Copyright Notice

The following manuscript
EWD 361: Programming as a discipline of mathematical nature

was published in Am. Math. Monthly 81 (1974), 6: 608-612. It is
reproduced here by permission of the Mathematical Association of
America.

EWDZE6! - O

Programming as a discipline of mathematical natyre.

by fdsger W.Dijkstra

In this article I intend to present programming as a mathematical
activity withaut undertaking the arduous task of supplying a definition
of "mathematics" pleasing all mathematicisns, ror of defining "programming"

in a way that is palatable to all programmers.

With respect to mathematics 1 believe, hbewswsr;, that most of us can
heartily agree upon the following characteristics of most mathematical
work:

1) Compared with other fields of intellectual activity, mathematical
assertions tend to be unusually precise.

2) Mathematical assertions tend to be general in the semse that they

are épplicable to = large (often infinite) chkass of instances.

3)7 Mathematics embodies a discipline of reasoning allowing such
assertions to be made with an unusually high confidence level.

The mathematical method derives its power from the combination of all these
three characteristics; conversely, when an intellectual activity displays
these three characteristics to a sirong degree, I feel justified in calling
it "an activity of mathematical nature", independent of the question
whether its subject matter is familiar to most mathematicdans. In ather
words, I grant the predicate “mathematical nature" rather on the "quo modo"

than on the "quod".

A programmer designs algorithms, intended for mechanical execution,
intended to control existing or conceivable computing equipment. These
~usually electronic—ddewiees derive their power from two bhasic characteristics,
Firstly, the amount of information they can store and the amount af processing
that they can perform in a reasonably short time are both large beyond
imagination., And as a result, what computers could do far us has outgrown
its basie triviality by several orders of magnitude. Secondly, as executors
of algorithms, they are reliable and obedient, again beyond imagination: as

a rule they indeed behave exactly as instructed.

This obedience makes heavy demands on the accuracy with which the

twisbl = 1

programmer has instructed the machine: if the instructions were to produce
non-sense, the machime will produce non—sense. Inexperienced programmers
often blame the machinmery for its strict obsdience, for the impossibility
to appeal to the machine's "common sense™; more experienced programmers
realize that it is exactly its strict obedience that enables us to use it
reliably, te forge it imto a sophisticated tool that we would never be able
to build if the executor of our algorithm had the umcentrolled freedom to
interpret gur instructions in “the most plausible way". As a result, the
competent programmer does not regard precision and accuracy as mean virtues:

he knows that he could not work without them.

His work is also always "gerneral" in the sense that esach program is
able to evoke as many different computations as we can supply it with
different input deta. Whenever we make an assertion about & program, it is
an assertion about the whole class of possible camputations that could be
evoked under control of it and "designing an algarithm" is nothing more
nor less than "designing a whole class of computations". So the programmer's

work alsc shares the second characteristic,

Finally, what asbout the confidence level of his work? Well, it should
be very high for two reasons. firstly, a large sophisticated program can
only be made by a careful application of the rule "Divide and Conquer"
and as such consists of many comporents, say N3 if, however, pr is
the probability of an individual component being correct, then the
probability P of the whole aggregate being correct satisfies something
like P < pN . In other words, unless p is indistinguishable frem 1,
for large N the value P will be indistinguishable from zero! If we cannot
design the components sufficiently well, it is vain to hope that their
aggregate will work at all. Secondly, its confidence level should be very
high if we, as society, would like to rely wpon the performance of the
algorithm. And we do, when we use machines for air traffic control,

banking, patient care in hospitals or earth—quake ﬁ&iﬂiﬁtiﬁhh
Now honesty compells me to admit that today, on the average, the
confidence level reached by the programming profession is not yet what it

should be, on the ceontrary!

Frem a historical point of view this sorry state of affairs is only

EwD361 — 2

too understandable, The tradition of programming is very young and has still
many traceable roots in the recent past, when machines were still rather

small and praogramming was not yet such a problem. (Before we had machines,
programming was no problem at all!) But in the last temn to fifteen years,

the power of available machimery has grown at least with a factor of a
thousand, thereby completely changing the scope of the programming profession.

But old habits seldom die!

The old technigue was to make a program and then to subject it to a
number of testcases where the answer was known; and when the testruns
produced the correct result, this was taken as a sufficient ground for

believing the program to be correct.

-But with growing sophistication, this assumption proved more and more
to be unjustified until, some five years ago, it surfaced in the form of
"the software crisis", Ome of the first considerations of what was later to
emerge as "programming methodology™ was this guestion of the confidence

ievel: "How can we rely on our algorithms?"

An analysis of the situation quite forcibly showed that program
testing can be used very convincingly to show the presence of bugs, but
never to demonstrate their absence, because the number of cases one can
actually try is ahsolutely negligible compared with the possible number of

cases., The only way out was to prove the program io be correct.

The suggestion that the correctness of programs could and should be
established by proof was met with a great amount of scepticism. (In the
mean time, many older people had already accepted as a Law of Nature, that
each program is bound to contain bugs!) The scepticism, however, was not

without reason.

Ta start with, it was not clear what form such correctness proofs
could have. You rcannat build a proof on quicksand, you must have axioms,
in this case an axiomatic definition of the semantics of the programming
language in which the program has been expressed. It was only after a few
efforts that a technique for semantic definition emerged that could serve

as a passibly practical starting point for correctness proofs,

EWIS6T = 5

When people then tried to give carreciness proofs for existing programs,
the result of that effort was very disappointing: the proofs were so long,
hairy ard clumsy, that they failed to convimce. And also this disappointment
can still be traced in the scepticism of many. But three discoveries have

changed the scene since then.

