
In The Eighth Workshop on Humanoid Soccer Robots at Humanoids 2013 (HUMANOIDS13),
Atlanta, GA, October 2013.

UT Austin Villa 2013: Advances in Vision, Kinematics, and Strategy

Jacob Menashe, Samuel Barrett, Katie Genter, and Peter Stone
Department of Computer Science

The University of Texas at Austin
{jmenashe, sbarrett, katie, pstone}@cs.utexas.edu

Abstract— In RoboCup, although the fields are standardized
and color coded, the area outside the fields often contains many
objects of various colors. Sometimes objects off the field may
look very similar to balls, robots, or other objects normally
found on the soccer field. Robots must detect all of these objects,
and then differentiate between the true positives and false
positives. This paper presents a new method using Gaussian
fitness scores to differentiate between true positives and false
positives for balls, robots, and penalty crosses. We also present
some other improvements in our code base following our 2012
championship, such as our usage of a virtual base for forward
kinematics calculations, our ability to flexibly transition player
roles given dynamic numbers of teammates, and our ability to
quickly integrate new kicks of varying speeds into our strategy.
With these improvements, our UT Austin Villa team finished
third in the Standard Platform League at RoboCup 2013.

I. I NTRODUCTION

RoboCup, or the Robot Soccer World Cup, is an inter-
national research initiative that works to advance robotics
and artificial intelligence by using the game of soccer as a
test domain. The long-term goal of RoboCup is to build and
program a team of 11 humanoid robot soccer players that
can beat the best human soccer team on a real soccer field
by the year 2050 [1].

RoboCup is organized into several soccer leagues, includ-
ing both simulation leagues and leagues that compete with
physical robots. Our team, UT Austin Villa1, competes in
the Standard Platform League (SPL)2. The SPL uses teams
of identical Aldebaran Nao humanoid robots3, making it
essentially a software competition. In the SPL, each team
competes with up to 5 Nao robots. Teams compete on a 9 by
6 meter field, with two identical yellow goals and white tape
marking the lines. See Figure 1 for an example of the robots
and field setup. UT Austin Villa has competed in the SPL
with the Nao robots every year since the Nao was introduced
in 2008. Over these years, we have built a substantial code
infrastructure for robot soccer that served as the base for our
championship in 2012 [2], [3].

Many objects surround a RoboCup field, many of which
may look similar to a ball or an opponent. For example, little
children wearing orange shirts near the field may look like
orange balls, while maroon flower pots scattered around the
field may resemble maroon opponents. Hence, it is critical
for a robot to be able to evaluate possible detections and

1http://www.cs.utexas.edu/ ˜ AustinVilla/
2http://www.tzi.de/spl/
3http://www.aldebaran.com/

Fig. 1: 6 Naos on the 2013 RoboCup SPL field.

accurately determine which instances are true positives. In
this paper, we present some of the major improvements
in our code base that were utilized at RoboCup 2013.
Specifically, we present our usage of Gaussian fitness scores
to evaluate possible detected objects. In the past, our team
used a series of binary cutoffs for sanity checks on each
object measurement to determine which detected objects are
true positives. In this work, we present a better method in
which, for each detected object, we simultaneously evaluate
a variety of object measurements to determine if the detected
instance is indeed the object of interest (a “true” positive).
Additionally, we present our usage of a virtual base for
forward kinematics calculations. We also discuss our ability
to flexibly transition player roles given dynamic numbers of
teammates and our ability to quickly integrate new kicks of
varying speeds into our strategy.

A video highlighting our performance at RoboCup 2013
can be found athttp://goo.gl/fcnO9V .

