve

ra
g

e
la

te
n

cy
 (

u
s)

foreground background

Figure 12: Coexistence of two routing schemes: varying net-
work topologies.

Effects of network-level routing schemes: Second, we explore
the impact of network-level routing schemes on the horizontal in-
teractions as follows. We set both the foreground and background
traffic in ISPTopo to be 50%, and we vary how OSPF weights
are set. As shown in Figure 13, the foreground and background
traffic experience similar latency in most cases, except when OSPF
weights are set randomly. When OSPF weights are set randomly,
compliant traffic incurs about twice as much delay as that of the
competing overlay source routing or overlay optimal routing. This
indicates that inappropriate OSPF weights can significantly degrade
the performance of compliant traffic. In comparison, a selfish over-
lay is able to reduce the latency of its traffic, as it looks for better
alternative paths. Interestingly, this also has a positive side effect:
it helps to reduce the load on the links used by the competing com-
pliant traffic, thereby cutting the latency of the latter by half. When
the network-level routing scheme is configured reasonably, different
overlay routing schemes can coexist well.

load scale factor = 1

0
5000

10000
15000
20000
25000
30000
35000

co
m

/c
om

op
t/c

om
op

t/o
pt

sr
c/

co
m

sr
c/

op
t

sr
c/

sr
c

co
m

/c
om

op
t/c

om
op

t/o
pt

sr
c/

co
m

sr
c/

op
t

sr
c/

sr
c

co
m

/c
om

op
t/c

om
op

t/o
pt

sr
c/

co
m

sr
c/

op
t

sr
c/

sr
c

opt-comp hop-count random

A
ve

ra
g

e
la

te
n

cy
 (

u
s)

foreground background

Figure 13: Coexistence of two routing schemes: varying OSPF
weights in ISPTopo.

Effects of network load and traffic distribution among over-
lays: We further examine the performance of two competing over-
lays as we vary the network load, or vary the fraction of foreground
traffic. In both cases, we observe consistent results: selfish routing
out-performs compliant routing without hurting the latter.

8.2 Can many overlays coexist well?
Next we study horizontal interactions by varying the number of

overlays. Each overlay uses overlay optimal routing and covers all
network nodes. Figure 14 shows the result for ISPTopo, when the
number of overlays is changed in the following ways: (i) one over-
lay, which includes all the demands; (ii) overlay per source, where
each overlay includes all demands originated from a source; (iii)
overlay per source-destination pair, where each overlay includes all
demands between a source and destination pair; (iv) an infinite num-
ber of overlays, where each overlay has infinitesimal demand. We
use the relaxation framework specified in the Appendix to compute
the traffic equilibria for (ii) and (iii). For (iv), we note that having
an infinite number of overlays with infinitesimal demands is equiv-
alent to having all the infinitesimal demands on a single overlay,
each of which tries to minimize its own latency. In other words, (iv)
is equivalent to having a single overlay using overlay source rout-
ing. Thus we do not need to use the relaxation framework. From
Figure 14, we observe that there is only a slight difference in user
latency due to variations in the number of overlays. Results from
other topologies confirm this finding, which suggests that perfor-
mance degradation due to competition among overlays is not signif-
icant.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 la
te

nc
y

(u
s)

Load scale factor

one overlay
per src
per src-dest
infinite

(a) Average latency

80

90

100

110

120

130

140

150

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
ax

im
um

 li
nk

 u
til

iz
at

io
n

(%
)

Load scale factor

one overlay
per src
per src-dest
infinite

(b) Maximum link utilization

Figure 14: Coexistence of multiple overlays in ISPTopo.

8.3 Summary
To summarize, with reasonable OSPF weights (e.g., hop-count),

different routing schemes can share network resources reasonably
well without hurting each other; with bad OSPF weights, selfish
overlays improve performance both for themselves and for compli-
ant traffic. Note that these results are consistent with previous find-
ings (by Zegura et al. [43]) that selfish routing co-exists well with
non-selfish routing in the context of server selection.

