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Understandingthe variability of Internettraffic in backbonenetworks is essentialto betterplan and
manageexistingnetworks,aswell asto designnext generationnetworks.However, mosttraffic analyses
that might be usedto approachthis problemarebasedon detailedpacket or flow level measurements,
which areusuallynot availablethroughouta largenetwork. As a resultthereis a poorunderstandingof
backbonetraffic variability, andits impacton network operations(e.g. on capacityplanningor traffic
engineering).This paperintroducesa metricfor measuringbackbonetraffic variability that is grounded
onsimplebut powerful traffic theory. Whatsetsthismetricapart,however, is thatwepresentamethodfor
practicalimplementationof themetricusingwidely availableSNMPtraffic measurements.In addition
to simulations,we usea large setof SNMP datafrom an operationalIP network on the orderof 1000
nodesto testour methods.We alsodelve into the degreeandsourcesof variability in real backbone
traffic, providing insightinto thetruenatureof traffic variability.

1. Intr oduction

Despitea significantamountof researchaddressingInternettraffic models(for instancesee[1–4]),
thereis not yet wide-spreadagreementaboutthecharacteristicsof backboneInternettraffic. This prob-
lem is exacerbatedby exaggeratedreportson Internettraffic growth andvariability [5,6], by the chal-
lengesassociatedwith Internettraffic measurements[7], anda lackof understandingof theapplicability
of resultssuchasthediscoveryof self-similarityin traffic [1–3]. For instance,in [5], direclaimsaremade
onthebasisof thenotionthatlargevolumesof traffic slosh aroundtheInternetin ahighly irregularway.

Obtainingthe datanecessaryto develop an accurateand currentview of backbonetraffic requires
significantinvestmentin measurementinfrastructure.Althoughdetailedpacket tracesarecollectedon a
limited scalein many networks, thesetracesarenot just difficult to collecton high speedlinks (OC48
and greater)but also representhugevolumesof data,and are often aggregatedinto simple statistics
beforebeingcollectedfor analysis,wherethey areavailableat all. Theresultis that this informationis
almostneveravailablein thedetailedform neededfor mostapplicabletraffic models.Nearlyall network
managementtasksarethereforecarriedoutoncoarseaggregatestatisticsof thetraffic.

Nonetheless,understandingInternetbackbonetraffic is crucial for evolving theInternetarchitecture,
doing capacityplanning,traffic engineering,andmeetingservicelevel agreements.In particular, our
investigation wasspecificallymotivatedby the question:to what extent doestraffic variability justify
the needfor a re-configurableoptical network below the IP layer to provide bandwidthmanagement.
Suchanopticalnetwork wouldallow IP routersequippedwith theappropriateinterfacesto requestaddi-
tionalpoint-to-pointcapacitywhenneeded,andto reconfigureexistingcapacitybetweenrouters[8–10].
Routersmightneedadditionalcapacitydueto congestionresultingfrom any of anumberof causes:ma-
jor events(September11th),re-routingeventstriggeredby failures,transientoverloadsdueto Denialof
Service(DoS)attacksor flashcrowds,or externally inducedtraffic shifts from peernetworks. Alterna-



tively, we canview this problemthroughthe lensof over-provisioning,namelyto whatextentdoesthe
IP layerneedto beover-provisionedto meetits servicelevel agreementswith high reliability.

Weaddresstheproblemof backbonetraffic variability by lookingataggregatelink statisticscollected
via the SimpleNetwork ManagementProtocol(SNMP).From thesestatisticsit is clearthat the traffic
hasbothdaily andweeklyperiodiccomponents,aswell asa longer-termtrend.Superimposedon top of
thesecomponentsareshortertime scalestochasticvariations.Giventhesecharacteristics,we developa
simple,but powerful stochasticmodelfor backbonetraffic (basedon theNorrosmodel[11]), andthen
usethat modelto derive an empiricalmetric referredto hereasthepeakednessparameter(thoughthis
termis oftenusedin differentwaysin traffic modeling),thatprovidesameasureof thetraffic variability.
However, note that the modeldoesnot requireany specificform of stochasticcomponent,andeither
a Long-RangeDependent(LRD) or Short-RangeDependent(SRD) model could be usedwith equal
facility. Webelieve thatthismetricwill beusefulto network operatorsin botharchitectureevolutionand
traffic management,e.g.,allowing network operatorsto determinewhether(or when)it makessenseto
layerIP overare-configurableopticalnetwork,assistingin provisioningbackbonecapacity, tuningOSPF
links weights,etc. An importantfeatureof this modelis parsimony – only oneparameteris requiredto
describethemostimportantfeaturesof thestochasticvariationin the traffic, andthis parametercanbe
estimatedfrom standardSNMPtraffic measurements.