II. RELATED WORK

A. Object Detection

We researched a number of alternative methods for object
detection in RoboCup when designing our approach. The B-
Human team uses a sequential sanity checking method for
ball detection[4], similar to what we developed in [2]. The
Dutch Nao Team similarly uses blob detection as an under-
lying mechanism for object detection, and use width- and
height-based sanity checking for distinguishing goals from
non-goals [5]. rUNSWift’s approach differs from the blob
detection methods in that they use feature descriptors and a

http://www.cs.utexas.edu/~AustinVilla/
http://www.tzi.de/spl/
http://www.aldebaran.com/
http://goo.gl/fcnO9V


modified ICP algorithm to map field objects to expectations
[6]. To our knowledge, we are the only team using Gaussian
fitness computations for simultaneous feature evaluationson
detected object candidates.

B. Virtual Base

We found little discussion on the topic of coordinate frame
selection in RoboCup literature. B-Human uses a torso-
centered coordinate frame that is rotated parallel with the
ground plane [4]. This coordinate frame can be obtained by
translating the virtual base coordinate frame along the vector
(0, 0, h)⊺, whereh is the torso height. In other words, the
virtual base is B-Human’sTorsoMatrix projected onto
the ground. B-Human’sTorsoMatrix and our virtual base
are analogous to thebase link and base footprint
coordinate frames found in ROS [7], respectively.

C. Transitioning Player Roles

Our dynamic transitioning of player roles such that key
roles were filled quickly and efficiently was motivated
by previous work completed by the UT Austin Villa 3D
simulation team[8]. In their work they found a valid role
assignment function that minimized longest distance from
each player to it’s target location, avoided collisions, and
was dynamically consistent. However, in our work we focus
more on ensuring players filling critical roles can arrive in
their new location quickly. Additionally, we do not account
for potential collisions when deciding which players should
fill which roles, as our estimates of where teammates and
opponents are on the field are imperfect.

III. U TILIZING GAUSSIAN FITNESSSCORES FOROBJECT

DETECTION

This year we introduced a significant improvement to our
object detection system [2] in the form of Gaussian fitness
estimates based on perceived object statistics. Our method
involves empirically determining a mean feature vector for
the target object based on a number of quantifiable measure-
ments. We then evaluate potential detections with respect
to this mean and determine a confidence score for each
detection. This method served as our primary sanity checking
mechanism for ball, robot, and penalty cross detection. The
sequential sanity checking implementations described in [2]
proved adequate for field lines and goals, so these were not
prioritized for conversion to the Gaussian fitness checking
method.

A. Measured Statistics

To illustrate our method we present a high-level overview
of our detection algorithm with the statistics measured for
each object. We begin by classifying the image and forming
blobs as described in [2]. Algorithm 1 describes the general
detection process. Our method is concerned with the imple-
mentation ofgetFitnessValues .

For orange blobs (i.e. potential ball detections), we com-
pute the following:

• Orange percentage within the ball

Algorithm 1 Detection process for an arbitrary object.
procedure DETECTOBJECT(o)

I ← getCameraImage()
C ← classifyImageColors(I)
Bo ← getBlobsByColor(C, getColor(o))
F o ← getFitnessValues(Bo)
b, f ← argmaxb∈Bo,f∈F o F o

if f > θ then
return b

end if
return nil

end procedure

• Green or white percentage below the ball
• Circle deviation
• World height (i.e. the Z coordinate in the world frame)
• Discrepancy between width-based and kinematics-based

distance estimates
• Distance from field edges along the ground plane (0

within the field)
• Velocity between frames

Note that width-based distances are determined with
trigonometry based on the detected and known ball width,
and kinematics-based distances use image coordinates and
the camera matrix to project pixels onto the ground plane.

For each of these measurements we empirically determine
a mean and one-dimensional standard deviation by exam-
ining individual measurements from known detections. We
compile the means into a single feature vector, and use the
standard deviations to define a diagonal covariance matrix.
Some measurements, such as orange percentage, are bounded
by a particular range and thus may not exhibit truly Gaussian
fluctuations about a mean. Analysis of past readings may
show an average orange percentage of 90%, but it is clear
that 100% is optimal and we should not be penalizing blobs
for having all orange pixels. In cases where the measurement
range is bounded, we select the optimal value as the mean.
For the orange percentage measurement, this implies that we
set the mean to 100%.

