
In The IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 05),
Edmonton, Canada, August 2005.

Real-Time Vision on a Mobile Robot Platform∗

Mohan Sridharan
Electrical and Computer Engineering

University of Texas at Austin, USA
smohan@ece.utexas.edu

Peter Stone
Department of Computer Sciences
University of Texas at Austin, USA

pstone@cs.utexas.edu

Abstract— Computer vision is a broad and significant ongoing
research challenge, even when performed on an individual image
or on streaming video from a high-quality stationary cam-
era with abundant computational resources. When faced with
streaming video from a lower-quality, rapidly moving camera
and limited computational resources, the challenge increases. We
present our implementation of a vision system on a mobile robot
platform that uses a camera image as the primary sensory input.
Having to perform all processing, including segmentation and
object detection, in real-time on-board the robot, eliminates the
possibility of using some state-of-the-art methods that otherwise
might apply. We describe the methods that we developed to
achieve a practical vision system within these constraints. Our
approach is fully implemented and tested on a team of Sony
AIBO robots.

Index Terms— Vision and Recognition, Legged Robots.

I. I NTRODUCTION

Computer vision is a major area of research with applica-
tions in robotics and artificial intelligence. Though significant
advances have been made in the use of vision systems on
robots (and AI), one of the major drawbacks has been the
minimal use of these algorithms for solving practical tasks.
Most vision approaches have underlying assumptions (large
memory, high computation power or off-line processing) that
prevent their use in tasks with significant computational
constraints. Our focus is on developing efficient algorithms
for solving problems in task-oriented scenarios. One such
scenario is the RoboCup Robot Soccer Legged League1 in
which teams of fully autonomous four-legged robots manu-
factured by SONY (Aibos [1]) play a game of soccer on a
≈ 3m × 4.5m field (see Figure 1).

Fig. 1. An Image of the Aibo and the field. The robot has a limited field-
of-view of 56.9o (hor) and45.2o (ver).

Like in real soccer, the robots’ goal is to direct a ball into
the opponents’ goal. The robot’s primary sensor is a CMOS

∗This work was supported in part by NSF CAREER award IIS-0237699,
ONR YIP award N00014-04-1-0545, and DARPA grant HR0011-04-1-0035.

1http://www.tzi.de/4legged

camera with a limited view (56.9o (hor) and45.2o (ver)) of
its environment, from which it has to extract the information
needed for decision-making. Images are captured in the
Y CbCr format at30Hz and a resolution of208×160 pixels.
The robot has20 degrees-of-freedom (dof), three in each of
its four legs, three in its head, and a total of five in its tail,
mouth, and ears. It also has noisy touch sensors, IR sensors,
and a wireless LAN card for inter-robot communication. All
processing, for vision, localization, locomotion, and decision-
making (action-selection), is performed on board the robots,
using a 576MHz processor. Currently, games are played under
constant and reasonably uniform lighting conditions, but the
goal is to enable the robots to play under varying illumination
conditions.2

The vision problem can then be characterized by the
following set of inputs and outputs:
1. Inputs:
∗ A stream of limited-field-of-view images with defects

such as noise and distortion. This reflects the rapid and
non-linear changes in the camera position due to the
robots’ legged locomotion modality.

∗ The robots’ joint angles over time, particularly the tilt,
pan, roll of the camera; and sensor inputs, especially the
accelerometer values that can be used to determine the
body tilt and roll.

2. Outputs:
∗ Distances and angles to a fixed set of color-coded objects

with known locations, that can be used tolocalize the
robot on the field.

∗ Distances and angles for a varying set of mobile objects.
Our goal is to generate a reliable mapping from these inputs

to outputs with all processing performed on-board the robot,
at frame rate, while leaving as much time (and memory) as
possible for other modules. Each complete cycle of operation,
therefore, can take a maximum of33msec. Throughout the
paper, we provide timing data for the algorithms that we
present.