We testthis approachon a setof real SNMP datafrom oneof the largestoperationalInternetback-
bonesin North America(AT&T). A majorinsightof this paperis thatbackbonetraffic is predominantly
composedof a regularandpredictablecomponent,thoughit doeshave a significantstochasticcompo-
nent. The majority of exceptionsto this rule, the relatively rare large fluctuationsaregenerallyshort
livedanomalousevents.

2. Models

2.1. Data
The modelswe build arecritically dependenton the dataon which they arebuilt. In this paperwe

analyzeSNMP traffic andfault dataextractedfrom an archive that includesmorethan1 year’s worth
of datacollectedfrom a large Tier-1 ISP’s backbonenetwork. SNMP is uniquein that it is supported
by essentiallyevery device in an IP network, andso we cancollect datafrom the entirenetwork with
little additionalinfrastructure.Unfortunately, asa practicalmatter, SNMPdatahasmany limitations–
for instancemissingdata(it maybemissingbecauseSNMPusesUDP transport,or it maybelost while
copying to our researcharchive), incorrectdata(throughpoor routervendorimplementations),anda
coarsesamplinginterval. Also SNMPonly providesaggregatelink statistics,not thetypeof traffic using
thelink, nor its sourceor destination.

Theselimitations make analysissuchastime seriesanalysisdifficult on this data. We have goneto
considerablelengthsto reducethe impactof thesefeaturesof thedatathroughcarefulpost-processing:
discardingambiguousandincorrectdatawherepossible,andusingSNMPfaultdatato determinecauses
of someanomalies.Thanksto theseefforts, andcarefully choosingmodelsandanalysisthat arenot
sensitive to thedataqualitywecanuseevensuchpoordatain somequitedetailedanalysis.

Onepoint to noteis thatmany pastanalysesof suchdatahave beendonein the“busyhour”, but such
analysessuffer from onemajor feature.Givena strongweeklycycle (which is thecasehere),andfive
minutetraffic data(which is typical for SNMPmeasurements),onehasonly 12samplepointsperweek.
To obtainenoughdatafor areasonablyaccurateanalysis,onemustaverageovermany weeks.Oversuch
timeperiodsin theInternetnon-stationarityeffectsmayeffect results[12]. Thismotivatesusingamodel
to describeandanalyzethe seasonalandtrendcomponents.Sucha model is alsouseful in detecting
anomaliesthatcanoccurat timesoutsidethebusyhour.

2.2. Traffic modeling
In this section,we describethe basictraffic model that we will usethroughoutthe paper, basedon

standardtechniquesfrom time seriesanalysis[13]. The mostobvious characteristicsof IP backbone
traffic arethestrongdiurnal(daily) andweeklycycles,aswell aslong-termtrends(for examplesee[14]).



Figure1 shows the total traffic enteringthenetwork at a Pointof Presence(PoP)over two consecutive
weeksin May 2001, and illustratesthesedaily and weekly variationsin the traffic. Also striking is
thesimilarity betweenconsecutive weeksof data. Theobvious modelfor suchtraffic is a simplenon-
stationarymodelin which thetraffic statistics(for instance,themeanandvariance)vary over time in a
regularandpredictableway.
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Figure1. Total traffic into a region over two consecutive weeks.The solid line is the first weeksdata
(startingon May 7th) thedashedline shows thesecondweeksdata.Thesecondfigurezoomsin on the
shadedregionof thefirst.

We canquantify this intuitive view, by segmentingthe traffic into a regular, predictablecomponent,
anda stochasticcomponent.Themostnaturalway to segmentthe two is usinga generalizationof the
Norrosmodel[11]. This modelis ideal for backbonetraffic modelingbecauseit capturestheeffect of
statisticalmultiplexing of many sources.Thetwo components,ameantraffic rate��� whichcanbesome
generalfunctionof time,andthestochasticcomponent� � arecombinedto give thetotal traffic rateby
� �
	������� ����������� (1)

where � � is a stationarystochasticprocesswith zero mean,and unit variance,and � is a parameter
sometimesreferredto asthe peakedness. This type of modelhasbeenwidely used– seefor example
[15–17]– andconsiderableevidencefor themodel’sapplicabilityto ISPbackbonetraffic is givenin [12].

