
XTreeNet: Scalable Overlay Networks for XML Content Dissemination
and Querying (Synopsis)

William Fenner
AT&T Labs–Research

fenner@research.att.com

Michael Rabinovich
AT&T Labs–Research

misha@research.att.com

K. K. Ramakrishnan
AT&T Labs–Research

kkrama@research.att.com

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

Yin Zhang
University of Texas, Austin

yzhang@cs.utexas.edu

Abstract

XML is becoming a ubiquitous format for information
exchange on the Internet. To alleviate the problems of
“whom to ask” and “whom to tell” when connecting XML
information producers with consumers over the network,
content-based querying and dissemination of information
have been investigated in the literature. Our XTreeNet
project unifies the publish/subscribe and query/response
models with a single common XML aware overlay network
for XML-based information producers and consumers. This
integrated framework lends itself to a variety of applica-
tions.

1 Introduction

XML-aware Networks: Information is increasingly being
created, exchanged and stored in the eXtensible Markup
Language (XML). XML is suitable for this purpose because
of its flexibility and self-describing nature: it is human read-
able, while at the same time it is convenient for machine
processing. Examples of XML-based information include a
large number and variety of electronic newspapers, techni-
cal journals, and healthcare databases.

These information producers are typically geographi-
cally dispersed across the network, as are the potential con-
sumers of this information. Communicating XML-based in-
formation presents opportunities and challenges from a net-
working perspective. A network that can efficiently forward
XML data can be advantageous, as it can offload the filter-
ing of tremendous volumes of data from consumers. Or, it
can reduce the load on the producer and the network, by
avoiding producers having to broadcast information to indi-
vidual consumers. In this synopsis, we argue that an XML-
aware overlay network infrastructure is needed, both for

performance and functionality reasons, to efficiently con-
nect producers and consumers of this information.

Integrating Publish/Subscribe with Query/Response:
As more and more information is becoming available elec-
tronically, with rapid globalization, both information con-
sumers and information producers face increasing chal-
lenges. For information consumers, it is very difficult to
determine “whom to ask” when it comes to getting the ap-
propriate information available over the network. For infor-
mation producers that would like their content to be made
available to interested consumers, it is very hard to iden-
tify “whom to tell”. The solution to both these problems is
to support content-based dissemination and content-based
querying of information, where the network itself is respon-
sible for identifying “whom to ask” and “whom to tell”.

For a consumer who is interested in a topic of long-
standing interest, publish/subscribe overlay networks are
very useful. The network facilitates the dissemina-
tion of the information by setting up the appropriate dis-
tribution trees based on the content and subscriber inter-
ests. In recent publish/subscribe overlay networks (see, e.g.,
ONYX [5]), subscriber interests are aggregated at each node
in a producer-based distribution tree, and published infor-
mation needs to be repeatedly matched against subscriber
interests at each node along the overlay paths to relevant
subscribers. Such approaches can be expensive computa-
tionally, potentially limiting the throughput of the system.

When the consumer is interested in a specific piece of
information, or in a transient or a newly emerging topic,
a database-style query/response model is more appropriate
than a publish/subscribe model. The framework for query-
ing these networked information producers has traditionally
been quite different from the publish/subscribe model. In-
dividual queries are posed to individual producers for pro-
cessing. The only external support that may be available
are search engines that help locate producers relevant to



IP Network
Infrastructure

Database

XML Overlay
NetworkXML

switch

Publisher

Subscriber
for alerts

Subscriber for
information

Data query
generation

Figure 1. XTreeNet Overlay Network

user queries. However, this does not always lend itself to
providing up-to-date real-time information to the query, be-
cause the location information at the search engine may be
limited and out of date.

Information being disseminated electronically and in
large scale from multiple producers has also naturally
evolved over the years. For example, subscribers to elec-
tronic news publishers see “snippets” of information being
presented to them. A subsequent request delivers the actual
published information, for selected snippets. This naturally
demands an environment that seamlessly integrates a pub-
lish/subscribe framework (presenting snippets of subscribed
material from a myriad of producers) and a query/response
framework (for responding to the specific information re-
quests from subscribers).

