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Abstract. Hierarchical task decomposition strategies allow robots and agents in 

general to address complex decision-making tasks. Layered learning is a hierar-

chical machine learning paradigm where a complex behavior is learned from a 

series of incrementally trained sub-tasks. This paper describes how layered 

learning can be applied to design individual behaviors in the context of soccer 

robotics. Three different layered learning strategies are implemented and ana-

lyzed using a ball-dribbling behavior as a case study. Performance indices for 

evaluating dribbling speed and ball-control are defined and measured. Experi-

mental results validate the usefulness of the implemented layered learning strat-

egies showing a trade-off between performance and learning speed. 
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1 Introduction 

The use of computational/machine learning (ML) techniques such as Reinforcement 

Learning (RL) allows robots, and agents in general, to address complex decision-

making tasks. However, one of the main limitations of the use of learning approaches 

in real-world problems is the large number of learning trials required to learn complex 

behaviors. In addition, many times the learning of abilities associated with a given 

behavior cannot be directly used, i.e. combined or transferred to other behaviors. 

These drawbacks can be addressed by transfer learning [1] or hierarchical task de-

composition strategies [2]. 

Layered Learning (LL) [3] is a hierarchical learning paradigm that enables learning 

complex behaviors by incrementally learning a series of sub-behaviors. LL considers 

bottom-up hierarchical learning, where low-level behaviors (those closer to the envi-

ronmental inputs) are trained prior to high-level behaviors [4]. 

The main contribution of this paper is describing and analyzing how LL can be ap-

plied to design individual behaviors in the context of soccer robotics. Three different 

layered learning strategies are implemented and analyzed using the ball-dribbling 

behavior as a case study [5]. Ball-dribbling is a complex behavior where a robot play-



er attempts to maneuver the ball in a very controlled way while moving towards a 

desired target. Very few works have addressed ball dribbling behavior with humanoid 

biped robots [5–9]. Furthermore, few details are mentioned in these works concerning 

specific dribbling modeling [10, 11], performance evaluations for ball-control, or 

obtained accuracy to the desired path. 

 After modeling ball-dribbling behavior, some conditions needed to learn ball-

dribbling under the LL paradigm are described. Afterwards, sequential, concurrent, 

and partial concurrent LL strategies are applied to the dribbling task and analyzed. 

Results from these experiments show a trade-off between performance and learning 

time, as well as between autonomous learning versus previous designer knowledge. 

The paper is organized as follows: In Section 2 the Layered Learning paradigm and 

different LL strategies are detailed. Section 3 describes the ball-dribbling behavior, 

and Section 4 presents the application of the LL paradigm to the modeling and learn-

ing of ball-dribbling behavior. Experimental results are presented in Section 5, and 

conclusions are given in Section 6. 

2 Layered Learning 

Layered learning (LL) [3] is a hierarchical learning paradigm that enables learning 

complex behaviors by incrementally learning a series of sub-behaviors (each learned 

sub-behavior is a layer in the learning progression) [12]. LL considers bottom-up 

hierarchical learning, where high-level behaviors depend on behaviors in lower layers 

(those closer to the environmental inputs) for learning. From LL literature, three gen-

eral strategies can be identified:  

 Sequential Layered Learning (SLL): In the original formulation of the LL para-

digm [3], layers are learned in a sequential bottom-up fashion. Lower layers are 

trained and then frozen (their behaviors are held constant) before advancing to 

learning of the next layer. While a higher layer is trained, lower layers are not al-

lowed to change, which reduces the search space. However, it can also be restric-

tive because it limits the space of possible solutions that agents could search com-

bining behaviors. 

 Concurrent Layered Learning (CLL): CLL [4] allows lower layers to keep 

learning concurrently during the learning of subsequent layers. The agent may ex-

plore a behavior’s joint search space combining all layers. Since CLL does not re-

strict the search space, its dimensionality increases, which can make the learning 

process more difficult. 