For completeness, we also present the statistics used for
robots:

• Width over height
• Height over width
• (Kinematics-based distance)/(width-based distance)
• (Kinematics-based distance)/(height-based distance)
• Percentage of correct jersey color found in the jersey

blob
• Percentage of green/white/grey pixels found below the

jersey
• Percentage of jersey color/green/white/grey pixels found

along the whole robot
• Chest height

As well as for the penalty cross:



• Green percentage in each octant around the cross
• Distance from known cross location
• Cross height
• Cross width
Once we have computed a set of measurements about

a particular blob, we organize these measurements into a
vector which is then analyzed with a multivariate Gaussian
distribution to produce the fitness computation.

B. Fitness Computation

To compute the fitnessP for a particular detection, we
use the standard multivariate Gaussian PDFG with meanµ
and covarianceΣ, weighted such thatP (µ, µ,Σ) = 1.0.

P (x, µ,Σ) =
G(x, µ,Σ)

G(µ, µ,Σ)
(1)

This method allows us to simultaneously evaluate a variety
of object measurements in a manner similar to a support
vector machine (SVM). Rather than identify a series of
binary cutoffs for sanity checks, we essentially constructa
hyperplane for binary classification. In practice, this method
was comparable in effectiveness to our earlier approaches
of hand-tuning sequential sanity checks with a handful of
added advantages, including the ability to discern between
competing candidates and the ability to process measure-
ments in parallel. In circumstances where a detection lies
near a threshold for one particular measurement, our method
is still able to recover the object of interest consistently
based on the other measurements being considered. In a
sequential checking system, it is far more likely for a single
bad measurement to throw off an entire detection.

More sophisticated classification techniques such as SVM
were considered as well, but our method was chosen based
on the following advantages:

• Mean and standard deviation values can be estimated
and adjusted with ease, without the need for training.

• Feature vectors can be understood and debugged by a
human.

• Computations are fast and can be carried out on a large
number of candidates each frame.

The output of our method is naturally a real number in the
range [0,1]. Currently we use a cutoff of 0.3 to distinguish a
true positive from a false positive, corresponding to approx-
imately 1.5 standard deviations in the univariate case. Our
future work includes making better use of these confidence
values, either with individual object filters or in the overall
localization system.

IV. V IRTUAL BASE FORFORWARD K INEMATICS

CALCULATIONS

A standard implementation concern on multi-pedal robot
systems is the choice of a consistent egocentric coordinate
frame for describing world objects and body parts. A good
choice of coordinate frame will allow the programmer of
such a system to intuitively understand the spatial rela-
tionships between these objects in the environment. For
humanoid robots, a simple solution is to use the point in

Fig. 2: Front and top views to demonstrate the location of the virtual
base, by the striped ellipses between the feet (front view) and in
the middle of the head (top view).

the torso at which all kinematic chains between extremities
coincide.

In RoboCup, the torso-centered coordinate frame can be
problematic. The field is flat, and objects of interest are
almost always on the ground. Any intuitive coordinate frame
should therefore have no X or Y rotation and should be
centered at some point on the ground plane. This ensures
that world objects on the field can be represented with a
z-coordinate of 0. Additionally, a robot’s egocentric frame
should remain at some location that is central to the robot,
allowing for symmetric definitions when designing body
movements. For example, stepping forward with the left foot
might require a relative foot position of(x, y, 0), which
would imply that stepping forward with the right would
require a relative foot position of(x,−y, 0).

No body part exists on a humanoid that meets these
constraints. The centered body parts of the robot, such as
the torso and head, are all elevated, with their ground offsets
shifting as the robot moves. Likewise the ground-level body
parts, i.e. the feet, are not in the center. We therefore chose
to construct a virtual body part to meet these criteria, which
we call thevirtual base.