XTreeNet Overlay Network: Our XTreeNet project (from
“X ML Tree-based Networks”) unifies the publish/subscribe
and query/response models with a single common XML
aware overlay network of XML routers that connect XML-
based information producers and consumers (see Figure 1).
XTreeNet is based on two key conceptual ideas:

• First, XTreeNet introduces the concept of acontent de-
scriptor (CD), used to describe the information that
consumers want to receive and that producers generate.
This permits producers and consumers to bedecoupled
from each other, which is important for scalability.

• Second, XTreeNet sets up a core-based distribution
tree for each CD. Since there is no explicit matching
of data against complex consumer interests, data and
query forwarding are very efficient.

XTreeNet additionally enables such capabilities as du-
plicate elimination, relevance-score based filtering, andac-
cess control to be performed in the network. This integrated

framework lends itself to a variety of applications, including
one that we discuss in this synopsis—a “super newspaper”
application that connects thousands of electronic newspa-
pers to millions of readers across the network who want to
get news on topics of interest from any and all of the pub-
lishers of the content.

2 Testbed Application and Capabilities

As a shared infrastructure, the network tries to find a
sweetspot between being generic enough to support a large
range of applications (as IP attempts to do) and providing
critical functionality where appropriate. In the past, when
the need for efficient application-level support within the
network was desired for pervasive applications, we have
seen the emergence of such network support. Examples
include L7 switches, application-aware firewalls, and SSL
accelerators. The introduction of application level support
into the network is desirable when there are significant per-
formance gains from offloading considerable amounts of
duplicate effort at a large number of end-systems, or when
functionality rightfully belongs in the network, such as the
need for a trusted intermediary.

With XML becoming a ubiquitous format for data com-
munication, XML-aware overlays will provide support to
applications that communicate using this data format. We
see the need for XML awareness in the network for both
performance reasons (e.g., to offload filtering of data that is
considered irrelevant to the end-system) and functionality
reasons (e.g., access control).

2.1 Testbed Applications

Our XTreeNet overlay network infrastructure lends itself
to a variety of applications. In particular, we plan to use the
following two applications as a testbed for XTreeNet.

• One application is large scale news dissemination – a
form of a “super newspaper”. There are thousands of
daily newspapers published electronically worldwide,
reporting on a wide variety of topics of local, regional,
national, and international interest. This news is of in-
terest to millions of readers worldwide, each of whom
may be interested in only a small set of topics (the
stocks they own, their favorite sports teams), but wants
to get news on these topics from any and all of the
worldwide newspapers.

• A second application is “cooperative healthcare”.
There are thousands of hospitals, clinics, and health
care providers who maintain records of patients, and
the results of procedures carried out on patients. These
records are of considerable interest to millions of pa-
tients and the medical doctors treating them, who may
be interested in specific information (tests carried out



on a specific patient in the last 2 years, techniques used
to detect specific diseases), but want to get this infor-
mation from all possible, relevant sources.

In each of these, and many other, applications, there
is a concerted attempt at making information available as
XML. For electronic newspapers, the Real Simple Syndica-
tion (RSS) XML format has become the dominant format
for distributing news headlines on the Web. For healthcare,
the Health Level 7 (HL7) consortium is standardizing XML
formats for patient records and other aspects of health care,
and health care information is becoming increasingly avail-
able in XML format.

In this synopsis, we consider the super newspaper ap-
plication in more detail, focusing on the functionalities re-
quired and the utility of the XTreeNet infrastructure in pro-
viding these functionalities.

2.2 Content Descriptors

A fundamental question that arises in any pro-
ducer/consumer model is the basis for matching data gen-
erated by producers with consumer interests. Typically,
content-based publish/subscribe and query/response mod-
els permit consumer interests to be specified as (potentially
complex) query filters over the data generated by producers.
Identifying consumers interested in a data item is based on
checking which of the consumer query filters matches the
specific data item. While such an approach is appropri-
ate in a centralized environment, it can be very expensive in
a distributed overlay network, where published data would
have to berepeatedly matchedagainst subscriber query fil-
ters at multiple nodes in the overlay network.

In XTreeNet, we use the key concept of acontent de-
scriptor (CD) to alleviate this problem. Intuitively, CDs
work by permitting each data item generated by a producer
and each consumer query filter to beindependentlymapped
to sets of CDs. A data item is then said to match a query
filter only if their respective sets of CDs have at least one
CD in common.