 Overlapping Layered Learning (OLL): OLL [12] seeks to find a trade-off be-

tween freezing each layer once learning is complete (SLL) and leaving previously 

learned layers open (CLL). This extension of LL allows some, but not necessarily 

all, parts of newly learned layers to be kept open during the training of subsequent 

layers.  In the context of learning parameterized behaviors this means that a subset 

of a learned behavior's parameters are left open and allowed to be modified during 

learning of the proceeding layer. The parts of previously learned layers left open 

“overlap” with the next layer being learned. Three general scenarios for overlap-
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ping layered learning are distinguished in [12]: Combining Independently Learned 

Behaviors (CILB), Partial Concurrent Layered Learning (PCLL), and Previous 

Learned Layer Refinement (PLLR). This work considers the implementation of 

Partial Concurrent Layered Learning, where only part, but not all, of a previously 

learned layer’s behavior parameters are left open when learning a subsequent layer 

with new parameters. The part of the previously learned layer’s parameters left 

open is the “seam” or overlap between the layers [12]. 

3 Case Study: Soccer Dribbling Behavior 

Soccer dribbling behavior with humanoid biped robot players is used as a case study 

[5]. Fig. 1 at left shows the RoboCup SPL soccer environment where the NAO hu-

manoid robot [13] is used. The proposed modeling of dribbling behavior will use the 

following control actions:  [𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃]′, the velocity vector; and the following state 

variables: ρ, the robot-ball distance; γ, the robot-ball angle; and, φ, the robot-ball-

target complementary angle. These variables are shown in Fig. 1 at right, where the 

desired target (⊕) is located in the middle of the opponent’s goal, and a robot’s ego-

centric reference system is considered with the x axis pointing forwards. A more de-

tailed description of the proposed modeling can be found in [5, 14].  

Ball-dribbling behavior can be split into three sub-tasks which must be executed in 

parallel: ball-turning, which keeps the robot tracking the ball-angle (𝛾 = 0), target-

aligning, which keeps the robot aligned to the ball-target line (𝜑 = 0); and ball-

pushing, whose objective is that the robot walks as fast as possible and hits the ball in 

order to push the ball towards a desired target, but without losing possession of the 

ball. So, the proposed control actions are the requested speed to each axis of the biped 

walk engine, where [𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃]′ are respectively involved with ball-pushing, target-

aligning, and ball-turning [15].  

From a behavioral perspective, ball-dribbling can also be split in two more general 

tasks, alignment and ball-pushing. This division into two behaviors has been proposed 

in [5], based on the idea that alignment can be designed off-line, unlike ball-pushing, 

which needs interaction with its dynamic environment in order to learn a proper poli-

cy. In this way, alignment is composed of ball-turning and target-aligning. A behav-

ior scheme of ball-dribbling is depicted in Fig. 2.(a). 

  
Fig. 1. A picture of the NAO robot dribbling during a RoboCup SPL game (left) and definition 

of variables for ball-dribbling modeling (right). 



 

 

(a) (b) 

Fig. 2. (a) Behavioral scheme of the ball-dribbling problem. (b) Different layered learning 

strategies implemented; open behaviors are colored meanwhile frozen behaviors are white. 

With respect to ball-pushing, the modeling of the robot’s feet–ball–floor dynamics 

is complex and inaccurate because kicking the ball could generate several unexpected 

transitions, due to uncertainty of foot-ball interaction and speed when the robot kicks 

the ball (note that the robot's foot’s shape is rounded and the foot’s speed is different 

from the robot’s speed 𝑣𝑥). Moreover, an omnidirectional biped walk intrinsically has 

a delayed response, which varies depending on the requested velocity [𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃]′. To 

learn when and how much the robot must slow down or accelerate is a complex prob-

lem, hardly solvable in an effective way with methods based on identification of sys-

tem dynamics and/or kinematics and mathematical models [14]. To solve this prob-

lem as a Markov Decision Process (MDP) with an RL scheme for learning simultane-

ously, ball-dribbling dynamics have been successfully applied previously in the same 

domain [5, 14]. Thus, all the learning methods presented in this paper use an RL 

scheme for tackling the ball-pushing task.  

