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Abstract

Sketch is a sublinear space data structure that allows one
to approximately reconstruct the value associated with any
given key in an input data stream. It is the basis for answer-
ing a number of fundamental queries on data streams, such
as range queries, finding quantiles, frequent items, etc. In
the networking context, sketch has been applied to identi-
fying heavy hitters and changes, which is critical for traffic
monitoring, accounting, and network anomaly detection.

In this paper, we propose a novel approach calledlsquare
to significantly improve the reconstruction accuracy of the
sketch data structure. Given a sketch and a set of keys,
we estimate the values associated with these keys by con-
structing a linear system and finding the optimal solution
for the system using linear least squares method. We use a
large amount of real Internet traffic data to evaluatelsquare
againstcountmin, the state-of-the-art sketch scheme. Our
results suggest that given the same memory requirement,
lsquareachieves much better reconstruction accuracy than
countmin. Alternatively, given the same reconstruction ac-
curacy, lsquarerequires significantly less memory. This
clearly demonstrates the effectiveness of our approach.

1 Introduction
For many network management applications, it is essential
to accurately monitor and analyze network traffic. For ex-
ample, Internet service providers need to monitor the usage
information in order to support usage-based pricing. Net-
work operators need to observe the traffic pattern to per-
form traffic engineering. Network anomaly detection sys-
tems need to continuously monitor the traffic in order to
uncover anomalous traffic patterns in near real-time, espe-
cially those caused by flash crowds, denial-of-service at-
tacks (DoS), worms, and network element failures. These
applications typically treat the traffic as a collection of
flowswith some properties to keep track of (e.g., volume,
number of packets). The flows are typically identified by
certain combination of packet header fields (e.g., IP ad-
dresses, port numbers, and protocol).

A naı̈ve approach for network traffic measurement is
to maintain state and perform analysis on aper-flow ba-
sis. However, as link speeds and the number of flows in-
crease, keeping per-flow state can quickly become either
too expensive or too slow. As a result, a lot of recent net-
working research efforts have been directed towards de-
veloping scalable and accurate techniques for performing
traffic monitoring and analysis without keeping per-flow
state (e.g., [6]). Meanwhile, computation over massive data
streams has been an active research area in the database re-
search community over the past several years. The emerg-
ing field ofdata stream computationdeals with various as-
pects of computation that can be performed in a space- and
time-efficient manner when each item in a data stream can
be accessed only once (or a small number of times). A rich
body of algorithms and techniques have been developed.
A good survey of the algorithms and applications in data
stream computation can be found in [11].

A particularly powerful technique issketch[1, 7, 3, 5], a
probabilistic summary data structure proposed for analyz-
ing massive data streams. Sketches avoid keeping per-flow
state by dimensionality reduction techniques, using projec-
tions along random vectors. Sketches have some interest-
ing properties that have proven to be very useful in ana-
lyzing data streams: they are space efficient, provide prov-
able probabilistic reconstruction accuracy guarantees, and
are linear (i.e., sketches can be combined in an arithmetical
sense). These properties have made sketch the basis for an-
swering a number of fundamental queries on data streams,
such as range queries, finding quantiles and frequent items
[11]. In the networking context, sketch has been success-
fully applied to detecting heavy hitters and changes [8, 4].

A key operation on the sketch data structure is so called
point estimation, i.e., to estimate the accumulated value
associated with a given key. All existing methods per-
form point estimation for different keys separately and only
have limited accuracy. In this paper, we propose a novel
method calledlsquare to significantly improve the accu-
racy of point estimation on the sketch data structure. In-



stead of estimating values for individual keys separately,
lsquarefirst extracts a set of keys that is a superset of all
the heavy hitter flows and then simultaneously estimates
the accumulated values for this set of keys – it does so
by first constructing a linear system and then finding the
optimal solution to the system through linear least squares
method.

We use a large amount of real Internet traffic data to
evaluate our method againstcountmin[5], the best exist-
ing sketch scheme. Our results are encouraging: Given the
same memory requirement,lsquareyields much more ac-
curate estimates thancountmin; and given the same recon-
struction accuracy,lsquareuses significantly less memory.