Themeantraffic rate� � is intendedto capturethepredictablecomponents,namelythetrend,andthe
weekly anddaily cycles. The variationin the periodiccomponentsincreasesin proportionto the total
volumeof thetraffic, andsoit is natural[13] to take themeanto be,

� � 	�� ����� � (2)

where�� denotesthetrend,and � � denotestheperiodicseasonal component.We assumethatwe know
theperiod � of theseasonalcomponent,andthat for the lengthof thedataexaminedheretheseasonal
componentcanbewell approximatedasbeingperiodic,i.e. ��������� 	 � ��� for all � 	"!#��$#��%#��&'&�&

Wediscusstheparameter� in detailin Section3,whereweintroduceit asametricof traffic variability.
In theoriginalNorrosmodel[11] thestochasticcomponent� � wasFractionalGaussianNoise(FGN),a
simpleLong-RangeDependent(LRD) process(see[1,2]). Here,our SNMPmeasurementsdo not allow
adetailedcharacterizationof ��� , soweallow any finite varianceprocess.

Thismodelsatisfiesanumberof desirableproperties.Oneimportantcharacteristicof themodelis that
whensetsof traffic thatobey themodelaremultiplexedthey continueto obey themodel. For instance,
take ( traffic streams�*) with constantmean� ) , peakedness� ) , andstochasticcomponentswhich are
independentrealizationsof thesameGaussianprocess.Themeanof thenew processis �+	 ,).-/ � ) ,
andthepeakedness(derivedfrom thevariance)is �0	 /1 ,).-/ � ) � ) , which is ameanweightedaverage
of thecomponentpeakednesses.



The units of � areunit-seconds[18], becausethe integral of the stochasticcomponent� shouldbe
dimensionless.For instance,if themeasurementsarein kbps,then � is measuredin kilobit-seconds.If
themeasurementsarein packetspersecond,then � is measuredin packet-seconds.

3. Metrics

Onemajorproblemwith many of thepreviouscommentariesontraffic stability is alackof quantifiable
definitions. In this section,we proposesucha quantitative metric. A usefulmetric shouldcapturethe
importantcharacteristicsof traffic in a parsimoniousway, e.g.,we might wanta metricthatcapturesthe
effect of thetraffic variability on capacityplanningperhapsby specifyinghow muchover-provisioning
is requiredto carrythespecifiedtraffic at a givenQuality of Service(QoS).However, detailedcapacity
estimatesare difficult, particularto the technologyand network, and requiremeasurementsof traffic
propertiesat finer scalesthanour SNMP measurementsprovide. Hencewe limit ourselves to simple
metricsthatcanbequickly calculatedon largedatasets.Thepropertiesof thepeakednessenumerated
above make it an ideal metric for our purposes,but in order to measure� we must first extract the
non-stationarycomponentsfrom thedata.

3.1. Estimating the Mean
In this sectionwe introduceandusebasictime seriesanalysisto computean estimateof the (non-

stationary)meanin equation(2). The startingpoint is a Moving Average(MA) which is simply a
convolution of the time serieswith a low-passfilter. We useonly centeredrectangularwindows in
thiswork. ThustheMA of width %2����$ appliedto time series� � is
3� � 	 $

%4����$
�
).-5 �

� ��� ) & (3)

If thefilter haslengthgreaterthantheperiod� of theseasonalcomponent(1 week)thentheMA actsto
remove theperiodicvariations.Therefore��	6�879% yieldsanestimateof thetrend,i.e.,we estimatethe
trendusingaMA with width : 1 week.Onceestimatedwecanform adetrendeddatasetby ;<�
	 � ��7 3�� .

The standardmethodin time seriesanalysisusedto estimatethe seasonalcomponentexploits the
periodicity by using a SeasonalMoving Average(SMA) wherewe take a MA over a seriesof data
pointsseparatedby theperiod,soasto estimatetheperiodiccomponentat thosetimepoints[13]. In our
analysis,weperformouraverageover thewholedataset,i.e.