9. SELFISH ROUTING VS.
TRAFFIC ENGINEERING

So far all of our experiments assume that the network-level rout-
ing is fixed. We find that while selfish routing can achieve close to
optimal latency, it often increases maximum link utilization and net-
work cost. In practice, the network-level routing may be constantly
changing since one principal goal of traffic engineering is to reduce

network cost by adapting the network-level routing in response to
varying traffic patterns. This motivates us to examine the interac-
tions between selfish routing and traffic engineering, which we term
vertical interactions. More specifically, we ask the following basic
question: Will the system reach a state with both low latency and low
network cost, as selfish routing and traffic engineering each tries to
minimize its own cost function by adapting to the other process?

Below we evaluate vertical interactions in the context of OSPF
and MPLS route optimization. As we will see, OSPF route opti-
mization provides little control over selfish traffic and as a result,
the system performance, both in terms of user latency and network
cost, is no better than using hop-count-based OSPF routing. In con-
trast, MPLS provides fine-grained control and can potentially lead
to better performance.

9.1 Specification of vertical interactions
We specify vertical interactions as an iterative process between

the two players: traffic engineering and selfish overlays.
Traffic engineering adjusts physical routing based on network traf-

fic patterns, which are usually in the form of a traffic matrix. More
specifically, let Tt denote the estimated traffic matrix for time slot
t, then Tt(s, d) represents the total traffic from source s to destina-
tion d during the time slot t. Traffic engineering takes Tt as input,
and computes a routing matrix Rt to optimize network performance.
For our study, we assume Tt is given. In reality, Tt can either be ob-
tained through direct measurements [12] or be estimated based on
link loads [44].

Selfish routing interferes with traffic engineering by changing the
traffic matrix. More specifically, after traffic engineering installs
the routing matrix Rt to the network, selfish routing will respond
and redistribute traffic through overlay nodes, which leads to a new
traffic matrix Tt+1. This process repeats.

Figure 15 specifies the process of vertical interactions. We also
add a relaxation option in the hope of improving stability; however,
our results show that it does not yield much performance improve-
ment. Thus, in the interest of brevity, below we only present the
results of traffic engineering without relaxation.

� Tt is the estimated traffic matrix at time t.
� T ∗

t is the real traffic matrix at time t.
� Rt is the routing matrix at time t.
� Assume

∑
t αt →∞; αt → 0 as t→∞.

T ∗
t = Traffic matrix when routing matrix is Rt−1

if (relaxation)
Tt = (1− αt)Tt−1 + αtT ∗

t
else

Tt = T ∗
t

Rt = OptimizedRoutingMatrix(Tt)
Traffic engineering installs Rt to network
Selfish routing redistributes traffic to form T∗

t+1

Figure 15: One round during vertical interaction.

9.2 Does selfish routing work well with OSPF
optimizer?

We first evaluate vertical interactions when the route controller
uses OSPF. In all of our experiments, the traffic engineering pro-
cess uses an OSPF optimizer to optimize link weights as described
in [14], and the starting routing matrix of the interactions is com-
puted using hop-count-based OSPF. We choose this starting point to
model a scenario in which selfish routing initially has full control
over the routing of its traffic in the physical network (see Section 7),
and then the network decides to start using traffic engineering.

Figure 16 shows the dynamics of vertical interactions for the Sprint
topology. The results indicate that the response of OSPF traffic en-
gineering could yield considerably worse performance than com-
pliant routing using optimized-compliant OSPF weights (i.e., traffic

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 la
te

nc
y

(u
s)

Round

overlay src: TE OSPF
overlay src: hop-count
compliant

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35 40 45 50

M
ax

 li
nk

 u
til

iz
at

io
n

(%
)

Round

overlay src: TE OSPF
overlay src: hop-count
compliant

Figure 16: Vertical interaction with OSPF optimization for the
Sprint topology.

engineering without selfish traffic), and worse than overlay source
routing on top of hop-count-based OSPF (i.e., selfish routing with-
out traffic engineering). We observe qualitatively similar results as
we vary network topologies, the fractions of selfish traffic, and the
sizes of selfish overlays.