As examples, a CD could be an element of an onto-
logical topic hierarchy, or an XML data path. A news
data item can be associated with the CD set “/interna-
tional/politics/mideast” and “/USA/business/energy/oil”. A
query filter can be of the form “/international/*/mideast”,
which can be mapped to the set of CDs “/interna-
tional/politics/mideast”, “/international/business/mideast”,
etc. The overlap between the sets of CDs means that the
news data item matches the query filter. Often multiple hi-
erarchies are of interest. For example, news data items can
be simultaneously associated with a topic (in a topic hier-
archy), as well as a geographic location (in the location hi-
erarchy) of the producer of the news item. For this reason,
our CDs support multiple hierarchies.

2.3 Information Publishers/Subscribers

A sports fan who wants to continually obtain information
about a particular player, a particular team, etc., may not
know all the relevant newspapers on any given day. For ex-
ample, information about a player may be carried by news-
papers in the player’s home town, in the state where the
player is playing, etc. In the super newspaper XTreeNet
application, the fan could simply subscribe to information
relating to the specific player. The subscription may also be
very fine grained (e.g., only when the particular team wins).

Processing these types of fine grained, content-based,
subscriptions requires some application layer function,
which the XTreeNet overlay network provides. Without
network support, either the subscriber must subscribe at
each individual newspaper (clearly a non-scalable option)
or the super newspaper provider must implement a “super-
site” for harvesting all the news from individual publish-
ers and processing all the subscribers. Although Google
and Yahoo are demonstrating the feasibility of the latter ap-
proach, it creates significant traffic concentration and pro-
cessing bottleneck problems. Replication of the servers
across the network would only solve part of the problem
since the servers would still need to receive and store all the
published content. By offering this functionality in the net-
work, XTreeNet avoids these problems and lowers the bar
for new entrants into this space.

2.4 Query/Response

Subscriptions are not adequate in many scenarios, es-
pecially for breaking news; in such scenarios, an ad hoc
XTreeNet query may be more appropriate. For exam-
ple, when a large scale disaster strikes (such as the Asian
Tsunami), it is quite difficult for friends (who may be ge-
ographically distant from the disaster) to get information
from the locales close to the disaster. They may not know
the names of the news publishers in that part of the world.

The super newspaper enables an ad hoc XTreeNet query
to gather all the news from those parts of the world, and en-
ables consumers to get the desired information without hav-
ing to know specifically the names of the individual news-
papers. If the topic of the ad hoc query becomes one of
continuing interest (as in the Asian Tsunami case), the one
time query can be replaced by a long term subscription.

2.5 Integration of the Models

The super newspaper application naturally requires an
integration of the publish/subscribe and query/response
models for information dissemination. In an electronic
news distribution environment, subscribers are typically
presented with “snippets” of the relevant items. With
XTreeNet, snippets from a myriad of publishers can be fil-
tered and presented. Unlike the same or slightly differ-



ent piece of information from each publisher being pre-
sented multiple times to the subscriber, the XTreeNet over-
lay can deliver a single snippet, with the subscriber being
confident of subsequently obtaining all the relevant infor-
mation when he/she desires it. Distribution of snippets re-
quires publish/subscribe functionality, and the subsequent
request for specific information follows the query/response
model. Thus, the integration of the publish/subscribe and
query/response models for information retrieval and distri-
bution is not only a desirable feature, it is an essential com-
ponent of large scale information dissemination. XTreeNet
recognizes and addresses this directly.

2.6 Duplicate Elimination and Top-K Filtering

A substantial benefit that XTreeNet provides is duplicate
elimination, where only one copy of the document is de-
livered to the client. Without this, the burden for duplicate
elimination falls on the client, which also imposes unneces-
sary load on the network for delivering the redundant copies
that are discarded by the client anyway. In our sports fan
example, the fan would naturally want the super newspa-
per application to remove duplicates, so that the same news
published by multiple newspapers (e.g., when the source is
a news agency such as Reuters or the Associated Press) is
presented to the fan only once.