Intuitively, the virtual base is the point on the field directly
below the torso with no X or Y rotations relative to the
ground plane, and no Z rotation relative to the torso. Figure2
shows the top and side views of the virtual base location for
a particular pose.

The base transformation matrix is constructed and applied
to other body parts as described in Algorithm 2, using
pre-calculated transformation matrices in the torso-centered
coordinate frame. The stance foot is taken as the foot with
the greatest sum of pressure readings, on the assumption
that the foot that the robot is standing on will experience
greater pressure than the other foot. While the Nao pressure
sensors aren’t accurate enough for precise calculations, this
sort of binary decision is quite accurate in practice. When
the pressure sensors yield similar values, this indicates that



both feet are flat on the ground. In this case, the position
and rotation of the virtual base is the same regardless of the
stance foot that is selected.

Algorithm 2 Construction and application of the virtual base.
Once the virtual base is computed in the torso coordinate
frame, all other body parts are converted to the virtual base
frame and placed inBv.

Computetf , the torso in the foot frame:
f t ← stance foot in torso frame
tf ← (f t)−1 = torso in foot frame

Computevf , the virtual base in the foot frame:
vf ← identity transform
(vfx , v

f
y , v

f
z )← (tfx, t

f
y , 0)

vf ← rotateZ(vf , getAngleZ(tf ))

Computevt, the virtual base in the torso frame:
vt ← globalToRelative(vf , tf)

Compute all body parts in the virtual base frame:
Bt ← Body parts in torso frame
Bv ← ∅
for all bt ∈ { Body Parts} do

bv ← globalToRelative(bt, vt)
Bv ← Bv ∪ {bv}

end for
return Bv

This coordinate frame is used throughout the codebase
for visual object positions, body part transforms, and body
motions. This choice of coordinate frame is intuitive for test-
ing and debugging, allows for simple conversions between
local and global coordinates, and ensures that coordinatesare
consistent over changes in stance.

V. BEHAVIORAL IMPROVEMENTS

In addition to the improvements discussed in Sections III
and IV, UT Austin Villa made some other improvements
between RoboCup 2012 and RoboCup 2013 that were also
apparent in games. Most notable was our ability to flexibly
transition player roles given dynamic numbers of teammates
and our ability to quickly integrate new kicks with varying
speeds into our strategy.

A. Transitioning Player Roles Based on the Number of
Active Players

Given that teams played with five players at RoboCup
2013, as opposed to the four players used in 2012, the ability
to coordinate players became even more important in 2013.
In addition, given the number of robots that are removed
from the field due to penalties and failing hardware, it is vital
that the team be able to adapt to a variety of players being
on the field. UT Austin Villa had planned about strategies
for these settings in past years, but this year we introduced
code that allowed us to quickly adapt the strategy of the team
during the competition itself.

The strategy works by having each robot communicate
both its position as well as a bid on being the chaser
whenever it sends messages to its teammates. This bid is
calculated based mainly on the robot’s distance from the
ball, its angle to the ball, and whether chasing the ball
would require going downfield or upfield. The robot with
the best bid becomes the chaser and tries to approach and
kick the ball according to the kicking strategy described
in Section V-B. The remaining players are assigned to the
remaining roles, such as playing as a forward, defender, or
midfielder. Each of these roles is specified using parameters
such as the desired positions relative to the ball, maximum
distances to be traveled upfield, and how the robot can
position to prevent open shots at its own goal.

If fewer than five robots are on the field, roles are filled in
order of priorities that are assigned to each position. Given
the roles that are currently active, robots are assigned to
these roles based on their distances from the roles’ desired
locations. As many of these role positions are symmetric with
respect to the side direction, the roles are largely assigned
based on the difference between the robot’s location and the
role’s desired location along the dominant field dimension.

To adapt more fully to the current game situation, the
priorities and locations of the roles can be adjusted based
on the region in which the ball is located. In addition, these
formations can be adjusted based on the current game score
as well as the time remaining in the game. All role locations
and priorities can be quickly adjusted via configuration files.