4 Layered Learning of Dribbling Behavior 

This section presents how three different strategies of the Layered Learning paradigm 

can be applied to the ball-dribbling task: PCLL, SLL, and CLL. These strategies are 

implemented by using a behavior in the first layer called go-to-target, where the robot 

goes to a desired target pose on the field. Go-to-target is composed in a very similar 

way to the ball-dribbling behavior depicted in Fig. 2.(a); it also uses alignment but 

uses go-to instead of ball-pushing as depicted at the top of Fig. 2.(b). Go-to behavior 

(see Table 1) is similar to ball-pushing as it also modifies 𝑣𝑥, but instead of directing 

the forward motion of the robot toward a ball it moves the robot  forward toward a 

specific target location on the field. Go-to-target behavior is designed based on a 

Takagi-Sugeno-Kang Fuzzy Logic Controller (TSK-FLC) [16] which acts over the 

walk engine velocity vector. This behavior is currently part of the control architecture 

of the UChile Robotics Team [5, 17]. See Table 1 for descriptions of the behaviors' 

parameters and how they relate to each other. 
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Table 1. Summary of implemented behaviors and their learning methods  

Behavior 
LL  

strategy 

What is learned  

in 1st layer 

What is learned  

in 2nd layer 

go-to - 
FLC parameters of 𝑣𝑥  by using 

CMA-ES 
- 

alignment - 
FLC parameters of 𝑣𝑦 and 𝑣𝜃  by 

using CMA-ES 
- 

go-to-target - go-to and alignment - 

Dribbling with  

RL-FLC 

Partial 

concurrent 

(PCLL) 

go-to-target 

ball-pushing: 

A partial policy for 𝑣𝑥  

observing 𝜌, by using RL 

Dribbling with 

 eRL-FLC 

Sequential 

(SLL) 
alignment 

ball-pushing: 

A policy for 𝑣𝑥  observing 

[𝜌, 𝛾, 𝜑]′, by using RL 

Dribbling with 

DRL-NASh 

Concurrent 

(CLL) 
go-to-target 

Three policies, for 

𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃 , which are 

learned in parallel 

observing the joint state 

[𝜌, 𝛾, 𝜑]′, by using RL. 

Dribbling with 

 DRL 
- 

ball-pushing (𝑣𝑥),  

target-aligning (𝑣𝑦), and  

ball-turning (𝑣𝜃)  

by using Decentralized-RL [14] 

- 

For this work, the go-to-target controller parameters have been learned by using 

the RoboCup 3D simulation optimization framework of the LARG lab within the 

Computer Science Department at the University of Texas at Austin. This optimization 

framework uses the Covariance Matrix Adaptation Strategy (CMA-ES) [18], per-

formed on a Condor [19] distributed computing cluster. 

4.1 Partial Concurrent Layered Learning 

The RL-FLC work reported in [5] proposes a methodology for modeling dribbling 

behavior by splitting it into two sub-problems: alignment, which is achieved by using 

a Fuzzy Logic Controller (FLC), and ball-pushing, which is learned by using a RL 

based controller. This methodology has been successfully used during RoboCup 2014 

in the SPL robot soccer competitions by UChile Robotics Team [17] and it is current-

ly the base of their dribbling engine.  



Table 2. Description of states and actions for the RL-FLC scheme 

States space: s = [𝜌] 

 Min Max # bins 

Feature 𝜌 0mm 600mm 13 

Actions space: 𝑎 = [𝑣𝑥] 

 Min Max # discrete actions 

Action 𝑣𝑥 0mm/s 150mm/s 16 

The PCLL strategy is applied as follows: The go-to-target behavior is learned in 

the first layer for tuning FLC’s parameters. During learning of the second behavior 

layer the entire alignment behavior is frozen while the ball-pushing behavior is par-

tially re-learned. That means, only the parameter for how 𝜌 affects 𝑣𝑥  is opened to the 

RL agent, meanwhile parameters for how γ and 𝜑 influence 𝑣𝑥 are kept frozen. So, γ 

and 𝜑 are not considered in the state space. Thus, ball-pushing parameters are partial-

ly refined in the context of the fixed alignment behavior. Please see top Fig. 2.(b) and 

Table 1.  

