
UT Austin Villa 3D Sim Base Code Release

Patrick MacAlpine and Peter Stone

Department of Computer Science, The University of Texas at Austin, USA

{patmac,pstone}@cs.utexas.edu

1 Introduction

Within the context of the RoboCup 2050 objectives, the 3D simulation league
(which models humanoid Nao robots using realistic physics) is arguably the
best positioned for the study of robot skill/behavior learning, 11 on 11 strategic
planning, and adversarial modeling. Coupled with the fact that it is relatively
inexpensive and easy to get ramped up in simulation as opposed to on real
robots, one might expect it to be among the most popular RoboCup leagues.
However, there remain relatively few participants, in large part because the
programs of the top teams in the league represent several years of effort, and
are therefore very difficult to compete against. Meanwhile, the simulation league
is now actively considering a shift from the custom and idiosyncratic SimSpark
simulation environment to the ROS-compatible Gazebo simulator, which has the
potential to make it appealing and useful to the many research groups around
the world that currently use Gazebo.

With these considerations in mind, we set out to create an open source release
with the following properties:

1. Quick and easy learning curve for newcomers to the RoboCup 3D simula-
tion league, so that within a relatively short period of time they can reach
competitive levels.

2. Sufficiently constrained out-of-the-box functionality so that there’s still need
and incentive for creative research by these newcomers, and there remains
incentive for league veterans to continue development of their own, different
codebases.

3. Sufficient out-of-the-box functionality and ease of use for non-RoboCup re-
searchers to immediately use it for research on behavior learning, 11 on 11
strategic planning, adversarial modeling, and other AI research topics.

4. Compatibility with the new Gazebo simulator so that it remains useful into
the future.

The RoboCup 3D simulation league - as well as the whole RoboCup com-
munity, and indeed the larger AI research community as well - stands to benefit
greatly from a source code release that has the above properties. But to date,
there have not been any open source releases that do have all of these properties
– no previous code releases within the league have provided support for both
behavior learning and Gazebo compatibility. This source code release fills that
hole completely.

2 Code Release Overview

The UT Austin Villa team, from the University of Texas at Austin, first began
competing in the RoboCup 3D simulation league in 2007. Over the course of
nearly a decade the team has built up a strong state of the art code base enabling
the team to win the RoboCup 3D simulation league four out of the past five years
(2011, 2012, 2014, and 2015) while finishing second in 2013. The UT Austin Villa
base code release, written in C++ and hosted on GitHub,1 is based off of the
2015 UT Austin Villa RoboCup champion agent.

A key consideration when releasing the team’s code is what components
should and should not be released. A complete full release of the team’s code
could be detrimental to the RoboCup 3D simulation community if it performs
too strongly and causes other teams in the league to completely abandon their
own existing code bases in favor of using the UT Austin Villa code release. In
order to avoid this scenario certain parts of the team’s code have been stripped
out. Specifically all high level strategy, some optimized long kicks, and optimized
fast walk parameters for the walk engine [1] have been removed from the code
release. Despite the removal of these items, which are described in detail in
research publications,2 we believe it should not be too difficult for someone to
still use the code release as a base, and develop their own optimized skills (we
provide examples of how to do this with the release) and strategy, to produce a
competitive team.

The following features are included in the release:

– Omnidirectional walk engine based on a double inverted pendulum model [1]
– A skill description language for specifying parameterized skills/behaviors
– Getup (recovering after having fallen over) behaviors for all agent types
– A couple basic skills for kicking one of which uses inverse kinematics [4]
– Sample demo dribble and kick behaviors for scoring a goal
– World model and particle filter for localization
– Kalman filter for tracking objects
– All necessary parsing code for sending/receiving messages from/to the server
– Code for drawing objects in the RoboViz monitor for visual debugging
– Communication system previously provided for drop-in player challenges
– Example behaviors/tasks for optimizing a kick and forward walk
– Support for Gazebo RoboCup 3D simulation plugin

What is not included in the release:

– The team’s complete set of skills such as long kicks and goalie dives
– Optimized parameters for behaviors such as the team’s fastest walks (slow

and stable walk engine parameters are included, as well as optimized param-
eters [1] for positioning/dribbling and approaching the ball to kick)

– High level strategy including formations and role assignment

1 UT Austin Villa code release: github.com/LARG/utaustinvilla3d
2 www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/publications.html

3 Agent Architecture

The agent receives sensory information from the environment, including dis-
tances and angles to different objects on the field, and the agent uses this in-
formation to build a world model. Building a world model requires the robot
to be able to localize itself for which we use a particle filter incorporating both
landmark and field line observations. Once a world model is built, the agent’s
control module is invoked. Figure 1 provides a schematic view of the UT Austin
Villa agent’s control architecture.

Fig. 1: Schematic view of UT Austin Villa agent control architecture.

At the lowest level, the humanoid is controlled by specifying torques to each
of its joints. This is implemented through PID controllers for each joint, which
take as input the desired angle of the joint and compute the appropriate torque.
Further, the agent uses routines describing inverse kinematics for the arms and
legs. Given a target position and pose for the hand or the foot, the inverse
kinematics routine uses trigonometry to calculate the angles for the different
joints along the arm or the leg to achieve the specified target, if at all possible.