The remainder of the paper is organized as follows. In
Section 2, we give an overview of sketch data structure, de-
fine the problem, and survey the related work. In Section 3,
we describe ourlsquaremethod for point estimation on the
sketch data structure. In Section 4, we evaluate the pro-
posed method using real Internet traffic data. We conclude
in Section 5.

2 Background
This section provides some background on the problem we
want to solve. First, we briefly describe the underlying data
stream model and the sketch data structure. Then we define
the problem of point estimation on sketch and explain the
existing methods to solve the problem. We will also briefly
survey the related work.

2.1 Data Stream Model
Let I = (k1, u1), (k2, u2), . . . be an input stream that ar-
rives sequentially, item by item. Herekt ∈ {0, . . . , n − 1}
is a key andut ≥ 0 is the update value associated with the
key. LetUk be the sum of update values for a keyk. Here,
the update values are non-negative, meaning thatUk always
increase. This model is called thecash register model[11].
Many applications of sketches guarantee that counts are
non-negative. However, we note that our proposed method
is also applicable to the more generalTurnstile model[11],
in which update values may be negative.

2.2 Count-Min Sketch
Sketch [5, 8, 14] is a sublinear space data structure for sum-
marizing massive data streams. We use the notations in Ta-
ble 1 to specify the sketch data structure.

Data structure: A sketchis a two-dimensional count array
T [i][j] (0 ≤ i < H, 0 ≤ j < K), whereH is the number of
one-dimensional arrays andK is the number of counts in
each array. Each count of sketch is initially set to zero. For
each one-dimensional arrayT [i][·], there is a hash function
hi : {0, . . . , n − 1} → {0, . . . , K − 1}, wheren is the size
of the key space. The hash functions are chosen uniformly
at random to be pair-wise independent. We can view the
data structure as an array of hash tables.

H number of hash tables
K number of counts per hash table
n size of the key space
hi ith hash function

T [i][j] bucketj in hash tablei
θ threshold of heavy hitters
m number of top hitters

Table 1: Sketch Notations

Update procedure: When an update(kt, ut) arrives,
the update valueut is added to the corresponding count
T [i][hi(kt)] in each hash tablei.

Heavy hitter identification: Since the sketch data struc-
ture only records the values, not the keys, it is a chal-
lenge to identify the heavy-valued keys among all the keys
hashed into the heavy buckets. In order to identify heavy
hitters, we can keep a priority queue to record the top hit-
ters with values aboveθ (as shown in [5]). An alternative is
to perform intersections among buckets with heavy counts,
which is proposed by Schwelleret al. [14].

Point estimation: LetS be a sketch andX be a set of keys,
which are known to be heavy hitters. The problem ofpoint
estimationis to estimate the total update valueUk for any
keyk ∈ X . This problem is the focus of our paper.

Count-Min: As proposed in [5],countminis an existing
method to reconstruct the value for any given key. The min-
imum value among all counts corresponding to the key is
taken as an estimate of the value. Formally,

U countmin
k = min

0≤i<H
T [i][hi(k)]

is an estimate for the valueUk. Cormode and Muthukrish-
nan [5] proved thatUk ≤ U countmin

k and thatU countmin
k ≤

Uk + ǫ‖U‖1 with probability δ, whereH = ⌈e

ǫ ⌉, K =

⌈ln 1
δ ⌉, and‖U‖1 =

∑n−1
k=0 |Uk|. In other words,countmin

always overestimates with a certain error bound.

2.3 Related Work
Common applications of sketches include detecting heavy-
hitters, finding quantiles, answering range/point queries
and estimating flow size distribution [11].

Kumaret al.[9] used Expectation Maximization method
to infer the flow size distribution from an array of counters,
which can be viewed as a special case of sketch (H = 1).