Desired characteristics for a learned ball-dribbling policy are to have the robot 

walk fast while keeping the ball in its possession. That means 𝜌 must be minimized 

(to keep possession of the ball), while at the same time maximizing 𝑣𝑥 , which is the 

control action. Proposed RL modeling for learning the speed 𝑣𝑥  depending on the 

observed state of 𝜌 is detailed in Table 2. The proposed reward function is expressed 

in Eq.(1). This reward function reinforces walking forward at maximum speed 

(𝑣𝑥.𝑚𝑎𝑥′) without losing the ball possession (𝜌 < 𝜌𝑡ℎ). 

 𝑟𝑥 = {
1, 𝜌 < 𝜌𝑡ℎ ∧ 𝑣𝑥 ≥ 𝑣𝑥.𝑚𝑎𝑥′

−1,                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

4.2 Sequential Layered Learning 

An enhanced version of the RL-FLC method is implemented using a SLL strategy. 

This enhanced approach (eRL-FLC) learns the ball-pushing behavior mapping the 

whole state space [ρ,γ,φ] by using a RL scheme. The modeling description is present-

ed in [14]; it is designed to improve ball control because the former RL-FLC ap-

proach assumes the ideal case where target, ball, and robot are always aligned ignor-

ing γ and φ angles, which is not the case during a real game situation. 

The SLL strategy is applied as follows: The alignment behavior is learned in the 

first layer; then, during learning of the second layer, alignment is frozen and the 

whole ball-pushing behavior is learned by performing the ball-dribbling task in the 

context of the fixed alignment behavior. This is depicted at the bottom-left of Fig. 

2.(b) and summarized in Table 1. 

The proposed RL modeling is depicted in Table 3, where only ball-pushing is 

learned. The proposed reward function is expressed in Eq.(2).  
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Table 3. Description of States and Actions for eRL-FLC and DRL schemes 

Joint state space: 𝑠 = [𝜌, 𝛾, 𝜑]𝑇 

 Min Max # bins 

Feature1 𝜌 0mm 600mm 13 

Feature2 𝛾 -50° 50° 11 

Feature3 𝜑 -50° 50° 11 

Actions space: 𝑎 = [𝑣𝑥, 𝑣𝑦, 𝑣𝜃] 

 Min Max # discrete actions 

ball-pushing 𝑣𝑥 0 mm/s 150 mm/s 21 

target-aligning 𝑣𝑦 -50 mm/s 50 mm/s 21 

ball-turning 𝑣𝜃 -45 °/s 45 °/s 21 

4.3 Concurrent Layered Learning 

A Decentralized Reinforcement Learning (D-RL) strategy is proposed in [14], where 

each component of the omnidirectional biped walk [𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃]′ [20] is learned in par-

allel with single-agents working in a multi-agent task. Furthermore, this D-RL scheme 

is accelerated by using the Nearby Action Sharing (NASh) approach [15], which is 

introduced for transferring knowledge from continuous action spaces, when no infor-

mation different to the suggested action in an observed state is available from the 

source of knowledge. In the early training episodes, NASh transfers actions suggested 

by the source of knowledge (former layer) but progressively explores its surroundings 

looking for better nearby actions for the next layer. 

In order to learn dribbling behavior with the DRL-NASh approach, the CLL strate-

gy is applied as follows: The go-to-target behavior is learned in the first layer. During 

learning of the second layer go-to and alignment behaviors parameters are left opened 

and relearned to generate ball-pushing and alignment behaviors, thereby transferring 

knowledge from go-to-target through use of the NASh method. This is depicted at the 

bottom-right of Fig. 2.(b) and summarized in Table 1.  

Again, the expected policy is to walk fast towards the desired target while keeping 

the ball in the robot's possession. That means: maintaining  𝜌 < 𝜌𝑡ℎ;  minimizing  

𝛾, 𝜑, 𝑣𝑦 , 𝑣𝜃; and maximizing 𝑣𝑥. The proposed RL modeling is detailed in Table 3. 

The corresponding reward functions per agent are expressed in Eq.(2-4). 