Though motivated by the robot soccer domain, this prob-
lem formulation is applicable to general vision-based mobile
robots. This paper also serves as a case study demonstrating
the practical steps in the process of developing an effec-
tive real-time vision system for a mobile robot. A primary
distinguishing feature of our task is that the relatively low
resolution (and noisy) camera image is the primary sensory

2The stated goal of the RoboCup initiative is to create a team of humanoid
robots that can beat the human soccer champions by the year2050 on a real,
outdoor soccer field [14].



input, unlike many other mobile robots where the focus is
mainly on laser/sonar sensors [9].

II. A PPROACH

Our vision algorithm proceeds in a series of stages which
convert the sensory inputs into the desired outputs. As a result
of the domain constraints we had to develop new algorithms
or modify existing techniques to achieve the desired results.
Throughout, we provide numerical results to justify the trade-
offs made.

Figure 2 shows two representative images from the robot
soccer environment. We shall use the same images to illustrate
the results of each stage of our vision system (Figures 3–6).3

(a) (b)

Fig. 2. Sample Images in the RGB color space.

The vision module consists of four stages: Color cube
generation and blob formation (Section III, Marker detection
(Section IV) and Line detection (Section V). The paper is
organized such that each section isolates and empirically
analyzes a component of the vision process. We also present
an extension of our approach to variable lighting conditions
(Section VI).

Sample videos showing the robot’s view as it attempts to
score on the yellow goal, after each stage of processing, are
available on-line.4

III. C OLOR SEGMENTATION AND BLOB FORMATION

The first step in our robot vision system is color segmenta-
tion. During the first pass over the image, the robot maps each
pixel in the raw YCbCr input image into a color class label
(mi), one of ten different colors (i ∈ [0, 9]) in our domain. A
complete mapping identifies a label for each possible point
in YCbCr space:

∀p, q, r ∈ [0, 255] (1)

{Yp, Cbq, Crr} 7→ mi|i∈[0,9]

Previous research in the field of segmentation has produced
several good algorithms, for example mean-shift [3] and
gradient-descent based cost-function minimization [23].But
these involve more computation than is feasible to perform
on the robots. A variety of previous approaches have been
implemented on the Aibos in the RoboCup domain, including
the use of decision trees [24] and the creation of axis-parallel
rectangles in the color space [25]. Our approach is motivated
by the desire to create fully general mappings for each YCbCr
value [6].

We represent this mapping as acolor cubewhich is created
via an off-board training process. A set of images, captured

3The images appear in color in the electronic version of the paper.
4www.cs.utexas.edu/users/AustinVilla/?p=research/robust vision

using the robot’s camera, are hand-labeled (painted) such that
the robot learns the range of{Y,Cb, Cr} values that map to
each desired color. But, after painting20 images, only≈ 3%
of the color space is labeled. In order to generalize from
the hand-labeled data, the color label assigned to each cell
in the color cube is modified to be the weighted average
of the cells a certainManhattan distanceaway (a variant
of NearestNeighbor-NNr). This operation helps remove the
holesand edge effects in the color cube, providing a better
representation for colors with significant overlap, such as
yellow and orange.

To reduce memory requirements (on the robot), we subsam-
ple the color space to have values ranging from 0 to 127 in
each dimension. The resulting color cube, taking≈ 2 Mbytes
of memory, is loaded on the robot for use in segmenting its
input images. The segmented image is the output of this first
stage of the vision processing system.

We noticed that the segmentation in the YCbCr space
was often sensitive to small changes in illumination, for
example yellow being misclassified as orange due to shadows
or highlights. Research in rescue robotics has suggested
that a spherically distributed color space known as LAB
inherently provides some robustness/invariance to illumina-
tion changes [12], [17]. To utilize LAB’s properties without
incurring the overhead of on-line conversion, we modified our
color cube generation algorithm.

1. The initial painting (off-board training phase) is done in
the LAB color space – each painted pixel in the training
image maps to a cell in the LABcolor cube.

2. The NNr operation is performed in the LAB color space.
3. Each cell in the output YCbCr color cube is labeled
based on the value in the corresponding cell in the LAB
color cube, as determined by a static transformation.

Thus, on-line segmentation incurs no extra overhead over
the baseline approach. The pixel-level segmentation process
is reduced to that of a table lookup and takes≈ 0.120msec
per image.