Estan and Varghese [6] suggested an improved sampling
method calledsample-and-hold, with which flow amount
is recorded only after individual entry for the flow is made.
They also proposedmulti-stage filtersfor data summary,
which has the same data structure as sketch but uses a dif-
ferent update method calledconservative update. When
an update arrives, only the minimum valued bucket is in-
cremented, whereas sketch increments counters ofall cor-
responding buckets. The minimum counter of multi-stage



filter can be used for point estimation, which is similar to
thecountminapproach.

Krishnamurthyet al. [8] proposed another point estima-
tion method for sketch, which can be used in the Turn-
stile data stream model. The estimationU est

k for a keyk

is given asU est
k = median{U i

k | 0 ≤ i < H}, where

U i
k = T [i][hi(k)]−SUM/K

1−1/K andSUM =
∑K−1

j=0 T [0][j].

3 Our Approach
In this section, we explain the proposedlsquaremethod
for point estimation. First,lsquarerecords the data flow
information in a sketch. Then it constructs a linear system
based on the sketch, and solves the system using linear least
squares method. Below we first give a simple example and
then formally describe the method.

3.1 A Simple Example
Suppose we have a data stream from5 IP addresses. Let
U0 = 5, U1 = 4, U2 = 3, U3 = 9, U4 = 16 be the total
amount of traffic for each IP. We record the flows into a
sketch withH = 2 andK = 3, which has two hash func-
tionsh1(k) = k mod 3 andh2(k) = (k⊕3) mod 3, where
⊕ denotes bitwise-XOR. The sketch is given as:

j = 0 j = 1 j = 2
T [0][j] 140,3 201,4 32

T [1][j] 140,3 192,4 41

Here, 140,3 means thatU0 and U3 are hashed into the
bucket, resulting in a count of14. The goal is to recon-
structU3 andU4 from the sketch.

Solution using countmin: U countmin
3 = min{T [0][0],

T [1][0]} = 14 andU countmin
4 = min{T [0][1], T [1][1]} = 19.

Solution usinglsquare: First, we construct a linear system
Ax = b with the constructed sketch. Vectorsx, b and
matrixA are specified as follows.

x =





x3

x4

y



 , b =
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14
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1 0 1
0 1 1
0 0 1
1 0 1
0 1 1
0 0 1
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Here,x3 andx4 are variables for keys3 and4, andy is used
to capture noise caused by keys that are not of our interest.
Matrix A indicates which keys are hashed to which buckets,
and vectorb consists of values of all buckets. For example,
we have the equationx3 + y = 14 with bucketT [0][0],
which corresponds to the first rows ofA andb.

With the constructed linear system, we find the opti-
mal solution of the linear system using linear least squares
method: x = [10.5, 16.0, 3.5]T (i.e., x3 = 10.5, x4 =
16.0, y = 3.5). In this simple example, our method clearly
produces much more accurate estimates thancountmin.

3.2 Formal Description of lsquare
Let S be a sketch andk1, . . . , km be the set of keys of our
interest. Then we have an unknown variables vectorx ∈
R

(m+1)×1 = [x1, . . . , xm, y]T , wherexi is for the value
of key ki andy is an additional variable for noise caused
by keys not in{ki}, which is uniformly distributed over
all buckets. We construct a matrixA ∈ {0, 1}HK×(m+1),
showing which keys are hashed into which buckets, and a
vectorb ∈ R

HK×1, containing values of every buckets.
The elements ofA andb are specified as follows. Fori ∈
{0, . . .H − 1} andj ∈ {0, . . .K − 1},

AKi+j+1,ℓ =







1 if key kℓ is hashed intoT [i][j],
1 if ℓ = m + 1,
0 otherwise,

bKi+j+1 = T [i][j].