3� �=	 $
(>�
,
? 5/
).-A@ ; �B� ) � � (4)

whereCEDGF !#���IH , and ( � is the largestintegersuchthat CJ�LK�( �NM $9HO�QPR( , where ( is the lengthof
thedata.Wereferto thisastheSeasonalAverage(SA). Wemayestimatethemeanby

3���
	 3� � 3�� .
3.2. Estimating peakedness

Oncewe understandtheperiodicandtrendcomponentsof thetraffic, thenext thing to captureis the
randomvariationaroundthemean.Most metricsof variationusedin capacityplanningdo not account
for the time-varying component,and so are limited to busy-houranalyses. In comparison,we have
estimated

3��� andso canuse(1) to estimatethe stochasticcomponent,by ST�U	VK � � M 3����H�7 � 3��� . We
cannow measurethevariability of the randomcomponentof the traffic usingthevarianceof S � . If we
knew ��� exactly thevariancewould bethepeakedness.Thusthemetricdefinedhereis anestimatorfor
� , whichwewill denote

3� , andreferto astheempirical peakedness.
We mustalso include in the estimationa correctionfor bias in the estimate.The correctionarises

for thesamereasonthat theprefactorin theunbiasedestimatorof thevarianceof a setof data�*) with
unknown meanis

/
, 5/ rather than

/
, as one might naively expect [13]. In our case,note that the

computationof
3� canberewrittenas

3�0	 $�
� 5/

� -A@ Var�WKXS �B���Y� H�� (5)



where � is the period of the seasonalcomponent. When computingVar�WKXS �����Y� H we must usethe
prefactorfor theunbiasedsamplevariance,takinginto accountthateachis basedon ( � datapoints:

Var�ZK�S ������� H
	 $
( �M $

,
? 5/

� -[@ K�S �������\MG]ST��H.^
� (6)

where ]S � 	 /
,
? 5/ ,_?� -[@ S �B�[��� . If ( � 	a` , a constantover the dataset (the datalength is an exact

multiple ` of the periodof the data),then the above reverts to estimatingthe varianceof Sb� with a
correctionfactor cc 5/ . For example,with four weeksof data,and a weekly period, ` 	ed so the
correctionfactoris anot insignificantdf79g .

Weshouldnotethatnotonly is � idealfor ourpurposes,but evenwhenthemodel(1) breaksdown, for
instancewhenthereareoutliersin thedata,thenparameter

3� is a usefulandmeaningfulmeasurement
(see[16,17]andSection3.4). Furthermore,themetricmaybeeasilyadaptedto dealwith missingdata,
a featureweusebelow.

3.3. Simulation results
In the previous sectionwe presentan estimatorcalled the empiricalpeakedness,but this estimator

is not anunbiasedestimatorof peakedness,becausethemodel(1) is morecomplicatedthanin typical
time seriescases.In this section,we presentsomesimulationresultsto confirm that the metric above
hasonly smallbiason a sampledatasetsimilar to actualmeasurementdata.We simulatea time series
correspondingto onemonth’s worth of 5 minuteSNMPmeasurements,accordingto (1) and(2), where
thestochasticcomponentis FGN with hi	j!9&lk , 0.75and0.95(generatedusingthetechniquein [19]);
the trend is exponentialcorrespondingto a doubling every threemonths1 (with a baserate of 26.6);
andwith theseasonal,or periodiccomponentdeterminedby a sinusoidplusa constant,i.e. �m� 	onp�qsrYt u %2v �� � where n and

q
areconstants.The resultsin Figure2 (a) arebasedon theproductof two

sinusoids,onewith a periodof 1 day, the otherwith a periodof 1 weekto simulateboth weekly and
daily cycles in the data. The parametersusedin the presentedsimulationare n�w ��x y{z 	a% , q w ��x{y z 	|$ ,
n~}����B� y{z 	"$ , q }����B� y z 	"!9&l% (thoughwehavetestedresultsfor amuchwiderrangeof parameters).In each
of thesimulationswealsoremove two blocksof 12hoursof datato simulatemissingdata.

Figure2 (a) shows theresultsof estimatesover a rangeof valuesof � basedon 10 simulationseach
(with 95%confidenceintervalsshown). We canseethatwhile thereis a statisticallysignificantbiasin
someresults(thosewith he	"!9&lk and !9&l�9k ) it is verysmall.For largervaluesof h , thereis nosignificant
bias.Themissingdatahaslittle effecton theresults(aslongasnot toomuchdatais missing)andnordo
theparametersof thesinusoidusedto generatetheseasonalcomponent.