Though it is possible, for a given illumination, to tune
the YCbCr color cube such that the segmentation is almost
as good as it is with the LAB cube, using LAB helps
reduce the amount of misclassification with minor changes in
illumination, especially during competitions when there are
several objects around the field (e.g. clothing of spectators)
that are similar to the colors the robots have been trained to
recognize. We compared the segmentation accuracy of the two
color spaces over a set of images (≈ 15) that were captured
to reflect small changes in illumination. TheGround Truth
was provided by hand-labeling specific regions of the images
(on average≈ 20% of the pixels were hand-labeled). The
entire image is not considered because we are interested only
in the colors of the markers and other objects on the field
and/or below the horizon, and thecorrect classification result
is unknown for several background pixels in the image. The
classification accuracies (%) were81.2 ± 4.4 and92.7 ± 2.5
for YCbCr and LAB respectively (statistically significant at
95% confidence).



Figure 3 shows the the result of segmentation, using the
new approach in the LAB color space.

(a) (b)

Fig. 3. Sample Segmented Images.

A. Blob Formation

The next step in vision processing is to find contiguous
blobs of constant colors, i.e., we need tocluster pixels of
the same color into meaningful groups. Though past research
in this area has resulted in some good methods [10], [13],
doing this efficiently and accurately is challenging since the
reasoning is still at the pixel-level. Computationally, this
process is the most expensive component of the vision module
that the robot executes.

Our approach to blob formation is modeled closely after
previous approaches on the Aibo [6], though we add features
to optimize the process. As the pixels in the image are
segmented they are organized into run-lengths represented
as the start point and length in pixels of a contiguous color
strip.5 As an optimization, we only encode the run-lengths
corresponding to colors that identify objects of interest –we
omit the colors of the field (green) and the borders (white).
Though these colors are useful in detecting the field borders
and lines, we achieve that by incorporating an efficient line-
detection algorithm (Section V).

Next, we use an implementation of the Union-Find algo-
rithm [4] to merge run-lengths of the same color that are
within a thresholdEuclideandistance from each other. This
results in a set of blobs, each of constant color. During
this process, we also progressively buildbounding boxesi.e.
rectangular boundaries around the regions. This abstraction
helps categorize each region by the four vertices of the
bounding rectangle. We then end up with a set of bounding
boxes, one for each blob in the current image, and a set of
properties corresponding to each blob, such as the number
of pixels (of the blob color) it envelopes. These properties
are used in the object recognition phase (Section IV). Our
technical report [5] has complete details.

Errors in the segmentation phase due to noise and/or
irrelevant objects in the image can lead to the formation of
spurious blobs and make object recognition challenging. In
Figure 4 we show the results of blob formation on the sample
set of images and a couple of additional images that lead to
spurious blobs.

The vision module, including segmentation and blob for-
mation, takes≈ 20msec per image.

5details on run-length encoding can be found in image processing
books [11].

(a) (b)

(c) (d)

Fig. 4. Sample Blobs.

IV. OBJECTRECOGNITION

Once we have candidate blobs, the next step is to rec-
ognize the relevant objects in the image. Object recognition
is a major area of research in computer vision and several
different approaches have been presented, depending on the
application domain [2], [20], [26]. Most of these approaches
either involve extensive computation of object features or
large amounts of storage in the form of object templates
corresponding to different views, making them infeasible in
our domain. Further they are not very effective for rapidly
changing camera positions. We determine the objects of
interest in the image using domain knowledge rather than
trying to extract additional features from the image.

All the objects in the robot’s environment (including the
fixed markers and moving objects) are color-coded and thus
we can use the blobs determined previously to recognize the
objects. Even so, the task is non-trivial as there are generally
several objects in and around the field that could be segmented
as the same color as the objects of interest – note for example,
the people, chairs, walls, and computers in our sample images.

