On Selfish Routing In Internet-like Environments

Lili Qiu (Microsoft Research)
Yang Richard Yang (Yale University)
Yin Zhang (AT&T Labs - Research)
Scott Shenker (ICSI)

ACM SIGCOMM 2003

Selfish Routing

- IP routing is sub-optimal for user performance
 - Routing hierarchy and policy routing
 - Equipment failure and transient instability
 - Slow reaction (if any) to network congestion
- Autonomous routing: users pick their own routes
 - Source routing (e.g. Nimrod)
 - Overlay routing (e.g. Detour, RON)
- · Autonomous routing is selfish by nature
 - End hosts or routing overlays greedily select routes
 - Optimize their own performance goals
 - ... without considering system-wide criteria

Bad News

 Selfish routing can seriously degrade performance [Roughgarden & Tardos]

Total load: X + y = 1Mean latency: $X L_0(X) + y L_1(y)$

Worst-case ratio is unbounded

- Selfish source routing
 - All traffic through lower link
 - → Mean latency = 1
- Latency optimal routing
 - To minimize mean latency, set $x = [1/(n+1)]^{1/n}$
 - \rightarrow Mean latency \rightarrow 0 as n \rightarrow ∞

Questions

- Selfish source routing
 - How does selfish source routing perform?
 - Are Internet environments among the worst cases?
- Selfish overlay routing
 - How does selfish overlay routing perform?
 - Does the reduced flexibility avoid the bad cases?
- Horizontal interactions
 - Does selfish traffic coexist well with other traffic?
 - Do selfish overlays coexist well with each other?
- Vertical interactions
 - Does selfish routing interact well with network traffic engineering?

Our Approach

- · Game-theoretic approach with simulations
 - Equilibrium behavior
 - · Apply game theory to compute traffic equilibria
 - · Compare with global optima and default IP routing
 - Intra-domain environments
 - · Compare against theoretical worst-case results
 - · Realistic topologies, traffic demands, and latency functions
- Disclaimers
 - Lots of simplifications & assumptions
 - Necessary to limit the parameter space
 - Raise more questions than what we answer
 - Lots of ongoing and future work

Routing Schemes

- Routing on the physical network
 - Source routing
 - Latency optimal routing
- Routing on an overlay (less flexible!)
 - Overlay source routing
 - Overlay latency optimal routing
- · Compliant (i.e. default) routing: OSPF
 - Hop count, i.e. unit weight
 - Optimized weights, i.e. [FRT02]
 - Random weights

Internet-like Environments

- Network topologies
 - Real tier-1 ISP, Rocketfuel, random power-law graphs
- Logical overlay topology
 - Fully connected mesh (i.e. clique)
- Traffic demands
 - Real and synthetic traffic demands
- Link latency functions
 - Queuing: M/M/1, M/D/1, P/M/1, P/D/1, and BPR
 - Propagation: fiber length or geographical distance
- Performance metrics
 - User: Average latency
 - System: Max link utilization, network cost [FRT02]

Source Routing: Average Latency

Good news: Internet-like environments are far from the worst cases for selfish source routing

Source Routing: Network Cost

Bad news: Low latency comes at much higher network cost

Selfish Overlay Routing

- Similar results apply for overlay routing
 - Achieves close to optimal average latency
 - Low latency comes at higher network cost
- · Even if overlay covers a fraction of nodes
 - Random coverage: 20-100% nodes
 - Edge coverage: edge nodes only

Horizontal Interactions

random weights (load scale factor = 1)

Different routing schemes coexist well without hurting each other. With bad weights, selfish overlay also improves compliant traffic.

Vertical Interactions

- · An iterative process between two players
 - Traffic engineering: minimize network cost
 - current traffic pattern → new routing matrix
 - Selfish overlays: minimize user latency
 - · current routing matrix → new traffic pattern

· Question:

- Does system reach a state with both low latency and low network cost?
- Short answer:
 - Depends on how much control underlay has

Selfish Overlays vs. OSPF Optimizer

OSPF optimizer interacts poorly with selfish overlays because it only has very coarse-grained control.

Selfish Overlays vs. MPLS Optimizer

MPLS optimizer interacts with selfish overlays much more effectively.

Conclusions

- Contributions
 - Important questions on selfish routing
 - Simulations that partially answer questions
- Main findings on selfish routing
 - Near-optimal latency in Internet-like environments
 - In sharp contrast with the theoretical worst cases
 - Coexists well with other overlays & regular IP traffic
 - · Background traffic may even benefit in some cases
 - Big interactions with network traffic engineering
 - · Tension between optimizing user latency vs. network load

Lots of Future Work

Extensions

- Multi-domain IP networks
- Different overlay topologies
- Alternative selfish-routing objectives
- Study dynamics of selfish routing
 - How are traffic equilibria reached?
- Improve interactions
 - Between selfish routing & traffic engineering
 - Between competing overlay networks

Thank you!

Computing Traffic Equilibrium of Selfish Routing

- Computing traffic equilibrium of non-overlay traffic
 - Use the linear approximation algorithm
 - A variant of the Frank-Wolfe algorithm, which is a gradient-based line search algorithm
- Computing traffic equilibrium of selfish overlay routing
 - Construct a logical overlay network
 - Use Jacob's relaxation algorithm on top of Sheffi's diagonalization method for asymmetric logical networks
 - Use modified linear approximation algo. in symmetric case
- Computing traffic equilibrium of multiple overlays
 - Use a relaxation framework
 - In each round, each overlay computes its best response by fixing the other overlays' traffic; then the best response and the previous state are merged using decreasing relaxation factors.