In addition to these changes, the strategy was improved
to more fully reason about passing and set plays. While the
UT Austin Villa team previously positioned robots in order to
receive passes and preferred passing to teammates, the robots
did not communicate their pass intentions. One improvement
introduced by the 2013 team was to communicate when a
pass was about to occur, which allowed the receiving player
to adapt to the expected destination of the pass. Furthermore,
more set plays for the kick off were introduced, and the
robots autonomously chose which set play to use based on
the team’s locations as well as the location of the opponents.
Similarly to the role configurations, these set plays were
easily specified via configuration files. As discussed in [3],
the simulation tool developed by the UT Austin Villa team
proved invaluable to testing the various formations and set
plays that were used in competition.

B. Quickly Integrating Kicks of Varying Speeds

UT Austin Villa has a kick engine that can kick various
distances in addition to several kicks that can be executed
directly from the walk engine. In addition, UT Austin Villa
also developed a longer kick based on one designed by
Northern Bites [9] in the 2012 competition. This kick was
added to adapt to the larger 9m by 6m field that was
introduced for the 2013 competition. All of these kicks
require different amounts of execution time, go different
distances, and travel within different accuracy ranges of
their desired direction. These kicks can all be integrated by
planning about the destination of the kick and how the team



Fig. 3: Setup for the baseline and velocity experiments.

would like to move the ball as described in [10]. In addition,
we introduced some reasoning to avoid making slower kicks
when opponents were detected within a specified distance
and angle to the kicker. This adjustment served to avoid
having shots blocked by opponents walking into the desired
path of the kick while the kick is executing. The ease of
adapting the strategy to the lengths of kicks proved especially
useful due to the differences in the kick distances at different
venues.

VI. EVALUATION

Our method of computing fitness scores in object detection
provides a useful improvement over binary accept/reject
approaches. Here we show the ability of the ball detector
to consistently and significantly differentiate and rank its
detections. We present a variety of experiments involving
an object of interest (the left ball) and a decoy (the right
ball). These experiments show that the ball detector is able
to use computed fitness values to effectively rank and discern
between the two balls.

A. Baseline

We begin with our baseline in which two nearly identical
ball detections are found side-by-side, as shown in Figure 3.
Ideally, two such detections would yield identical fitness
values. We sampled fitness computations from 500 frames
and obtained mean values of .92 and .89 with standard devi-
ations of .04 and .02 for the left and right balls, respectively.
Assuming Gaussian distributions, this implies a 73% chance
of picking the left ball over the right. This bias can be
explained with subtle differences in lighting conditions.The
following experiments exhibit more pronounced biases that
are the result of significant differences in fitness values.

B. Velocity

To demonstrate the effectiveness of detection ranking, we
begin by looking at velocity measurements. Accounting for
perceived velocity allows the ball detector to avoid switching
randomly between ball candidates when there are multiple
valid detections in view. We use the same setup as in Fig-
ure 3, however in this case we include velocity measurements
as part of the fitness computation. By setting the expected
velocity to 0, we can essentially tell the detector to prefer
choosing one ball consistently rather than switching back

Fig. 4: Setup for the height experiment.

and forth. After ranking detections based on the first frame
of data, the detector settles on the left ball, which biases
all subsequent detections. As we see in Table 1, the chance
of switching back to the right ball is significantly reduced.
It is worth noting that this distinction can be arbitrary - if
the detector were to have selected the right ball first, then
that would bias future estimates toward the right ball. In the
setting of a RoboCup game, our teammates share estimates of
the ball location. The effect of this is that the ball selected by
the team is reinforced as the true ball, reducing the possibility
that a ball off the field might be chosen by a particular robot.

C. Height

In this experiment we place an object under the right ball
to increase its height, which in turn increases the discrepancy
between width-based distance and kinematics-based distance
calculations. This is demonstrated in Figure 4. Velocity
measurements were disabled for this experiment to remove
the bias toward the ball that was previously selected. Table1
again shows a strong preference for the ball that is on the
ground.