Another related functionality that can be provided by
XTreeNet is relevance-score based filtering. In the pub-
lish/subscribe scenario, this functionality filters out any
content with relevance scores lower than the top-K scores
of documents previously delivered to the same clients. In
the query/response case, the network delivers only theK

most relevant responses to the query. By implementing this
functionality in the network, unwanted content can be dis-
carded early in the network.

2.7 Access Control

XTreeNet can also offer fine-grained access control, at
the individual XML element level. While this functionality
may not be relevant to our super newspaper application, it
is very important in the cooperative healthcare application.
For example, an XML document, containing patient infor-
mation, may be delivered in full when requested by a med-
ical doctor, and in an abridged form, without the sensitive
medical history, to hospital administration.

Information producers routinely offer access control
functionality and filter content sent to consumers accord-
ing to their credentials. However, with a large and grow-
ing number of information producers in intranets, and with
increasingly complex B2B interactions, managing access
control rules across this variety of (sometimes administra-
tively independent) information producers grows ever more
problematic. The network, as a trusted intermediary, is a

logical point to support access control in a systematic, co-
herent, and hard-to-bypass way.

3 Protocols

3.1 Overview

The key to the protocol framework is the need to support
both a publish/subscribe as well as query/response model
for information dissemination in a scalable manner. When
every overlay router in the network has to perform matching
and filtering of XML content from publishers, it becomes
an impediment to making the framework scalable. From
our past experience with packet networks, the fundamen-
tal building block for fast, scalable forwarding is to make
the lookup at each node as simple as possible—such as a
longest-prefix match or the lookup of a hash identifier. Our
approach also recognizes that multicast offers a sound basis
for minimizing the number of duplicate copies of a piece of
data that traverse a link. However, a multicast framework
such as IP multicast is limiting in scalability because of the
global limit on the number of multicast groups supported.

The key idea we use is to exploit overlay multicast, with
the flexibility of having a group for each distinct content
descriptor (CD), so that we can have very fine grained dis-
tribution trees on an as-needed basis. CDs form the basis
for a content-based multicast group that enjoins producers
of information with a CD and the consumers interested in
that CD. For every such CD, we conceptually construct two
core-based multicast trees with a common core: one that
leads to all of the producers, and one that leads to all of the
consumers. We create a “coordinator” for each such CD,
which is selected dynamically, based on the first arrival of
the CD from a producer. The coordinator acts like a “core”
in the core-based IP multicast framework. As soon as a CD
(from a producer or from a consumer) hits the network, it
is mapped into a single hash identifier at the first overlay
router. This enables efficient mapping to the corresponding
multicast trees for forwarding. Subsequent routers beyond
the first only forward based on the hash identifier on the
appropriate multicast tree. Since different coordinatorsare
responsible for different CDs, XTreeNet reduces the likeli-
hood of traffic concentration in the network.

We describe next an overview of the XTreeNet proto-
col that supports the publish/subscribe and query/response
framework in an integrated manner. We refer to Figure 2
that shows a network of overlay XML routersRi, and data
nodes (publisher or subscriber end-systems)Di. We assume
that each XML router knows the overlay topology.

3.2 Constructing Trees to Publishers

A key characteristic of our protocol is the creation of
a “coordinator” for each CD that anchors further distribu-
tion tree construction. The overlay XML router next to



D1

D5

D2

D6

R4

ABC {D4,R3} {D5}

ABC {R2} ABC {D3,R3} {R3}

ABC {R2,R4} {R4,D6}

R3 

R1 R2 ABC

ABC

D3

D4

Figure 2. XTreeNet: Protocol Example

the first publisher that transmits a particular CD elects it-
self as the “coordinator” for the CD and floods that infor-
mation throughout the overlay network (if there are parallel
attempts by multiple coordinators to flood, the coordinator
with the smallest ID wins).

So, e.g., if a data node D3 in Figure 2 produces a data
item with CD =<ABC>, the overlay XML router R2 elects
itself as the coordinator. The coordinator constructs a hash
value based on the CD, and then floods to all the overlay
router nodes in the network the tuple (hash ID,<ABC>,
coordinator-id). The state stored in all the overlay XML
routers includes the tuple (hash ID,<ABC>, publisher in-
terface list), where the last item contains the list of inter-
faces towards the publishers for this CD, initially just the
interface to the coordinator, for the non-coordinator routers
and the interface to D3 for the coordinator.