These results suggest that the interactions between the two sepa-
rate routing control processes is so ineffective that each individual
control process, when applied alone, can yield better performance
than having such interactions.

Such inefficiency is partly due to the fact that the adaptive nature
of selfish traffic creates considerable variability in traffic demands
and therefore makes it harder to do traffic engineering. Another
important reason is the limited control of OSPF over selfish over-
lay traffic. Recall in Section 7 we have shown that when all net-
work nodes belong to an overlay, the only way in which OSPF can
affect the selfish overlay traffic is by violating DLS, which effec-
tively reduces available network resources. As a result, both latency
and network cost could be worse than those of hop-count-based
OSPF, which gives the overlay full access to all available network
resources.

9.3 Does selfish routing work well with MPLS
optimizer?

The poor interactions between selfish routing and the OSPF opti-
mizer motivates us to look for alternative solutions. In this subsec-
tion, we examine vertical interactions between selfish routing and
the MPLS optimizer, which allows one to implement general multi-
commodity routing. Given a traffic matrix and a piece-wise linear,
increasing, convex network cost function, the MPLS optimizer can
find the optimal routing matrix R that minimizes the network cost
by solving a linear programming problem [1, Chapter 17]. We have
implemented such an optimizer based on lp solve [24].

Figure 17 shows the average latency and maximum link utiliza-
tion for the Sprint topology. We observe that the routing perfor-
mance is noticeably better than that of OSPF. It allows the system
to reach a state in which the network cost is close to that of optimal
traffic engineering without selfish routing, and the average latency is
only marginally higher than what selfish routing can achieve in the
absence of traffic engineering. This is important because the traffic
engineering process can choose to stop at any moment and settle on
a routing matrix that gives a satisfactory result; that is, the traffic en-
gineering process can be considered as a type of Stackelberg game.

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 la
te

nc
y

(u
s)

Round

overlay src: TE MPLS
overlay src: hop-count
compliant

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50

M
ax

 li
nk

 u
til

iz
at

io
n

(%
)

Round

overlay src: TE MPLS
overlay src: hop-count
compliant

Figure 17: Vertical interaction with MPLS optimization for the
Sprint topology.

We observe similar results on other topologies.
These results indicate that MPLS-based traffic engineering can

interact much more effectively with selfish routing. This is likely
due to the fact that MPLS has much more fine-grained control over
selfish overlay traffic. Specifically, unlike OSPF, MPLS can adjust
the routing matrix R without having to reduce available network
resources.

Despite the encouraging results, however, we note that there are a
number of practical challenges in applying MPLS-based traffic en-
gineering, or traffic engineering in general, in the presence of selfish
traffic. For example, in our evaluation we assume that we know the
perfect traffic matrices, which need to be estimated in practice. The
adaptive nature of selfish traffic can make it very difficult to accu-
rately estimate traffic matrices. Another challenge is that MPLS-
based traffic engineering requires solving a very large linear pro-
gramming problem. For large networks, the problem may contain
millions of unknowns, which is infeasible to solve using software
available today. A thorough exploration of these subjects is outside
the scope of this paper, so we defer it to future work.

9.4 Summary
To summarize, in this section we examine the interactions be-

tween selfish routing and traffic engineering. We find that OSPF
route optimization interacts very ineffectively with selfish routing,
largely due to its limited control over selfish traffic. In contrast,
MPLS route optimization has more fine-grained control and there-
fore interacts with selfish traffic more effectively. However, further
research is required to investigate such interactions in more detail.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we use a game-theoretic approach to study the per-

formance of selfish routing in Internet-like environments. Our re-
sults show that unlike the theoretical worst case, selfish routing in
such environments achieves close to optimal average latency, when
the network-level routing is static. On the other hand, such perfor-
mance often comes at the cost of overloading certain links. More-
over, when selfish routing and traffic engineering each tries to min-
imize its own cost by adapting to the other process, the resulted
performance could be considerably worse.