Wehavecomparedthismetricwith alternatives,suchasthecoefficientof variation,andpeakto mean
ratio,andfoundtheempiricalpeakednessto belessbiased,andlesssensitive to form of thefunction � � ,
making

3� abettermeasurement.

3.4. Effect of anomalies
Anomalouseventsincludetransientpeaks/dipsin thedatacausedby DoSattacks,flashcrowds,rerout-

ing of traffic, etc, thatdo not fit model(1). In Figure2 (b) we show theeffect of anoutlier in thedata
– that is, a setof pointsnot correspondingto the model in (1). The modelusedin the simulationhas
thesameparametersasin thepreviousexample,andthex-axisof thefigureshows thesizeof theoutlier
(theoutlierwaschosento effect threeconsecutivedatapoints)with respectto thoseparameters.Onecan
seethat the outlier causes

3� to deviate from � (asonewould expect). The deviation is approximately
quadraticin thesizeof theevent,andis linearin thelengthof theevent,andthenumberof eventsin the
data.

Figure 2 (b) demonstratesthat the metric hasthe very desirablepropertythat when the modeling
assumptionsthat lie behindit areviolated, the estimaterespondsin a smooth,predictableway. If, in
contrast,the measurementvariedwildly, then it would looseany meaning,becausein almostall data�
This rateof increaseis likely to be far moreextremethanthe rateof increasein real traffic [20,21], but otherwisethe trend

wouldbebarelynoticeableoveraonemonthperiod.
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Figure2. Simulationresults.

setstherearesomeoutliers.Thepredictablenatureof thevariationallows usto draw meaningfrom the
resultsevenwhenoutliersarepresent.In facttheseoutliersmaybeeventsof interestin themselves,and
soit is notunreasonablefor themto effect themeasurement,solongasthey dosoin acontrolledmanner.

4. Measurements

This sectionpresentsmeasurementsof
3� . We shall look at approximatelyonemonthsequencesof

data,for which a purelyperiodicseasonalcomponentwasfoundto work well. At longertime scalesa
SMA is requiredastheseasonalcomponentitself maychangesignificantly, asthenetwork topology, or
the customermix changes.For longertime scales,oneshouldalsoensurestationarityof � usingtests
suchasin [12]. We presentresultsfrom two periods:May 1st to 31st2001(an ordinarymonth),and
September5th to October11th 2001. The datesin the Sept-Octdatasetwerechosento cover several
largeeventsthatwewish to investigate.

Wemeasure
3� onthe5 minutetraffic datafrom theOC48links thatform themajorityof thebackbone

network at thetime of study. Figure3 (a-top)shows anexampleof 1 monthof traffic datafrom a link,
while Figure3 (a-middle)shows the estimatedmean� � . Figure3 (a-bottom)shows the valueof S � .
Although this seriesappearsto have someresidualnon-stationarity, theappearancecouldbe the result
of long-rangecorrelationsin thedata[23]. In Figure3 (b-top)we zoomin on thefirst weekof thedata
shown in Figure3. In Figure3 (b-bottom)we show a very simplesimulatedversionof thetraffic. The
measuredvalueof themetricis

3�0	G!#&l�9� Mbs for thisdata.
We have appliedthe measurementsto of the orderof 50 OC48inter-city backbonelinks. Figure4

shows the Cumulative Distribution Function(CDF) of the measuredvaluesof
3� . Most valuesare in

0.5-3Mbs,though15%-25%of valuesarelarger. TheMay datasetalsohasmany morevalues�"k Mbs.
Thedashedlinesin Figure4 show themeasurementswhenanomaliesin thedataareremovedfrom the

data.Thereis a dramaticreductionin
3� , in particularthelargervaluesall but vanisheventhoughonly a

smallnumberof datapointsareremovedfrom thedata(on average148measurementsfrom 8064).The
reasonsfor thisarediscussedin Section3.4: anomalousvaluescanhaveasignificanteffecton thevalue
of
3� . A very small proportionof atypicaldatais contributing a large proportionof the variability. In

detail,thesepointsappearasspikes,or drops,andthey canalmostall beattributedto reroutingof traffic.