The first discovery was that the amount of formal labour, nesded to
prove the correctness of a program could depend very heavily on the

structure of the program.

The second discovery was that of a few useful theorems about program
constructs and thanks to them we nc longer needed to go all the way back

to the axioms all the time.

The most drastic discovery, however, was the last one, that what we
then tried, viz. to prove the correctness of a given program, was in a sense
outting the cart before the horse. A much more promising approach turned out
to be letting correctness proof and program grow band in hand: with the
choice af the structure of the correctness proof one designs a program
for which this proof is applicable. The fact that then the correctness
concerns turn out tﬁ act as am inspiring heuristic guidance is an

added beoefit.

If 1 ended this articlé with the above optimistic note I could create
the wrong impression that now the intrinsic difficulties of programming
have been solved, but this is nat true: the best I can say is that now we
have a better insight in the nature of the difficulties of the programming
task than a few years before. In my closing paragraphs I hope to convey
this nature, at the same time sketching the intellectual demands made upan

the competent programmer.

A programmer must be able to express himself extremely well, both in
a natural language and in formal systems. The need for exceptional mastery
of a natural language is twofold. Firstly it is rot uncommon that e.g.
English is the language in which the problem is communicatedtto him and in
which he must describe his interpretation or modification of the problem.
This circumstance has been a source of many misunderstandings to the extent

that thege is a wide-spread belief that e.g. English by its very nature is

EWD361 = 4

{nadequate for that communication task. I don't believe it {although sloppy
English certainly is!), on the contrary: I always have the feeling that our
natural language is so intimitely tied with what we call understanding

that we must be able to use it to express what we have understoad.

Secondly, we should not close our eyes for the fact that formalizatiom,

in a sense, is always "after the fact" and that therefore natural language
is an indispensable teool for thinmking, in particular when new concepts have
to be introduced. And this is what a programmer has to do all the time: he
has to introduce new concepts =nat occurring in the original problem
statement— in order to be able to find, to describe and to understand his own
solution to the problem, for instance, when asked to construct a detector,
analysing a string of characters for the occurence of an instance of the
-nicely formally defined— syntactic category "sentence", he may find himself
led to the introduction of a completely new syntactic category "proper

begin of a sentence", i.e. a string of characters that is asdmissible as

the opening substring of z sentence but not yet a complete sentence itself.
After having established that this is indeed a useful concept for the
characterisation of some intermediate WEidueeE of the computational process,
he will proceed by manipulating the given formal syntax in order to derive
the formal definition of this new syntactic category. In otber wards, given
the problem, the programmer has to develop {(and formulate!) the theory
rnecessary to justify bis algorithm. In the course of this work he will gften

be forced to invent his ogwn formalism.

Such demands, of course, are common to most mathematical work, but
there are reasons to suppose that in programming they are more heavy than
anywhere else. for besides the need of precision and explicitmess, the
programmer is faced with a problem of size that seems unigque to the
programming profession. When dealing with "mastered complexity", the idea
of a hierarchy seems to be a key concept. But the notion of a hierarchy
implies that what at one level is regarded as an unanalyzed unit, is regarded
as a composite object at the next lower level of greater detail, for which
the appropriate grain (say, of time or space) is an order of magnitude
smaller than the corrssponding grain apprapriate at the next bigher level.
As a result the number of levels that can meanirmgfully be distinguished in
a hisrarchical composition is kind of proportionsl to the logaritbm af the
ratio between the largest and the smallest grain. In pragramming, where

the total computation may take anm bour, while the smallest time grain is

EWD361 -~ 5

in the order of a microsecond, we have an enviranment inm which this ratio

9

can easily exceed 10”7 and I know of no ather enviromment in which a single

technology has to encompass so wide a span.

It seems to be the circumstance sketched in the above paragraph that
gives programming as an intellectual activity some af its urigue flavours.
The concepts he introduces must be highly effective tools for bringing the
necessary amount of reasoning down to an amount that can be done. And also
the formalism he chooses must be such that his formulae do not explade
in length, a regrettable phenomenon that is bound to occur unless the
programmer pays conscious care to msssuyes for avoiding thgt explosion.

A fimal consequence pf the hierarchical nature of his artéfacts is the
competent programmer's agility with which he switches back and forth
between varigus semantic levels, between global and local considerations,
between macroscopic and microscopic egmsgesns, an ability that has been
described as "a mental zoam lens®. Thisragility is bewildring for those

that are unaccustomed to it.

If ~and I hope that I am fair-lconfront this with my ihpression aof
"the standard mathematical curriculum” (whatever that may be), I come to
the fallowing differences in stress:
1) In the standard mathematical curriculum the student becames familiar
{sometimes even very familiar!) with a standard collection of mathematical
concepts, he is less trained in introducing new concepts himself.
2) In the standard mathematical curriculum'§ﬁ§ student becomes familiar
{sometimes even vaery familiar!) with a standard set of notational techniques,
he is less traimed in inventing his own notation when the need arises.
3) In the standard mathematical curriculum the student often only sees
prablems so "small"™ that they are dealt with at a single semantic level. As
a result many students see mathematics rather as the art of organizing their

symbols on their piece of paper than as the art of organizing their thoughts.

If I bave given some of my readers the first germs of the feeling that
to an inventive and effective mathematician the field of programming may
provide the area par excellence in which to find his challenge and bring

his abilities to bear, one of my dearest wishes has been fulfilled.

Eindhaven, Technological University 23rd May 1973