There are a number of avenues for future work. First, we would
like to investigate how the multi-AS nature of the Internet affects the

routing performance. There are a few challenges involved, includ-
ing modeling inter-domain topologies, routing policies, and traffic
demands, as well as handling larger topologies. Second, our study
focuses on the performance at traffic equilibria. The dynamics of
selfish routing, i.e., how equilibria are reached, is an interesting
question. In addition, we are interested in better understanding and
improving the interactions between selfish routing and traffic engi-
neering. Finally, we plan to study selfish routing with alternative
performance metrics, such as loss and throughput.

Acknowledgments
We are grateful for helpful comments from Jennifer Rexford, Ellen
Zegura, Jitendra Padhye, Ted Jewell, and the anonymous reviewers.
We would also like to thank Stan Eisenstat, Joan Feigenbaum, Eric
Friedman, and Yanbin Liu for helpful discussions.

11. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,

Algorithms, and Applications. Prentice Hall, Upper Saddle River,
New Jersey, 1993.

[2] A. Akella, S. Seshan, R. Karp, and S. Shenker. Selfish behavior and
stability of the Internet: A game-theoretic analysis of TCP. In
Proceedings of ACM SIGCOMM ’02, Pittsburgh, PA, Aug. 2002.

[3] E. Altman, R. E. Azouzi, and A. Vyacheslav. Non-cooperative routing
in loss networks. In Proceedings of Performance ’02, Rome, Italy,
Sept. 2002.

[4] E. Altman, T. Boulogne, R. E. Azouzi, and T. Jimenez. A survey on
networking games. Telecommunication Systems, Nov. 2000.

[5] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.
Resilient overlay networks. In Proceedings of SOSP ’01, Banff,
Canada, Oct. 2001.

[6] D. O. Awduche. MPLS and traffic engineering in IP networks. IEEE
Communication Magazine, pages 42–47, Dec. 1999.

[7] T. Boulogne, E. Altman, O. Pourtallier, and H. Kameda. Mixed
equilibrium for multiclass routing games. IEEE Transactions on
Automatic Control, 47(6):903–916, Jun. 2002.

[8] I. Castineyra, N. Chiappa, and M. Steenstrup. The Nimrod Routing
Architecture, RFC 1992, Aug. 1996.

[9] A. Chen, D.-H. Lee, and R. Javakrishnan. Computational study of
state-of-the-art path-based traffic assignment algorithms. Mathematics
and Computers in Simulation, pages 509–518, 2002.

[10] A. Collins. The Detour framework for packet rerouting. PhD
Qualifying Examination, Nov. 1998.

[11] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the Internet topology. In Proceedings of ACM
SIGCOMM ’99, Cambridge, MA, Aug. 1999.

[12] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford.
Deriving traffic demands for operational IP networks: Methodology
and experience. IEEE/ACM Transactions on Networking, Jun. 2001.

[13] M. Florian and D. Hearn. Network Routing, chapter 6, Network
equilibrium models and algorithms. Elsevier Science, 1995.

[14] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with
traditional IP routing protocols. IEEE Comm. Magazine, Oct. 2002.

[15] B. Fortz and M. Thorup. Internet traffic engineering by optimizing
OSPF weights. In Proceedings of IEEE INFOCOM ’00, Tel Aviv,
Israel, Mar. 2000.

[16] E. Friedman. Selfish routing on data networks isn’t too bad:
Genericity, TCP, and OSPF. Working paper. Available from
http://www.orie.cornell.edu//˜friedman/papers.html, Oct. 2002.