5. Meaning

The main value of metricssuchas the averageis that we feel we have someintuition abouttheir
meaning. At this point, the metric

3� is somewhat abstract. Herewe shall give somemeaningto the
metric,throughsimulatinga simpleWDM modelto seetheeffect � hason thedecisionto usedynamic
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Figure4. TheCDF of
3� (solid),andof

3� onceanomalouseventshavebeenisolatedfrom thedata.

reconfigurationin the network. In Section5.1 the relationshipbetweenthe peakednessand the need
for network reconfigurability, andin Section5.2 we look at datato understandthe peakednessseenin
AT&T’ snetwork over time.

5.1. Peakednessand the needfor reconfigurability
We first approachthe problemof giving meaningto � by placing it within a context: the network

topology, link bandwidths,routing,etc.WesimulateasimpleWavelengthDivisionMultiplexing (WDM)
accessnetwork basedon theMetropolitanAreaNetwork describedin [24] wherethetopology, shown in
Figure5 (a), is feederring with multiple accessnodes.Eachaccessnodeis anIP routerandanoptical
add-dropmultiplexer (O-ADM) giving it individually allocatedwavelengthsthatprovide transportto the
gateway node. The gateway nodeallocateswavelengthsto the differentaccessnodes,andso canbe
modeledasasimplemultiplexer/demultiplexer asshown in Figure5 (b).

Eachof the ( accessnodeshasdedicatedbandwidthto theuplink allocatedin wavelengthsof capacity�
. Weassumenegligible internaltraffic ontheaccessnetwork,andmodeltheexternaltraffic from access

node� as� )� using(1), with threeadditionalassumptions� Stationarity:Weassumethatthemeanof thetraffic is constantin time.� Homogeneous:Weassumethat � ) 	�� and � ) 	"� for all � .� Gaussianity:Weassumethestochasticcomponentis Gaussian.
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In thesimplestscenario,thewavelengthsarestaticallyallocatedaccordingto traffic forecastsandprovi-
sioningrules.However, improvedperformanceis expectedif thewavelengthsaredynamicallyassigned
to differentaccessnodesto follow fluctuationsin theofferedloads. Theaim of this modelis to assess
the relative capacitygain of dynamicreconfiguration.As a simplefirst analysis,we allocateenough
wavelengthsto eachaccessnodeto carry all of the offeredtraffic. Consideringthe above model,with
traffic � )� to node� at time C , we find that thenumberof wavelengthsrequired; )� 	V� � )� 7 ��� , where � � �
denotesthesmallestintegerlargerthan� . Thetotal numberof wavelengthsrequiredin eachcaseis� Static configuration: ��	 )[���2� � ; )� &� Dynamic reconfiguration: ��	 ���2� � ) ; )� &
Wesimulateusing20samplerealizationsof 4 weeksof 5 minutemeasurements,andshow oneillustrative
resultwith traffic characteristicscloseto realdata(bandwidthperwavelength

� 	Q$#k9k Mbps,average
traffic pernodeis 350Mbps,and � variesfrom 0 to 3.5Mbs).

Figure5 (c) shows a plot of theover-provisioning requiredby thestaticcaseto carry thesametraf-
fic asthe dynamiccase.The figure shows that thereis a thresholdin � below which thereis no need
for reconfiguration.Above thethreshold,a staticallyconfiguredsystemrequiresincreasingamountsof
over-provisioning. The thresholdin � is largely insensitive to numberof nodes ( , but doesdepend
on the meanrate � . The resultsshow that the valueof � hasa clear impacton andnetwork design.
Giventhatvery few of measuredvaluesof � lie above 3.0 (excludinganomalies)thecasefor reconfig-
urability is weak,thoughwhenwe includenetwork anomalies� maytake largeenoughvaluesto justify
reconfigurability.

5.2. Causesof variability
Anotherway in which we cangain someunderstandingof the measurement

3� is to determinewhat
factorseffect it’s value. Is it simply variationin the traffic over time, or do particulareventsinfluence
its value? We know, for instance,that in the link datathe valueof

3� is increasedby atypicalevents
(seeFigure4). Sucheventscouldbeflashcrowds;DoSattacks;andself-propagatingwormsor viruses;
reroutingdueto link outages,or externallyinducedchangesvia BGP;or importantnaturalandman-made
events(for instanceearthquakes,September11th,holidays).In theMay data,themajorityof anomalous
eventsoccurastheresultof reroutingof traffic, however thereareeventssuchastheMay 28thMemorial
day holiday may result in changesin traffic (a noticeabledip on this holiday). The Sept-Octdatawas
chosenbecauseit coverssomemoredramaticevents:

1. The attackon the WTC on September11th: Figure6 (a) shows threeconsecutive weeksfrom
Sept-Octfor theNew York region,andthetimeof thefirst crash.Thereis acleardropin thetraffic
from New York at this time. The drop appearedin mostotherPoPsaswell, suggestingthat the
dropwasnot causedby link outages(a factsupportedby thefault data).