 𝑟𝑥 = {
1, 𝜌 < 𝜌𝑡ℎ ∧ |𝛾| < 𝛾𝑡ℎ ∧  |𝜑| < 𝜑𝑡ℎ ∧ 𝑣𝑥 ≥ 𝑣𝑥.𝑚𝑎𝑥′

−1,                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (2) 

 𝑟𝑦 = {
1, |𝛾| < 𝐴𝑛𝑔𝑡ℎ

 −1,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 𝑟𝜃 = {
1,   |𝛾| < 𝐴𝑛𝑔𝑡ℎ ∧ |𝜑| < 𝐴𝑛𝑔𝑡ℎ

−1,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

where 𝜌𝑡ℎ , 𝛾𝑡ℎ, 𝜑𝑡ℎ  are desired thresholds where the ball is considered controlled, 

meanwhile 𝑣𝑥.𝑚𝑎𝑥′ reinforces walking forward at maximum speed. 



5 Experimental Results and Analysis 

5.1 Experimental Setup 

As mentioned in the previous section, proposed LL schemes are implemented using 

the go-to-target behavior in the first layer, which is learned using CMA-ES. The sec-

ond layer of all these schemes are performed by using a RL (SARSA(𝜆)) episodic 

procedure. After a reset, the robot is set in the center of its own goal (black right ar-

row in Fig. 1), the ball is placed in front of the robot, and the desired target is defined 

in the center of the opponent’s goal (⊕). The terminal state is reached if the robot 

loses the ball, or, the robot leaves the field, or, the robot crosses the goal line and 

reaches the target, which is the expected terminal state. Due to the comparative study 

purposes of this work, all the experiments are carried out in simulation. The training 

field is 6x4 meters. Ang𝑡ℎ=5°, 𝑣𝒙.𝒎𝒂𝒙′ = 0.9 ∙ 𝑣𝒙.𝒎𝒂𝒙 , and fault-state constraints are 

set as:  [𝜌𝑡ℎ , 𝛾𝑡ℎ, 𝜑𝑡ℎ] = [500𝑚𝑚, 15°, 15°]. 
Four different learning schemes are presented in this paper: RL-FLC implemented 

with PCLL; eRL-FLC implemented with SLL; DRL-NASh implemented with CLL; 

and Decentralized RL scheme (DRL) as a base of comparison. The DRL scheme is 

proposed in [14] and briefly introduced in Table 1, it learns from scratch without any 

type of transfer learning or LL strategy. 

The evolution of the learning process of each proposed scheme is evaluated by 

measuring and averaging ten runs. In this way, the following performance indices are 

considered to measure dribbling-speed and ball-control respectively: 

 % of maximum forward speed (%𝑆Fmax): given 𝑆Favg, the average dribbling for-

ward speed of the robot, and 𝑆Fmax , the maximum forward speed: 

%𝑆Fmax = 𝑆Favg/𝑆Fmax. 

 % of time in fault-state (%𝑇FS): the accumulated time in fault-state 𝑡𝐹𝑆 during the 

whole episode time 𝑡𝐷𝑃. The fault-state is defined as the state when the robot loses 

possession of the ball, i.e.,  𝜌 > 𝜌𝑡ℎ ∨ |𝛾| > 𝛾𝒕𝒉 ∨ |𝜑| > 𝜑𝒕𝒉 , then: 

% 𝑇𝐹𝑆 = 𝑡𝐹𝑆 𝑡𝐷𝑃⁄ . 

 Global fitness (𝐹): introduced for the sole purpose of evaluating and comparing 

both performance indices together. It is computed as follows: 

𝐹 = 1/2 ∙ [(100 − %𝑆Fmax) + %𝑇𝐹𝑆], where F=0 is the optimal policy. 

5.2 Results and Analysis 

Figure 3 shows the learning evolution of the four proposed schemes. Additionally, the 

policy of the run with the best performance from each scheme is tested and measured 

separately using 100 runs; average and standard error of those performances are pre-

sented in Table 4. The time to threshold index in Table 4 (learning speed) is calculat-

ed with a threshold of F=27%, according to global fitness plots in Fig. 3. 