To recognize objects we first eliminate blobs that do not
correspond to strict constraints of size, density and position
in the image, based on domain knowledge. We filter the blobs
through a set of heuristics designed to detect blobs that aretoo
small to correspond to objects, or that are notdenseenough
(measured as the ratio of appropriately colored pixels within
the bounding box). For example, all objects of interest to the
robots are either on the ground or a certain distance above the
ground and have bounding boxes with high densities. Also,
the ball is mostly enveloped in a square bounding rectangle
except when it is partly occluded. Full details of the heuristics
are available in our team technical report [5]. These heuristics
are easy to apply since the required properties were stored
in the blob formation stage (Section III-A). These properties
are also used to determine the probability of occurrence of
each object (based on the degree of correspondence with the
expected values of the properties).

We analyzed the performance of the object recognition
system by calculating the ratio of images over which the
objects were correctly detected, over eight sequences of≈
200 images each. We performed this first with the robot



stationary (and looking at the objects in view) and then with
the robot moving. The corresponding classification accuracies
were 100% and 92.7% respectively. Though the motion,
as expected, causes a decrease in the accuracy of object
recognition (due to the motion-based distortion of the image),
there are no false positives in either case.

Figure 5 shows the blobs detected as objects superimposed
on the original (RGB) images.

(a) (b)

Fig. 5. Sample Object Recognition.

By eliminated the spurious blobs, this process ensures that
we recognize all the objects in an image while at the same
time making the object recognition phase highly efficient and
computationally inexpensive. The vision module, up to the
object recognition phase takes≈ 28msec per frame, enabling
us to process images at frame rate.

This object recognition algorithm does not recognize the
lines in the environment, a great source of information. Next,
we shall describe the algorithm that we use to detect the lines.

V. L INE/L INE INTERSECTIONDETECTION

Lines with known locations can be important sources of
information for the robots, particularly in the robot soccer
domain, where the robots’ main focus (during a game) is the
ball and other robots may occlude the beacons and goals.

Previous research on detecting lines/edges in an image has
resulted in methods such as Hough Transforms and edge
detectors such as Canny, Sobel [11]. Most popular methods
determine the edge pixels by convolving a suitable mask
across the image, an operation that is too time-consuming
for our purposes.

Our line-detection method, motivated by a previous ap-
proach in the RoboCup environment [18], utilizes environ-
mental knowledge to detect edge pixels: edges of interest on
the Robot Soccer field involve a white-green or green-white-
green transition corresponding to the borders and the field
lines respectively. We do not determine the bounding boxes
corresponding to the white blobs and green field and use
heuristics to determine the actual lines/edges (as mentioned
in Section III-A) because of the computation involved.

In our line-detection algorithm, we begin, as in [18], by
performing a series of vertical scans on the segmented image
with the scan lines spaced4 − 5 pixels apart. In addition to
making the scan faster, this ensures that we incorporate noise
filtering – noisy lines that extend only a few pixels across
are automatically eliminated. When processing a scan line,
the robot checks for the occurrence of candidate edge pixels
by looking for the green-white and white-green transitions.
Over this baseline approach, we add additional features as

follows. To bias the scan procedure towards detecting edge
pixels that are closer to the robots, our scan lines proceed
from the bottom of the image to the top, i.e. the border edge
pixels now correspond to green-white transitions. Once an
edge pixel is detected along a scan line, we do not process
the remainder of the scan line and proceed directly to the next
scan line. Though this excludes the possibility of detecting,
for example, a border line above a field line, the procedure is
based on the assumption that the observation of lines closer
to the robot provides more reliable information. Candidate
edge pixels in the image are acceptediff they also have a
significant amount of green below them. Once we have a
set of candidate edge pixels, we incorporate a set of heuristic
filters whose parameters were determined experimentally. For
example, we reject pixels that do not project to a point (on
the ground plane) within a threshold distance in front of the
robot [5].

Instead of using these pixels directly as localization inputs,
as in [18], we find the lines that these edge pixels represent.
We cluster the candidate edge pixels into lines in the image
plane using the Least Square Estimation procedure [15]. This
is an efficient method that can be performed incrementally,
i.e. lines can be fit to the candidate edge pixels as they are
found and new edge pixels can be either merged with existing
lines or they can be used to generate new lines. We introduce
filters for suppressing noise and false positives — at the line
detection level we remove outliers (candidate edge pixels that
are not close to any of the known edges) and also consider
lines iff they can account for more than a threshold number
of pixels.