2. TheNimdaWorm[25,26]: onceinfected,ahostwouldsendprobesto infectnew machines.There
wasa large enoughvolumeof theseprobesto causea DoS effect in somenetworks. The worm
wasfirst noticeableat 13:00GMT on Sept.the18thandits peakactivity continueduntil the19th.



Thesetimesareshadedon Figure6 (a), but notethat thereis no discernibleincreasein traffic in
New York (andelsewhere)duringthesetimes.Thereasonthatthishasnoteffectedbackbonetraffic
totalsis thattheprobesaregenerallyfairly small,andtherearenotreally thatmany comparedwith
thetotal backbonetraffic. It takesa really big eventto affect thebackbone.

3. Thefinal eventof interestis aBGPproblemassociatedwith amalformedAS-paththatpropagated
throughthe Internetfrom 19:40on the 7th to 1:40 on the 8th of Oct. (seeNANOG mailing list
for details). The event is clearly visible in BGP traffic, which surged by abouta factorof 10.
ThemalformedAS-pathmayhavecausedsomecustomerroutersto crash,andtherebycausedthe
increasedBGPtraffic, andwemight thereforeexpectto seeadecreasein datatraffic. Figure6 (b)
shows theweeksin question.Thereis a smalldecreasein traffic on thedayin question,but it not
clearlycausedby theBGPevent. Without moredetailedtraffic data,it is hardto confirmthetrue
cause,but it doesseemto beevidencethatBGProutinginstability canaffect traffic.
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(a)Thesolid line shows thedropon the11thof
Sept.Theshadedregionshowstheperiodof the
Nimdaattack.
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(b) The vertical lines show the period of in-
creasedBGPactivity.

Figure6. Total traffic into New York over threeconsecutive weeks(for two differentmonths).

To understandwhatsortof effect theseunusualeventshave on our measureof variability
3� , we also

computethe empiricalpeakednessof the traffic, excluding theseevents. Figure4 (b) shows the CDF
of themeasured

3� , with all data,without simpleanomalies,andwithout all anomalies,including those
above. The latter two arealmostindistinguishable,becausethe peakedness’s responseto anomaliesis
quadraticin their ’size’, but only linear in theduration.Hencelong livedeventssuchastheWTC 20%
traffic dropdon’t impactpeakednessasmuchasshortreroutingeventswhich maydoublethetraffic on
a link. Togetherwith theresultsof 5.1,we seethatopticalreconfigurabilityhelpsmostto handletraffic
changesarisingfrom suddeneventssuchasnetwork failures,whichmaybeexternalto thesystemunder
administrative control.

6. Conclusion

Understandingthecharacteristicsof backbonetraffic is crucialfor boththeengineeringanddesignof
largenetworks.Thispaperpresentsanovel techniquefor measuringthevariability of backboneInternet
traffic, and investigatesthis techniquesusing SNMP measurementsfrom a Tier-1 ISP backboneand
throughsimulations.A key insightof this paperis thatlargedeviationsfrom traffic predictions(not due
to routingchanges)arerare.Most normalvariationhas � in therange0.5-3.0Mbs for 5 minuteSNMP
measurements.Thisvalueof � appearsto representrelatively stabletraffic. However, wenotethat � can
belargerevenwhenweexcludeobvioustransientevents.At thevery leastthisprovidesa realisticsetof
parametervaluesfor simulationsof backbonetraffic.



Our original motivationfor this work wasto look at thebenefitsof building IP backboneson top of a
re-configurableopticalnetwork. Thoughthediurnalvariationsin traffic aresignificant,thesearetightly
coupledacrossNorth American,andso do not allow temporalsharingof capacity. Furthermore,the
stability of the stochasticcomponentsuggeststhat the casefor a re-configurableoptical network layer
basedsolelyon traffic variationsis weak– certainlysomeclaimsof variability have beendramatically
exaggerated.However, it maystill make senseto usea sucha network to dealwith traffic loadchanges
resultingfrom IP layerre-routingdueto failures[22], or dueto globaldifferencesin thediurnalcycle.
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