D. Size

This experiment uses a larger soccer ball as a decoy, as
shown in Figure 5. This experiment works similarly to the
previous one in that the ball distance estimates are thrown
off, in addition to worsening “orangeness” measurements due
to the blackened areas of the ball. As we see in Table 1,
the left ball is strongly preferred as expected, however the
soccer ball’s fitness value is still high enough that it couldbe
detected as the object of interest in the absence of a better
candidate. By allowing for candidate ranking, we’re able to
ensure a negligible chance of picking the soccer ball over
the actual ball.

E. Competition Overview

After placing first at RoboCup 2012 in the SPL, UT
Austin Villa finished third at RoboCup 2013 in Eindhoven,
The Netherlands. 22 teams entered the 2012 competition,
where the tournament consisted of two round robin rounds,
followed by an elimination tournament with the top 8 teams.
The first round consisted of a round robin with seven groups
of three teams each, with the top teams from each group
advancing. In the second round, there were four groups of



Fig. 5: Setup for the size experiment.

Experiment µ, σ (Left) µ, σ (Right) PG PS

Baseline .92, .04 .89, .02 .7291 0.68
Velocity .88, .12 .15, .20 .9992 0.00
Height .90, .02 .78, .04 .9965 0.87
Size .89, .04 .39, .01 > .9999 1.00

TABLE 1: Statistics for computed fitness values for the given
experiments. Each experiment uses a sample of 500 frames.PG

represents the probability that the new Gaussian method will select
the object of interest (i.e. the left ball). This calculation assumes all
fitness values are normally distributed.PS represents the probability
of the same event using the original sequential checking method in
the same experimental setup.

four teams each, with the top two teams from each group
advancing. From the quarterfinals on, the winner of each
game advanced to the next round.

All of UT Austin Villa’s scores are shown in Table 2
and discussed shortly below. We document the competition
results in this paper as an informal evaluation of the team as
a whole.

At RoboCup 2013, UT Austin Villa began by winning
the first round robin after defeating Berlin United 4:0 and
Cerberus 5:0. In these games we tested and tuned various
strategies. UT Austin Villa faltered in the first game in the
second round robin, losing 2:4 to SPQR. As we discussed
in Section V, we particularly struggled in this game because
both teams played the entire game without inner-team com-
munication due to issues with the field’s wireless router. UT
Austin Villa still emerged second in this second round robin
pool though, after beating rUNSWift 2:1 and TJArk 6:0.
UT Austin Villa faced Northern Bites in the quarter-finals,
capturing a 7:0 win. UT Austin Villa then lost to B-Human
0:8 in the semi-finals before beating rUNSWift 4:0 in the
3rd place game.

Round Opponent Score
Round Robin 1Berlin United 4-0
Round Robin 1Cerberus 5-0
Round Robin 2SPQR 2-4
Round Robin 2rUNSWift 2-1
Round Robin 2TJArk 6-0
Quarterfinal Northern Bites7-0
Semifinal B-Human 0-8
3rd Place rUNSWift 4-0

TABLE 2: RoboCup 2013 Results

VII. C ONCLUSION

This paper introduces our usage of Gaussian fitness scores
to evaluate possible detected objects. For each detected ob-
ject, we simultaneously evaluate a variety of object measure-
ments to determine if the detected instance is a true positive.
Using this method, instead of a series of binary cutoffs for
sanity checks, allows us to essentially construct a hyperplane
for binary classification. We found that using this method
was similar in effectiveness to hand-tuned sequential sanity
checks, but provided the additional benefit of simultaneous
measurement evaluation. In cases where a detected object lies
near a threshold for a particular sanity check, using Gaussian
fitness scores allows us to still recover true positives based
on the other measurements considered. Hence, using fitness
scores makes it less likely that one bad measurement will
falsely eliminate true positives.