[17] L. Gao. On inferring autonomous system relationships in the Internet.
IEEE/ACM Transactions on Networking, 9(6), Dec. 2001.

[18] D. Gross and C. Harris. Fundamentals of Queueing Theory. John
Wiley, 3rd edition, 1998.

[19] C. M. Harris, P. H. Brill, and M. J. Fischer. Internet-type queues with
power-tailed interarrival times and computational methods for their
analysis. INFORMS Journal on Computing, pages 261–271, 2000.

[20] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot. An approach to
alleviate link overload as observed on an IP backbone. In Proccedings
of IEEE INFOCOM ’03, San Francisco, CA, Apr. 2003.

[21] Y. A. Korilis, A. A. Lazar, and A. Orda. Architecting noncooperative
networks. IEEE Journal of Selected Areas in Communications,
13(7):1241–1251, Sept. 1995.

[22] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In
Proceedings of the 16th Annual Symposium on Theoretical Aspects of
Computer Science, pages 404–413, 1999.

[23] J. B. Krawczyk and S. Berridge. Relaxation algorithms in finding
Nash equilibria. In Computational Economics from Economics
Working Paper Archive at WUSTL, Jul. 1997.

[24] lp solve. ftp://ftp.ics.ele.tue.nl/pub/lp solve/.
[25] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: Boston

University representative Internet topology generator. Available from
http://www.cs.bu.edu/brite.

[26] Multiprotocol label switching (MPLS).
http://www.ietf.org/html.charters/mpls-charter.html.

[27] The network simulator: ns-2. http://www.isi.edu/nsnam/ns/.
[28] Open shortest path first (OSPF).

http://www.ietf.org/html.charters/ospf-charter.html.
[29] M. Patriksson. Algorithms for computing traffic equilibria. In

Networks and Spatial Economics. 2003.
http://www.cs.chalmers.se/˜mipat/LATEX/NSE.ps.

[30] T. Roughgarden. Selfish Routing. PhD thesis, Cornell University, May
2002.

[31] T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of
ACM, 49(2):236–259, 2002.

[32] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and
J. Zahorjan. Detour: a case for informed Internet routing and
transport. In IEEE Micro, volume 19(1), pages 50–59, Jan. 1999.

[33] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The
end-to-end effects of Internet path selection. In Proceedings of ACM
SIGCOMM ’99, pages 289–299, Cambridge, MA, Aug. 1999.

[34] Y. Sheffi. Urban Transportation Networks: Equilibrium Analysis with
Mathematical Programming Methods. Prentice-Hall, 1985.

[35] S. Shenker. Making greedy work in networks: A game-theoretic
analysis of switch service discipline. IEEE/ACM Transactions on
Networking, 3, 1995.

[36] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with Rocketfuel. In Proceedings of ACM SIGCOMM ’02, Pittsburgh,
PA, Aug. 2002.

[37] J. W. Stewart. BGP4: Inter-Domain Routing in the Internet. Addison
Wesley, 1998.

[38] L. Subrmanian, S. Agarwal, J. Rexford, and R. Katz. Characterizing
the Internet hierarchy from multiple vantage points. In Proceedings of
IEEE INFOCOM ’02, New York, NY, June 2002.

[39] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and
W. Willinger. Network topology generators: Degree-based vs.
structural. In Proceedings of ACM SIGCOMM ’02, Pittsburgh, PA,
Aug. 2002.

[40] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin. The
impact of routing policy on Internet paths. In Proceedings of IEEE
INFOCOM ’01, Anchorage, AK, Apr. 2001.

[41] S. Uryas’ev and R. Y. Rubinstein. On relaxation algorithms in
computation of noncooperative equilibria. IEEE Transactions on
Automatic Control, 39(6):1263–1267, Jun. 1995.

[42] X. Xiao, A. Hannan, B. Bailey, and L. Ni. Traffic engineering with
MPLS in the Internet. IEEE Network Magazine, Mar. 2000.

