Troubleshooting Chronic Conditions in Large IP Networks

Ajay Mahimkar, Jennifer Yates, Yin Zhang, Aman Shaikh, Jia Wang, Zihui Ge, Cheng Tien Ee

UT-Austin and AT&T Labs-Research mahimkar@cs.utexas.edu

ACM CONEXT 2008

Network Reliability

- Applications demand high reliability and performance
 - VoIP, IPTV, Gaming, ...
 - Best-effort service is no longer acceptable
- Accurate and timely troubleshooting of network outages required
 - Outages can occur due to mis-configurations, software bugs, malicious attacks
 - · Can cause significant performance impact
 - Can incur huge losses

Hard Failures

- · Traditionally, troubleshooting focused on hard failures
 - E.g., fiber cuts, line card failures, router failures
 - Relatively easy to detect
 - Quickly fix the problem and get resource up and running

Link failure

Lots of other network events flying under the radar, and potentially impacting performance

Chronic Conditions

- Individual events disappear before an operator can react to them
- Keep re-occurring
- Can cause significant performance degradation
 - Can turn into hard failure
- Examples
 - Chronic link flaps
 - Chronic router CPU utilization anomalies

 Router CPU Spikes

 Router

 Router

Troubleshooting Chronic Conditions

- Detect and troubleshoot before customer complains
- State of art
 - Manual troubleshooting
- Network-wide Information Correlation and Exploration (NICE)
 - First infrastructure for automated, scalable and flexible troubleshooting of chronic conditions
 - Becoming a powerful tool inside AT&T
 - Used to troubleshoot production network issues
 - · Discovered anomalous chronic network conditions

Outline

- Troubleshooting Challenges
- · NICE Approach
- NICE Validation
- Deployment Experience
- Conclusion

Troubleshooting Chronic Conditions is hard

Traffic

Syslogs

Effectively mining measurement data for troubleshooting is the contribution of this paper

2. Mine data to find chronic patterns

- 3. Reproduce patterns in lab settings (if needed)
- 4. Perform software and hardware analysis (if needed)

Troubleshooting Challenges

- Massive Scale
 - Potential root-causes hidden in thousands of event-series
 - E.g., root-causes for packet loss include link congestion (SNMP), protocol down (Route data), software errors (syslogs)
- · Complex spatial and topology models
 - Cross-layer dependency
 - Causal impact scope
 - Local versus global (propagation through protocols)
- Imperfect timing information
 - Propagation (events take time to show impact timers)
 - Measurement granularity (point versus range events)

NICE

- Statistical correlation analysis across multiple data
 - Chronic condition manifests in many measurements
- Blind mining leads to information snow of results

Events

- NICE starts with symptom and identifies correlated events

Spatial Proximity Model

- Select events in close proximity
- Hierarchical structure
 - Capture event location
- Proximity distance
 - Capture impact scope of event
- Examples
 - Path packet loss events on reaters and links on same path
 - Router CPU anomalies events on same router and interfaces

Network operators find it flexible and convenient to express the impact scope of network events

Unified Data Model

- Facilitate easy cross-event correlations
- Padding time-margins to handle diverse data
 - Convert any event-series to range series
- Conversation
 Correlations
 - Convert range-se. to binary time-series

Range Event Series A

Point Event Series B

Statistical Correlation Testing

- Co-occurrence is not sufficient
- Measure statistical time co-occurrence
 - Pair-wise Pearson's correlation coefficient
- · Unfortunately, cannot apply the classic significance test
 - Due to auto-correlation
 - · Samples within an event-series are not independent
 - · Over-estimates the correlation confidence: high false alarms
- We propose a novel circular permutation test
 - Key Idea: Keep one series fixed and shift another
 - · Preserve auto-correlation
 - Establishes baseline for null hypothesis that two series are independent

NICE Validation

 Goal: Test if NICE correlation output matches networking domain knowledge Expected to correlate,

- Validation using 6 months of NICE marked uncorrelated

					NICE Correlan		
	NIC	NICE marked correlated					
	Pairs for correlation testing	Expected not to correlate	•		Unexpected Correlations	Missed Correlations	

1732

24

- For 97% pairs, NICE correlation output agreed with domain knowledge
- For remaining 3% mismatch, their causes fell into three categories

193

- Imperfect domain knowledge

1785

Expected to not correlate.

1592

- Measurement data artifacts
- Anomalous network behavior

29

Anomalous Network Behavior

- · Example Cross-layer Failure interactions
 - Modern ISPs use failure recovery at layer-1 to rapidly recover from faults without inducing re-convergence at layer-3
 - i.e., if layer-1 has protection mechanism invoked successfully, then layer-3 should not see a link failure
- Expectation: Layer-3 link down events should not correlate with layer-1 automated failure recovery
 - Spatial proximity model: SAME LINK
- Result: NICE identified strong statistical correlation
 - Router feature bugs identified as root cause
 - Problem has been mitigated

Troubleshooting Case Studies

AT&T Backbone Network

- Uplink packet loss on an access router
- Packet loss observed by active measurement between a router pair
- CPU anomalies on routers

Data Source	Number of Event types
Layer-1 Alarms	130
SNMP	4
Router Syslogs	937
Command Logs	839
OSPF Events	25
Total	1935

All three case studies uncover interesting correlations with new insights

Chronic Uplink Packet loss

- Problem: Identify strongly correlated event-series with chronic packet drops on router uplinks
 - Significantly impacting customers
- NICE Input: Customer interface packet drops (SNMP) and router syslogs

Chronic Uplink Packet loss

Chronic Uplink Packet loss

- NICE Findings: Strong Correlations with
 - Packet drops on four customer-facing interfaces (out of 150+ with packet drops)
 - · All four interfaces from SAME CUSTOMER
 - Short-term traffic bursts appear to cause internal router limits to be reached
 - Impacts traffic flowing out of router
 - Impacting other customers
 - Mitigation Action: Re-home customer interface to another access router

Conclusions

- Important to detect and troubleshoot chronic network conditions before customer complains
- NICE First scalable, automated and flexible infrastructure for troubleshooting chronic network conditions
 - Statistical correlation testing
 - Incorporates topology and routing model
- Operational experience is very positive
 - Becoming a powerful tool inside AT&T
- Future Work
 - Network behavior change monitoring using correlations
 - Multi-way correlations

Thank You!

Backup Slides ...

Router CPU Utilization Anomalies

- Problem: Identify strongly correlated event-series with chronic CPU anomalies as input symptom
- NICE Input: Router syslogs, roullogs and layer-1 alarms

Consistent with earlier operations findings

- NICE Findings: Strong Correlations with
 - Control-plane activities
 - I Commands such as viewing routing protocol states
 - Customer-provisioning
 - SNMP polling

New

 Mitigation Action: Operators are working with router polling systems to refine their polling mechanisms

Auto-correlation

About 30% of event-series have significant auto-correlation at lag 100 or higher

Circular Permutation Test

Series B

Permutation provides correlation baseline to test hypothesis of independence

Imperfect Domain Knowledge

- Example one of router commands used to view routing state is considered highly CPU intensive
- We did not find significant correlation between the command and CPU value as low as 50%
 - Correlation became significant only with CPU above 40%
 - Conclusion: The command does cause CPU spikes, but not as high as we had expected
 - Domain knowledge updated!