We also introduce other improvements that were made in
our code base for RoboCup 2013, including our usage of a
virtual base for forward kinematics calculations, our ability
to flexibly transition player roles given dynamic numbers of
teammates, and our ability to quickly integrate new kicks
of varying speeds into our strategy. Combining all of our
improvements helped us play cohesively and intelligently at
RoboCup 2013, allowing us to finish third in the SPL.

REFERENCES

[1] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “RoboCup:
The robot world cup initiative,” inProceedings of The First Interna-
tional Conference on Autonomous Agents. ACM Press, 1997.

[2] S. Barrett, K. Genter, T. Hester, P. Khandelwal, M. Quinlan, P. Stone,
and M. Sridharan, “Austin Villa 2011: Sharing is caring: Better
awareness through information sharing,” The University ofTexas at
Austin, Department of Computer Sciences, AI Laboratory, Tech. Rep.
UT-AI-TR-12-01, January 2012.

[3] S. Barrett, K. Genter, Y. He, T. Hester, P. Khandelwal, J.Menashe,
and P. Stone, “UT Austin Villa 2012: Standard Platform League
world champions,” inRoboCup 2012: Robot Soccer World Cup XVI,
X. Chen, P. Stone, L. E. Sucar, and T. V. der Zant, Eds. Springer
Verlag, 2012.

[4] T. Röfer, T. Laue, J. Müller, A. Fabisch, F. Feldpausch, K. Gill-
mann, C. Graf, T. J. de Haas, A. Härtl, A. Humann, D. Honsel,
P. Kastner, T. Kastner, C. Könemann, B. Markowsky, O. J. L. Rie-
mann, and F. Wenk, “B-Human team report and code release,” 2011,
http://www.b-human.de/downloads/bhuman11coderelease.pdf.

[5] C. Verschoor, A. Wiggers, D. ten Velthuis, A. Keune, M. Cabot,
S. Nugteren, E. van Egmond, H. van der Molen, R. Iepsma, M. van
Bellen, M. de Groot, E. Fodor, R. Rozeboom, and A. Visser, “Dutch
nao team - technical report,” 2011.

[6] S. Harris, P. Anderson, B. Teh, Y. Hunter, R. Liu, B. Hengst,
R. Roy, S. Li, and C. Chatfield, “Robocup standard platform league
- runswift 2012 innovations,” inAustralasian Conference on Robotics
and Automation, 2012.

[7] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J.Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” inICRA Workshop on Open Source Software, 2009.

[8] P. MacAlpine, F. Barrera, and P. Stone, “Positioning to win: A dynamic
role assignment and formation positioning system,” inRoboCup-
2012: Robot Soccer World Cup XVI, ser. Lecture Notes in Artificial
Intelligence, X. Chen, P. Stone, L. E. Sucar, and T. V. der Zant, Eds.
Berlin: Springer Verlag, 2013.

[9] O. Neamtu, W. Dawson, E. Googins, B. Jacobel, L. Mamantov,
D. McAvoy, B. Mende, N. Merritt, E. Ratner, N. Terman, J. Zalinger,
J. Morrison, and E. Chown, “Northern Bites code release,” 2012,
https://github.com/northern-bites.

[10] S. Barrett, K. Genter, T. Hester, M. Quinlan, and P. Stone, “Controlled
kicking under uncertainty,” inThe Fifth Workshop on Humanoid
Soccer Robots at Humanoids 2010, December 2010.

http://www.b-human.de/downloads/bhuman11_coderelease.pdf
https://github.com/northern-bites

	Introduction
	Related Work
	Object Detection
	Virtual Base
	Transitioning Player Roles

	Utilizing Gaussian Fitness Scores for Object Detection
	Measured Statistics
	Fitness Computation

	Virtual Base for Forward Kinematics Calculations
	Behavioral Improvements
	Transitioning Player Roles Based on the Number of Active Players
	Quickly Integrating Kicks of Varying Speeds

	Evaluation
	Baseline
	Velocity
	Height
	Size
	Competition Overview

	Conclusion
	References