[43] E. Zegura, M. Ammar, Z. Fei, and S. Bhattacharjee. Application-layer
anycasting: A server selection architecture and use in a replicated web
service. IEEE/ACM Transactions on Networking, 8(4), Aug. 2000.

[44] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast accurate
computation of large-scale IP traffic matrices from link loads. In
Proceedings of ACM SIGMETRICS ’03, Jun. 2003.

APPENDIX
In this Appendix, we give more details about the algorithms we use
to compute traffic equilibria.

Computing traffic equilibrium for non-overlay traffic: We use
the linear approximation algorithm (a variant of Frank-Wolfe algo-
rithm) [13] to compute traffic equilibrium. The linear approximation
algorithm is a gradient algorithm for solving non-linear optimization
problems. Specifically, in each iteration we compute shortest paths,
and use them to construct the gradient direction. We then move
towards that direction by taking a step size that optimizes the objec-
tive function. The number of iterations is controlled by the stopping

condition from [13]. When the link latency functions satisfy the
monotonicity condition, which is the case for our latency functions,
there is a unique equilibrium.

Computing traffic equilibrium for selfish overlay routing: Us-
ing the logical networks we described in Section 4, we can compute
the traffic equilibrium of overlay routing by either a relaxation algo-
rithm or a modified linear approximation algorithm.

Specifically, for a logical network that is asymmetric (i.e., there
are two logical links that share the same physical link but send dif-
ferent fractions of traffic through the physical link), we use Jacob’s
relaxation algorithm on top of Sheffi’s diagonalization method [34]
to determine the traffic equilibrium, since in this case we cannot for-
mulate the equilibrium problem as an optimization problem. For a
logical network that is symmetric (i.e., not asymmetric; an exam-
ple of a symmetric logical network is OSPF routing without equal
weight splitting), we still can formulate the problem as an optimiza-
tion problem by using a line integral to replace the normal summa-
tion of cost on each link. As a result, we still can use the linear
approximation algorithm. Figure 18 specifies the structure of our
algorithm. Note that for overlay networks, the traffic equilibrium
may not be unique [21, 4, 7] and our algorithm identifies only one
equilibrium.

� Assume le(x) is increasing and convex for any edge e.
� Assume xle(x) is convex for any edge e.
� If the overlay is latency optimal, f =

∑
e xle(x);

� otherwise, f =
∮

le(x);

set other overlay’s traffic as background traffic
repeat

assume the current traffic vector on each edge is xt

determine link latency according to xt
use Dijkstra’s algorithm to find all-or-nothing

traffic assignment yt
use line search to find optimal λ so that

f(xt + λ(yt − xt)) is minimal.
until (best lower bound gap < threshold)

Figure 18: The linear approximation algorithm to compute the
best response of source routing or overlay routing, when the net-
work is symmetric, assuming the other overlay’s traffic is back-
ground.

Computing traffic equilibrium for multiple overlays: Guar-
anteeing convergence poses a major challenge in computing traf-
fic equilibrium when there are multiple overlays. To this end, we
use the relaxation framework proposed in [23, 41] to ensure con-
vergence to one equilibrium. Figure 19 shows the algorithm. The
basic structure of the algorithm is that in each round, each over-
lay computes its best response by considering the other’s traffic as
background traffic. Then the best response and the previous state
are merged using the relaxation factor αt.

� N is the number of overlays.
� xt(i) is a vector of overlay i’s traffic at round t.
� yt(i) is the best response of overlay i at round t.
� Assume

∑
t αt →∞; αt → 0 as t→∞.

repeat
assume the traffic state is xt(i) of overlay i
for each i

computes its best response yt(i),
assuming other overlays as background.

for each overlay i
set xt+1(i)← (1− αt)xt(i) + αtyt(i).

until (change between round < threshold)

Figure 19: The relaxation framework to compute the traffic
equilibrium of N overlays.