If subsequently, another data node D4 publishes the same
CD of <ABC>, the adjacent overlay router R4 sends a
“publisher-join” to the interfaces on its publisher interface
list. In our example, this means sending the join through the
overlay topology towards the coordinator, R2. This goes to
R3 to R2, along the shortest path of overlay hops. When
the overlay XML router R3 receives the “publisher-join”,
it adds its link towards R4 to the list of “publisher interface
list” for this CD. Similarly, overlay XML router R2 adds the
link towards R3 in the “publisher interface list” for this CD.
Thus, we have a tree of publishers formed. Figure 2 reflects
the routing state at this stage, with the first bracketed listat
each router representing the publisher interface list.

Subsequent CDs that are announced by other publishers
follow the shortest path of overlay hops towards the coordi-
nator, but do not need to progress all the way to coordinator
once they hit an on-tree (of publishers) node. For example,
if D6 published a document with<ABC>, its publisher-
join would stop at R3 because the latter is an on-tree node.
A router determines that it is an on-tree node if its publish-
ers interface list contains more than one entry. The same
state is maintained in all the overlay XML routers in the
network, including the coordinator.

3.3 Query Processing

If an end-user on node D1 sends a query for the content
descriptor<ABC>, the first overlay XML router, R1, adja-
cent to D1, processes the queried CD to derive a hash func-
tion (or potentially a set of hashes if the submitted query
corresponds to multiple CDs) to match what was computed
earlier based on the CD. With the hash, the overlay XML
router R1 now knows the relevant tree, and forwards the
message containing the (<hash>, <Query>) on the inter-
faces in the publisher interface list. Note that this list is
guaranteed to include the interface towards the coordinator.
In our example, the query is sent towards the coordinator
R2. R2 will in turn send the query on its publisher inter-
face list, which includes D3 and R3. R3 will forward the
query to R4, and then to D4. Thus, the query will be deliv-
ered to all relevant publishers.

The main characteristic of our approach is that only the
first overlay XML router R1 has to process the query. The
remaining routers do not have to process the query, and just
use the<hash> id to determine where to send the query
– essentially like traditional multicast – along all the inter-
faces that are marked with “senders” for that hash id. The
hash is key to avoiding the processing of queries at all the
routers; instead it results in just a hash lookup. Hash col-
lisions can be made unlikely by having a sufficient number
of bits; an occasional collision only leads to redundant mes-
sages but does not compromise the system functionality.

Each data producer may have multiple documents that
match the query, and may not have exposed the entire in-
ternal structure of these documents in the original CD an-
nouncements. Thus, it is useful for the data producer to
process the entire query.

3.4 Constructing Trees to Subscribers

When a subscriber sends its subscription to its ad-
jacent overlay XML router, its subscriber-join is multi-
cast to publishers over the publisher tree. In the pro-
cess, the subscriber-join also sets up a second logical tree
(subscriber-tree), along which published data will flow.
Thus, the routing state entry described in the previous
subsection is augmented with a subscriber interface list.
Each overlay XML router receiving a subscriber-join adds
the interface from which the subscriber join was received
to the subscriber interface list for the received CD hash.
As with publisher-joins, the propagation of subscriber-join
messages stops at overlay routers that are already on the
subscriber tree (i.e., has a non-empty subscriber interface
list). When a new publisher arrives on an interface of an
XML router that already has an existing subscription for
this CD, i.e., the overlay XML router is an on-subscriber
tree node, then the subscriber join is sent to the overlay
XML router adjacent to the publisher, thus extending the
subscriber tree up to that publisher.



In the example of Figure 2, let us say that D5 wants to
subscribe to updates to the content described by the CD =
<ABC>. This subscriber join is sent to R4, the first overlay
XML router. The state for the subscription tree is created at
R4, which forwards along the publisher interface list, i.e.,
to overlay XML router R3. R3 forwards it (in addition to
creating state for this subscription tree) to R2.

A subsequent subscription from node D6 for the same
CD (an identical subscription to a previous one) will stop at
R3 because it is an on-tree node for the subscription tree.
R3 adds D6 to its subscriber interface list, but there is no
need to propagate the subscription further, because all pub-
lication of content corresponding to CD =<ABC> will be
forwarded to R3 and hence by R3 to D6. The routing state
at this stage is shown in Figure 2, with the second bracketed
lists representing the subscriber interface lists.