In generalA is not a square matrix and may be rank
deficient. In this case, a standard solution toAx = b is
the pseudoinverse solutionx = A+

b, whereA+ is the
pseudoinverse (i.e., Moore-Penrose inverse [10, 13]) of ma-
trix A. It is known thatx = A+

b provides the shortest
length least squares solution to the system of linear equa-
tionsAx = b. More precisely, it solves:

minimize‖x‖2
2 subject to‖Ax − b‖2

2 is minimal,

where‖ · ‖2 is theEuclidean norm.
Under the cash register data stream model, we can

further improve the estimation accuracy by incorporating
lower-bound and upper-bound constraints into the system.
Specifically, we can use0 as a lower bound forx and the
countminestimation as an upper bound. The pseudo-code
for the resulting algorithm is given as follows.

vector lsquare(matrix A, vector b,
vector countmin)

{
x = pinv(A)*b; // pseudoinverse
x = max(x,0); // non-negativity
x = min(x,countmin); // upper bound: countmin
return x;

}

Note that so far we use a single variabley to capture
the effects of background noise. This assumes that we do
not know any keys other than those of our direct interest.
In case we do know extra keys, we can add them to{ki}
and treat the correspondingxi as additional noise variables.
We will show in Section 4.3 that the use of additional noise
variables significantly improves the accuracy oflsquare.

4 Evaluation
In this section we evaluate ourlsquaremethod on two Inter-
net trace data sets. Our results suggest thatlsquaregener-
ally produces more accurate estimates thancountmin. Even
better accuracy can be achieved through the use of addi-
tional noise variables. In addition, the accuracy oflsquare
degrades gracefully when less memory is available.



4.1 Data Sets
The Internet traffic data used in our evaluation is col-
lected by National Laboratory for Applied Network Re-
search (NLANR) [12]. We choose two sets of data: BELL-
02 [2] and TERA-04 [15]. Brief information of the data
sets is given in Table 2. Figure 1 shows the traffic amount
of top 200 heavy hitters in two data sets. We can see that
the traffic distributions are highly skewed.

BELL-02 TERA-04
Time 2002/05/19 (1-2PM) 2004/02/09 (8-9AM)

Volume 8.371 GB 0.106 GB

Table 2: Data Set Information
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Figure 1: Traffic amount of top 200 hitters in BELL-02 and
TERA-04

4.2 Error Metric
We use a relative error metric to evaluate the estimation.
When evaluating an estimate for a specific keyk, we use

Ek =
U est

k − Uk

Uk
.

This metric gets close to0 when the estimation is accu-
rate and it can indicate whether we have overestimated or
underestimated results. When we evaluate the estimation
result as a whole, we use the average error

E =

√

√

√

√

1

|HH |

∑

k∈HH

(U est
k − Uk

Uk

)2

as a metric, whereHH is the set of heavy hitters of our
interest. The square of point error metric is used to avoid
cancellation between positive and negative errors.

4.3 Accuracy
We first compare the accuracy oflsquare and countmin
when a single variabley is used to capture the background
noise (caused by keys not inHH). As a preliminary exper-
iment, we calculate the estimation errors for top 50 heavy
hitters using the two methods, withH = 4 andK = 1024
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Figure 2: K = 1024, H = 4, m = 50: lsquareshows
more accurate and stable estimation thancountmin.

(Figure 2). We observe that the accuracy ofcountminfluc-
tuates depending on the data sets, whereaslsquareconsis-
tently gives more stable and accurate estimates.

We next demonstrate that better accuracy can be
achieved when we use more variables to capture the noise
effects. In Figure 3 we evaluate the accuracy oflsquare
with a varying number of noise variables. For each data
set, we calculate the estimation errors of top20 heavy hit-
ters in three cases. In the case of experiment “20-lsquare”,
just one noise variabley is used. Then top21–50 hitters
are considered as noise variables (in addition toy) in exper-
iment “50-lsquare”, and top21–200 hitters in experiment
“200-lsquare.” As more noise variables are used,lsquare
becomes more stable and accurate. In particular,lsquare
has almost no errors in the case of “200-lsquare.”

In addition,lsquareproduces accurate estimates even for
“light” hitters. In Figure 4, we calculate the estimation er-
rors for top 200 hitters. In BELL-02 data set,lsquareshows
relatively accurate estimation for top 160 hitters, where
countminis only good for top 40 hitters. We observe bigger
accuracy difference between the two methods in TERA-04
data set:lsquarestill has accurate estimation for top 170
hitters butcountminhas good performance only for top 20
hitters. Moreover, the accuracy ofcountminfor light hitters
is significantly lower.
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Figure 3: K = 1024, H = 4, m = 20: lsquareshows
better accuracy when we use more noise variables.