The time to threshold of the DRL scheme is the longest between all the tested 

schemes; this is the expected result, taking into account that no LL or transfer 

knowledge strategies have been implemented for this scheme. However, DRL learns 
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from scratch exploring the whole state-action space, allowing each sub-behavior 

(ball-pushing, target-aligning, and ball-turning) to learn about actions of the other 

two sub-behaviors. Even so, although DRL shows the lowest percentage of faults, it 

does not show the best global performance. The best performance is shown by the 

DRL-NASh scheme using CLL, which evidences the usefulness of CLL for this prob-

lem. 

The DRL-NASh using CLL scheme shows the best global performance, the highest 

dribbling speed and the second best percentage of faults; however it takes on average 

around 1390 learning episodes before achieving asymptotic convergence, just around 

13% faster than the DRL scheme. It validates the fact that by using concurrent layered 

learning it is possible to find better performance; the drawback is that increasing the 

search space dimensionality makes learning slower. Discussion about the NASh strat-

egy and how the performance of first-layer-behavior influences the learning time and 

final performance is presented in [15]. Exploring this subject is a potential alternative 

to speed-up learning times when Concurrent LL is used with RL agents. 

The RL-FLC using PCLL approach shows the fastest asymptotic convergence and 

the lowest accuracy. This is expected because RL-FLC is the least complex learning 

agent, which has frozen the major part of its search space, decreasing its performance 

but accelerating its learning. 

Benefits of opening and learning the whole ball-pushing behavior for the eRL-FLC 

using SLL scheme are noticeable when observing standard deviation bars in Fig. 3. 

For this case, ball-pushing learns its policy interacting with alignment during the sec-

ond layer of SLL, which does not dramatically increase the dribbling speed though it 

reduces the amount of faults, just as it was designed.  

According to global fitness versus time to threshold in Table 4, a trade-off in terms 

of performance and learning speed can be noticed. Additionally, there is another non-

measured but important trade-off between autonomous learning versus previous de-

signer knowledge. Those LL strategies that reduce the search space’s dimensionality 

require previous knowledge of the problem for determining effectively what part of 

former learned layers should be opened, and what type of LL strategy is better for 

each particular problem. On the other hand, more autonomous learning strategies as 

CLL or merely learning from scratch require less designer knowledge but can make 

learning difficult. 

Some videos showing the learned policies for dribbling can be seen at
1
. Currently 

the learned policy is transferred directly to the physical robots, thus, the final perfor-

mance is dependent on how realistic the simulation platform is. On the other hand, 

since state variables are updated and observed frame by frame acting like a closed 

loop control action, which tries to minimize the error, a different initialization of ro-

bot, ball, and target positions does not affect performance dramatically.  The robot 

always tries to follow a straight-line between the ball and desired target emulating the 

training environment.   

 

                                                           
1  https://www.youtube.com/watch?v=HP8pRh4ic8w 

https://www.youtube.com/watch?v=_i8aNYSd6Iw&feature=youtu.be 

https://www.youtube.com/watch?v=HP8pRh4ic8w
https://www.youtube.com/watch?v=_i8aNYSd6Iw&feature=youtu.be


 

 

Fig. 3. Learning evolution with standard deviation bars of the four proposed schemes. 
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Table 4. Performance indices 

Method 
%𝑆𝐹𝑚𝑎𝑥 %𝑇𝐹𝑆 F Time to Th. 

(Episodes) Avg. Std.Err Avg. Std.Err Avg. 

DRL-NASh (CLL) 74.83 0.049 14.69 0.080 19.92 1391 

eRL-FLC (SLL) 61.49 0.032 16.84 0.061 27.67 66 

RL-FLC (PCLL) 57.50 0.04 26.32 0.069 34.4 53 

DRL 64.35 0.12 13.87 0.19 24.76 1594 

6 Summary and future work 

This paper has described how different Layered Learning strategies can be applied to 

design individual behaviors in the context of soccer robotics. Sequential LL, Partial 

Concurrent LL, and Concurrent LL strategies have been implemented and analyzed 

using ball-dribbling behavior as a case study.  

Experiments have shown a trade-off between performance and learning speed. For 

instance, the PCLL scheme is capable of learning in around 53 episodes. This opens 

the door to make achievable future implementations for learning similar behaviors 

with physical robots. This is one of our short term goals and part of our future work. 
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