There are several other cases to be considered, includ-
ing subscriptions with wildcards, subscription cancellation,
dealing with duplicate detection, filtering based on rele-
vance scores, and access control. We expect to provide a
more complete description in a future detailed paper.

4 Related Work
A large body of work exists in the area of distributed

content-based publish/subscribe systems, including sugges-
tions to implement them on top of generic application-level
multicast [2] or IP multicast [1]. Recently, proposals have
appeared for ad hoc XML query routing as well [6].

Most closely related to our own work are XML pub-
lish/subscribe systems [3, 5]. ONYX, a system for XML
content dissemination (Diao et al., [5]), uses source-based
trees for publishing new data. Specifically, there is a dis-
semination tree rooted at each publisher. Each router main-
tains for each interface an aggregate subscription that sum-
marizes all the subscriptions downstream along that in-
terface. A published data item starts from the root (the
publisher), and gets forwarded to all downstream inter-
faces whose corresponding aggregate subscriptions match
the data item. Although the per-source dissemination tree
used by ONYX is optimal, it is also very expensive to main-
tain especially when the number of publishers is large. An-
other important distinction between ONYX and XTreeNet
is that in ONYX, every overlay router along the path needs
to match aggregate subscriptions (XQuery operations, for
ONYX) to data items, which can be fairly expensive. In
XTreeNet, only the first hop (source overlay) router needs
to map data items to CDs, whereas the intermediate routers
only need to do forwarding. Chand and Felber [3] take
a similar approach using sender based trees, while also
providing support for subscription cancellation, which is
not addressed in [5]. XTreeNet also supports subscription
cancellation. Very recently, SemCast [7] was proposed.
Like previous approaches, it aggregates subscriptions and

matches a document to such aggregates. The difference is
that the choice of the aggregate is made in a centralized
manner using a cost-based model, and documents are routed
through the network based on the subscription aggregates.

Commercially, DataPower [4] offers network appliances
that accelerate XML parsing, validation, and encryption.
Sarvega [8] also offers an appliance for XML subscription
processing. Semandex [9] offers appliances that can be con-
nected into a network, and used for routing a query to rele-
vant data sources. However, these queries use a proprietary
XML dialect for describing and querying content, and the
queries are processed by each router en-route. XTreeNet
protocols avoid XML processing at the intermediate routers.

5 Conclusion

XML is becoming the dominant format for information
dissemination and querying on the web. In this synop-
sis, we make the case for XML-aware overlay routers in
the network for scalability and functionality reasons. Fun-
damentally, our approach is a move towards content-based
networking, without end-systems having to determine and
maintain contexts to particular source of information, re-
moving the problem of “whom to ask”. It enables publish-
ers to trust the network to deliver information securely, effi-
ciently and just the right, desired content to the appropriate
end-systems even when there are a tremendous number of
subscribers, thus removing the problem of “whom to tell”.

References

[1] G. Banavar, T. Chandra, B. Mukherjee, N. Nagarajarao,
R. Strom, and D. Sturman. An efficient multicast protocol for
content-based publish-subscribe systems. InProc. of ICDCS,
1999.

[2] A. Bozdog, R. van Renesse, and D. Dumitriu. Selectcast:
a scalable and self-repairing multicast overlay routing fa-
cility. In Proc. of ACM workshop on survivable and self-
regenerative systems, 2003.

[3] R. Chand and P. A. Felber. A scalable protocol for content-
based routing in overlay networks. InProc. of Symposium
on Network Computing and Applications, 2003.

[4] http://www.datapower.com/.

[5] Y. Diao, S. Rizvi, and M. Franklin. Towards an Internet-scale
XML dissemination service. InProc. of VLDB, 2004.

[6] G. Koloniari and E. Pitoura. Content-based routing of path
queries in peer-to-peer systems. InProc. of EDBT, 2004.

[7] O. Papaemmanouil and U. Cetintemel. SemCast: Semantic
multicast for content-based data dissemination. InProc. of
ICDE, 2005.

[8] http://www.sarvega.com/.

[9] http://www.semandex.com/.