4.4 Tolerance with Limited Memory
We now evaluate the accuracy ofcountminandlsquareun-
der the constraint of limited memory. Since a sketch is
usually located within an expensive memory SRAM for
high-speed traffic monitoring, it is desirable to have accu-
rate point estimates even if we reduce the size of the sketch.

First, we fix the number of buckets in a hash tableK

to be1024 and vary the number of hash tablesH . Next,
we vary K with fixed H = 4. In Figure 5 and 6, we
calculate the average error of the two methods for each
sketch configuration. We can see clearly that the accuracy
of lsquaredegrades gracefully as the sketch gets smaller,
whereascountmingives inaccurate estimates in memory-
limited situations.

To make the experiment more reliable regardless of the
sketch configuration, we find the optimal combination for
countmin in the given memory size after trying various
combinations ofH andK. Within the configuration where
countminshows the best accuracy, we evaluate the accu-
racy of lsquare. Once again, we observe better accuracy of
the proposed method (Figure 7).

4.5 Time Performance
We have implemented ourlsquaremethod in Matlab. The
most time-consuming process in our method is solving the
linear systemAx = b. We make a preliminary evaluation
regarding the time performance of our implementation us-
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Figure 4:K = 1024, H = 4, m = 200: lsquareachieves
good accuracy even for light hitters.
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Figure 5: K = 1024, H = 1, 2, 4, 8, 16, θ = 0.1%: The
number of hash tables has little impact on accuracy.lsquare
consistently shows better accuracy thancountmin.

ing a Pentium3-733MHz machine with 128 MBytes mem-
ory, operated by Linux Debian 3.0. In this experiment, we
use a fixed sketch configuration (H=4, K=1024) and vary
the number of heavy hitters we want to estimate. The re-
sults in Figure 8 show that the linear program solver can
compute point estimations of 100 heavy hitters in about 2
seconds in the given configuration. We note that our cur-
rent Matlab implementation has not been fully optimized
and there is considerable room for further speedup. For
example, we can replace the pseudoinverse functionpinv
with an iterative least-squares solver such aslsqr to take
advantage of the sparsity of matrixA.

5 Conclusion and Future Work

In this paper, we propose a new approach for point estima-
tion on sketches. Using extensive experiments with real In-
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Figure 6: K = 64, 128, 256, 512, 1k, 2k, 4k, H = 4,
θ = 0.1%: The number of buckets in a hash table has a
big impact on accuracy. The accuracy oflsquaredegrades
more gracefully as the number of buckets decreases.
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Figure 7: H × K = 512, 1k, 2k, 4k, 8k, 16k, θ = 0.1%:
For each memory size, we find the optimal sketch configu-
ration forcountmin. In that optimal configuration, we com-
pare the accuracy oflsquareandcountmin. In both data
sets,lsquareshows better performance.

ternet data sets, we show that the proposed methodlsquare
is much more accurate than the best existing methodcount-
min. lsquareachieves good reconstruction accuracy for
both heavy and light hitters, at the expense of modest com-
putation. Moreover, we have shown that the accuracy
of lsquaredegrades gracefully as memory decreases. To
achieve accuracy comparable tocountmin, lsquarein gen-
eral requires much less memory.

This paper represents an early example on how tradi-
tional statistical inference techniques can be applied in the
data stream context to infer characteristics of the input
stream. Existing research on data stream computation so
far has mainly focused on developing techniques that pro-
vide provable worst-case accuracy guarantees. Statistical
inference techniques in contrast often pay more attention
to properties like likelihood, unbiasedness, estimation vari-
ance etc. While these inference techniques may not pro-
vide any worst-case accuracy guarantees, they often per-
form very well on practical problems. In our future work,
we plan to further explore how statistical inference tech-
niques can be applied to data stream computation.
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