Although line pixels (or lines) provide useful information,
the intersection of lines are more meaningful (and less noisy)
since they involve much less ambiguity. They are not unique
because of the symmetry of the field, but the ambiguity can
be resolved to some extent based on the knowledge of the
previous known position. To determine the line intersections
we just consider a pair of lines at a time. Line intersections
are accepted only if the angles between the lines are within
experimentally determined heuristic thresholds. For more
information on how lines are used in localization, see [5].

Figure 6 shows a set of images with the lines detected:
field lines are drawn in pink and are distinct from the border
lines which are red.

We also analyzed the performance over image sequences by
determining the ratio of images where the line intersections
were correctly identified.

Over≈ 2000 images, half of which had line intersections in
them, we obtained accuracies of100% and93.3% respectively
for the stationary and moving robot cases. The motion, once
again, causes a decrease in the accuracy (again due to the
motion-based distortion of objects in the image). As in the
case of object recognition there are no false positives even
when the robot is in motion.

In fact, we noticed a significant difference in our localiza-
tion accuracy once we incorporated the information regarding
the lines/line intersections as inputs [22]. Also, the process



(a) (b)

(c) (d)

Fig. 6. Sample Line Recognition.

is not computationally expensive and we are able to perform
the entire visual processing in≈ 31msec per frame so that
the robot is able to operate at frame-rate with≈ 2msec per
frame to spare for other computations.

VI. I LLUMINATION INVARIANCE

To this point, the approach we have described has assumed
that the lighting conditions are relatively constant. Though
using the LAB color space enables robustness to small
changes, our eventual goal is to enable the robots to operate
in a broad range of, and changing, lighting conditions. Here,
we present our approach to move towards that goal.

Color constancy (illumination invariance) is a major re-
search focus in the field of computer vision. In the past,
color constancy has been studied primarily on static cameras
with relatively loose computational limitations [7], [8],[19].
Lenser and Veloso [16] presented a tree-based state descrip-
tion/identification technique for this same platform that uses
a time-series of average screen illuminance to distinguish
between illumination conditions: the absolute value distance
metric being used as the similarity measure. We explore an
alternative approach based on color space distributions.

In our lab, the intensity on the field varies from thedark (≈
400lux with just the fluorescent ceiling lamps) to thebright
(≈ 1500 lux with the additional lamps turned on). We can
gradually vary the illumination between these two levels. The
quality of the camera image makes it infeasible for the robot
to work at illuminations lower than≈ 400lux.

The robot was trained to recognize and distinguish be-
tween three different illumination conditions:dark, intermand
bright – theinterm illumination being in between the extreme
lighting conditions. The initial training phase equipped the
robot with a color cube and a set of training distributions
for each of the three illumination conditions. The training
distributions were obtained by allowing the robot to capture
a set (≈ 20) of images under each illumination and generating
histograms after transforming from the YCbCr space to the
normalized RGB (rgb) color space since it is more robust
to minor illumination changes. Also, asr + g + b = 1, any
two of the three features are a sufficient statistic for the pixel
values, thereby lowering the storage requirements. We stored

the distributions in the(r, g) space, quantized into64 bins
along each dimension.

During the online testing phase, the robot generated the
distribution in the r-g space corresponding to the test im-
age. This distribution was compared to the previously saved
distributions and was assigned the illumination class of the
distribution that was mostsimilar to the test distribution. As
a similarity measure, we useKL divergence: given two 2D
(r, g) distributions A and B (withN = 64, the no. of bins
along each dimension),

KL(A,B) = −

N−1∑

i=0

N−1∑

j=0

(Ai,j · ln
Bi,j

Ai,j

) (2)

The more similar two distributions are, the smaller is
the KL-divergence. Since the KL-divergence is a function
of the log of the color distributions, it is less sensitive to
large peaks in the observed color distributions in comparison
to other measures that do not have this property. Using
this measure, the robot was able to correctly classify the
test distributions and identify and distinguish between the
three illumination conditions. The only restriction, based on
computational constraints, was to test for illumination change
no more than twice a second.