The PID control and inverse kinematics routines are used as primitives to
describe the agent’s skills. In order to determine the appropriate joint angle
sequences for walking and turning, the agent utilizes an omnidirectional walk
engine which is described in Section 4.1. Other provided useful skills for the
robot are kicking and getting up from a fallen position. These skills are accom-
plished through a programmed sequence of poses and specified joint angles as
discussed in Section 4.2. One of the kicking skills provided in the code release uses
inverse kinematics to control the kicking foot such that it follows an appropriate
trajectory through the ball as described in [4].

4 Feature Highlights

The following subsections highlight several features of the UT Austin Villa code
release. When combined together these features provide a nice platform for ma-
chine learning and optimization research.

4.1 Omnidirectional Walk Engine

Agents use a double inverted pendulum omnidirectional walk engine [1] to move.
The omnidirectional walk is crucial for allowing the robot to request continuous
velocities in the forward, side, and turn directions, permitting it to approach
continually changing destinations (often the ball).

The walk engine has parameterized values that control such things as step
height, length, and frequency. Walk engine parameters are loaded at runtime
from parameter files and can be switched on the fly for different walking tasks
(e.g. approaching the ball, sprinting, and dribbling). A slow and stable set of
walk engine parameters is included with the release, and these parameters can
be optimized to produce a faster walk [1].

4.2 Skill Description Language

The UT Austin Villa agent includes skills for getting up and kicking, each of
which is implemented as a periodic state machine with multiple key frames,
where a key frame is a static pose of fixed joint positions. Key frames are sepa-
rated by a waiting time that lets the joints reach their target angles. To provide
flexibility in designing and parameterizing skills, we designed an intuitive skill
description language that facilitates the specification of key frames and the wait-
ing times between them. Below is an illustrative example describing a kick skill.

KEYFRAME 1

setTarget JOINT1 $jointvalue1 JOINT2 $jointvalue2 ...

setTarget JOINT3 4.3 JOINT4 52.5

wait 0.08

KEYFRAME 2

...

As seen above, joint angle values can either be numbers or be parameterized
as $<varname>, where <varname> is a variable value that can be loaded after
being learned. Values for skills and other configurable variables are read in and
loaded at runtime from parameter files.

4.3 Optimization Task Infrastructure

A considerable amount of the UT Austin Villa team’s efforts in preparing for
RoboCup competitions has been in the area of skill optimization and optimiz-
ing parameters for walks and kicks. Example agents for optimizing a kick and
forward walk are provided with the code release. Optimization agents perform
some task (such as kicking a ball) and then determine how well they did at the
task (such as how far they kicked the ball) which is known as the agent’s fitness
for the task. Optimization agents are able to adjust the values of parameterized
skills at runtime by loading in different parameter files as mentioned in Sec-
tion 4.2, thus allowing the agents to easily try out and evaluate different sets of
parameter values for a skill. After evaluating itself on how well it did at a task,
an optimization agent writes its fitness for the task to an output file.

Optimization agents can be combined with machine learning algorithms to
optimize and tune skill parameters for maximum fitness on a task. The UT
Austin Villa team uses the CMA-ES policy search algorithm for this purpose.
During optimization, agents try out different parameter values from loaded pa-
rameter files written by CMA-ES, and then the agents write out their fitness

values indicating how well they performed with those parameters so that CMA-
ES can attempt to adjust the parameters to produce higher fitness values. UT
Austin Villa utilizes overlapping layered learning [2] paradigms with CMA-ES
to optimize skills that work well together.

5 Conclusion

The UT Austin Villa RoboCup 3D simulation team base code release provides a
fully functioning agent and good starting point for new teams to the RoboCup 3D
simulation league. Additionally the code release offers a foundational platform for
conducting research in multiple areas including robotics, multiagent systems, and
machine learning. We hope that the code base may both inspire other researchers
to join the RoboCup community, as well as facilitate non-RoboCup competition
research activities such as a reinforcement learning benchmark keepaway task (a
keepaway task is one of the league’s challenges at this year’s competition).

Recent and ongoing work within the RoboCup community is the development
of a plugin3 for the Gazebo robotics simulator to support agents created for the
current RoboCup 3D simulation league simulator (SimSpark). The UT Austin
Villa code release provides an agent that can walk in the Gazebo environment.
As the development of the plugin continues further support of Gazebo by the
UT Austin Villa code release, such as providing getup behaviors, is planned.

A link to the UT Austin Villa 3D simulation code release, as well as addi-
tional information about the UT Austin Villa agent, can be found on the UT
Austin Villa 3D simulation team’s homepage.4 Further information about the
code release can be found in a paper [3] that will be presented orally at this
year’s RoboCup symposium.

References

1. MacAlpine, P., Barrett, S., Urieli, D., Vu, V., Stone, P.: Design and optimization of an omnidi-
rectional humanoid walk: A winning approach at the RoboCup 2011 3D simulation competition.
In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI-12) (July
2012)

2. MacAlpine, P., Depinet, M., Stone, P.: UT Austin Villa 2014: RoboCup 3D simulation league
champion via overlapping layered learning. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (AAAI-15) (January 2015)

3. MacAlpine, P., Stone, P.: UT Austin Villa RoboCup 3D simulation base code release. In: RoboCup
2016: Robot Soccer World Cup XX. Lecture Notes in Artificial Intelligence, Springer Verlag,
Berlin (2016)

4. MacAlpine, P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Lopez-Mobilia, A.,
Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011: A champion agent in the RoboCup 3D
soccer simulation competition. In: Proc. of 11th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2012) (June 2012)

3 bitbucket.org/osrf/robocup3ds
4 www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