We tested the performance of the robot in illumination
conditions in between the three illuminations it was explicitly
trained for and observed that the robot picked the illumination
condition (among the three it was trained for) that wasclosest
to the test condition (see [21] for full details). We designed
a find-and-walk-to-balltask where the robot starts from the
center and has to find and walk to the ball, which is placed
a certain distance in front of the yellow goal. With a single
color cube, when the illumination is drastically changed, it is
unable to perform the task. Now with the three illumination
models, it is able to perform the task even for illuminations
that it is not explicitly trained for. During the experiments,
the robot started off in the bright illumination and a change
in illumination was made≈ 1.5sec into the task. The robot
waits for several test frames before it accepts a change in
illumination (a filtering procedure). Thus we would not expect
the robot to perform the task as quickly as in constant lighting.
Table I shows the corresponding results, averaged over ten
trials.

The fact that the robot is still able to perform the task
demonstrates that the switching among color cubes is work-
ing. The first row in Table I refers to the case where the robot
performs the task in the bright (normal) illumination and no
change in illumination occurs. The other two rows correspond
to the case where a change in illumination occurs.

Lighting Time (sec)

Bright-Constant 6.7 (±0.6)

bet. bright and interm 12.27±0.5

bet. interm and dark 13.3±2.0
TABLE I

TIME TAKEN (IN SECONDS) TO find-and-walk-to-ball

Though this procedure is not required during the normal
game, it can still be performed in real-time on the robot.



Addition of this procedure causes just a slight decrease in
frame rate from30fps to≈ 25fps.

VII. SUMMARY AND CONCLUSIONS

Significant advances have been made in the field of com-
puter vision algorithms leading to its increasing use in related
fields such as AI and robotics. Still, the use of these methods
in practical tasks with computational constraints has been
minimal, primarily because it is infeasible to run many
algorithms in real-time with limited computational resources.

In this paper, we have described the development of an
entire vision system on a mobile robot platform with a camera
as the primary sensor. The camera has limited field-of-view
and image resolution, and the legged locomotion introduces
dynamic changes in camera position. In addition, all com-
putation has to occur on-board in real-time with limited
computational resources. These constraints in the RoboCup
legged robot domain, representative of current directionsin
mobile robotics, enforce the need for efficient algorithms.We
have shown that with innovative algorithms and modifications
to existing ones it is possible to build a real-time vision system
without compromising on the desired quality of performance.
In the process, we have been able to efficiently tackle hard
vision problems such as segmentation, object recognition and
color constancy.

This paper has presented detailed empirical results in
isolated test scenarios of several components of our vision
system, including the choice of color space, the overall effec-
tiveness of object detection and line recognition, timing data
about the various phases of the cycle, and the robustness of
our approach to illumination changes. Given the many-faceted
task we have attempted to solve during the development of our
robot vision system, it is difficult to directly compare our end
result with other vision modules, even within the RoboCup
community: the performance of each complete system on
the overall task is a result of localization, locomotion, and
decision-making modules in addition to the vision process-
ing. However anecdotal comparisons have shown our vision
system to be at least as efficient and robust as those of other
RoboCup teams and it has allowed us to achieve good overall
performance in the soccer task, enabling our third place finish
at the RoboCup 2004 US open and quarter-finals appearance
at RoboCup 2004.

A main contribution of this paper is a case study of practical
steps in the process of developing an effective real-time
vision system for a mobile robot, thereby making it suitable
for other related robot vision tasks (surveillance, rescue).
Further details about all stages of our vision processing
algorithms are available in our technical report [5] and
image sequences illustrating the process are available from:
www.cs.utexas.edu/users/AustinVilla/?p=research/robust vision

ACKNOWLEDGMENTS

The authors would like to thank the UT Austin Villa team for their efforts in developing the software used as a basis
for the work reported in this paper.

REFERENCES

[1] The Sony Aibo robots, 2004.http://www.us.aibo.com.
[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object

recognition using shape contexts.Pattern Analysis and Machine
Intelligence, April 2002.

[3] D. Comaniciu and P. Meer. Mean shift: A robust approach toward
feature space analysis.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(5):603–619, 2002.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction
to Algorithms (Second Edition). MIT Press, September, 2001.

[5] P. Stone et al. UT Austin Villa 2004: Coming of Age, AI Technical
Report 04-313. Technical report, Department of Computer Sciences,
University of Texas at Austin, October 2004.

[6] William Uther et al. Cm-pack’01: Fast legged robot walking, robust
localization, and team behaviors. InThe Fifth International RoboCup
Symposium, Seattle, USA, 2001.

[7] G. Finlayson, S. Hordley, and P. Hubel. Color by correlation: A simple,
unifying framework for color constancy.In IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(11), November 2001.

[8] D. Forsyth. A novel algorithm for color constancy.In International
Journal of Computer Vision, 5(1):5–36, 1990.

[9] D. Fox. Adapting the sample size in particle filters through kld-
sampling. International Journal of Robotics Research, 2003.

[10] A. L. N. Fred and A. K. Jain. Robust data clustering. InThe
International Conference of Computer Vision and Pattern Recognition,
pages 128–136, June 2003.

[11] Rafael C. Gonzalez and Richard E. Woods.Digital Image Processing.
Prentice Hall, 2002.

[12] Jeff Hyams, Mark W. Powell, and Robin R. Murphy. Cooperative
navigation of micro-rovers using color segmentation.In Journal of
Autonomous Robots, 9(1):7–16, 2000.

[13] A. K. Jain and R. C. Dubes.Algorithms for Clustering Data. Prentice-
Hall, 1988.

[14] Hiroaki Kitano, Minoru Asada, Itsuki Noda, and HitoshiMatsubara.
Robocup: Robot world cup.IEEE Robotics and Automation Magazine,
5(3):30–36, 1998.

[15] Least Square Principle for Line Fitting. At URL
http://mathworld.wolfram.com/LeastSquaresFitting.html.

[16] S. Lenser and M. Veloso. Automatic detection and response to
environmental change. InThe International Conference of Robotics
and Automation (ICRA), May 2003.

[17] B. W. Minten, R. R. Murphy, J. Hyams, and M. Micire. Low-order-
complexity vision-based docking.IEEE Transactions on Robotics and
Automation, 17(6):922–930, 2001.

[18] T. Rofer and M. Jungel. Vision-based fast and reactive monte-carlo
localization. InThe IEEE International Conference on Robotics and
Automation, pages 856–861, Taipei, Taiwan, 2003.

[19] C. Rosenberg, M. Hebert, and S. Thrun. Color constancy using kl-
divergence. InIn IEEE International Conference on Computer Vision,
2001.

[20] A. Selinger and R. C. Nelson. A perceptual grouping hierarchy for
appearance-based 3d object recognition.Computer Vision and Image
Understanding, 76(1):83–92, October 1999.

[21] M. Sridharan and P. Stone. Towards illumination invariance in the
legged league. InThe Eighth International RoboCup Symposium,
Lisbon, Portugal, 2004.

[22] Mohan Sridharan, Gregory Kuhlmann, and Peter Stone. Practical
vision-based monte carlo localization on a legged robot. InThe
International Conference on Robotics and Automation, To Appear 2005.

[23] B. Sumengen, B. S. Manjunath, and C. Kenney. Image segmentation
using multi-region stability and edge strength. InThe IEEE Interna-
tional Conference on Image Processing (ICIP), September 2003.

[24] The UNSW Robocup 2001 Sony Legged League Team.RoboCup-
2001: The Fifth RoboCup Competitions and Conferences. Springer
Verlag, Berlin, 2002.

[25] The UPennalizers Robocup 2003 Sony Legged League Team.
RoboCup-2003: The Fifth RoboCup Competitions and Conferences.
Springer Verlag, Berlin, 2004.

[26] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing visual features
for multiclass and multiview object detection. InThe IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), Washington D.C.,
2004.


