EWD372 -~ O

A Simple Axiomatic Basis for Programming Language Constructs.

by Edsger W.Dijkstra

Abstract. The semantics of a program can be defined in terms of &
predicate transformer associating with any post-condition (characterizing
a set of final states) the corresponding weakest pre-condition (characterizing
a set of initial states). The semantics of a programming language can be
defirned by regarding a program text as a prescription for constructing its

corresponding predicate transformer,

Its conceptual simplicity, the modest amount af mathematics needed
and its constructive rmature seem to be its outstanding virtues. In comparison
with alternative approaches it should be remarked, firstly, that all non-
terminating computations are regarded as eguivalent and, secondly, that a
program construct like the goto-statement falls outside its scope; the latter
characteristic, however, does not strike the author as a shortcoming, on the

contrary, it confirms him in one of his prejudices!

EWD372 - 1

A Simple Axiomatic Basgis for Programming Lanpuage Constructs.

by Edsger W.Dijkstra

Program testing can be used very effectively to show the presence of
bugs, but is hopelessly inadequate for showing their absence and a convincing

correctness proof seems the only way to reach the required canfidence level.

In order that such a convincing correctrness proof may exist, two
conditions must be satisfied by such a correctness proof:
1) it must be a proof and that implies that we need a set aof axioms to
start with
2) it must be convircing and that implies that we must be able to write,
to check, to understand and to appreciate the proof.

This essay deals with the first of these two topics.

We are considering finite computations eonly; therefore we can restrict
vurselves to computatianal processes taking place in a finite state machine
-although the possible number of states may be very, very large- and take
the point of view that the net effect of the computation can be described
by the transition from initial to final state. (Sinca the classical work of
A,M,.Turing, and again since the recent work of D.Scott, one often encounters
the tacid assumption that size and speed of today's computers are so huge,
that the inclusion of infinite computations leads to the most apﬁropriate
model. I would be willing to buy that if -as in the case of "the line at
infinity", sweetly leading to projective geometry- the suggested generalization
would clean up the majority of the arguments. Thanks to Cantor, Dedekind et al.,
however, we knaw that the inclusior of the infinite computation is hot a
logicelly painless affair, on the contracry! In the light of that experience
it seems more effective to restrict oneself to finite computations taking
place in a finite, but sufficiently large universe, thereby avoiding a number
of otherwise self-inflicted pains. Those mathematicians that are so biased as
to refuse to consider an area of thought worthy of their attention, unless
it pays full attention to their pet generalizations, should perhaps not try
to follow the rest of my argument.) The computation is assumed to take place
under control of an algorithm, and we want to make assertions about all

possible computations that may be evoked under control of such a praogram,

EwWD372 - 2

And we want to base these assertions on the program text! (In particular for
sub-programs our aims are usually more wodest, being content witb assertions
about the class of computations that can take place under the additional
constraint that the initial state satisfies some further condition, as we are
able to show that such a condition will always be satisfied whenever the

sub-program is invoked.)

This implies that we must have a farmal definition of the semantics

of the programming language in which the program has been expressed.

The earliest =fforts directed towards such definition of semantics that
I am aware of have been what I call "mechanistic definitions™: they gave a
definition (or "a deseription") of the steps that should be carried out in
executing a program, they gave you "the rules of the game" necessary to
by hand or by machine. The basic shortcoming of this approach was that the
semantics of an algorithm were expressed in terms of "the rules of the game",
i.e. in terms of another algorithm. The game can only be played for a chosen
initial state, and as a result it is as powerless as program testing! A
mechanistic definition as such is not a sound basis for making assertions
about the whole class of possible camputatiﬁns associated with a program.

It is this shortcoming that the axiomatic method seeks to remedy.

We consider predicates P, Q, R, ... on the set of states; for each

possible state a given predicate will be either true or false and if we

50 desire, we can regard the predicate as characterizing the subset of states
for which it is true. There are two special predicates, named T and F: T

is true for all possible states (characterizes the uniuerse), F is false

for all possible states {characterizes the empty set). We call two predicates
P and Q equal {"P = Q") when the sets of states for which they are true are
the same. (Note that P # T -or EQQ(P = T)— does not allow us te conclude

P =F !) We restrict ourselves to state spaces that are defined as the
cartesian product of (the individual state spaces DF) a number of named
variables of known types. Predicates P, Q, R, ... are then formal Expressions
in terms of

1) the aforementioned variables (i.e. the "co-ordinates" of our state
space)

2) constants of the appropriate types

EWD®T72 - 3

%) free variahles of the appropriate types.

The rules for evaluation of these formal expressions fall outside the scope

of this essay: we assume them to be given "elsewhere", not tempted to redo,

say, the work of a Boole or a Peano. (The ability to formulate the specifications
to be met by the program presupposes that such work has already been done

"elsewhere".)

We consider the semantics of a program 5 fully determined when we can
derive for any post-condition P to be satisfied by the final state, the
weakest pre~condition that for this purpose should be satisfied by the initial
state. We regard this weakest pre-condition as a function of the post-condition
P and denote it by "fS(P)". Here we regard the fS as a "predicate transformer",
as a rule for deriving the weakest pre-condition from the post-condition to

which it cerresponds.

The semantics of a program 5 are defined when its corresponding predicate
transformer f5 is given, the semantics of a programming language are defined
when the rules are given which tell how to construct the predicate transformer

fS corresponding to apy program S written in that language.

As most programming lanquages are defined recursively, we can expect
such construction rules for the predicate transformer of the total program
to be expressed in terms af predicate transformers associated with components.
But, as we shall see in a moment, we must observe some restrictions, for if
we allow ourselves too much freedom in the construction of prediéate trans-
formers we may arrive at predicate transformers f5 such that fS(P) can no
longer be interpreted as the weakest pre-condition corresponding to the

post-candition P for a possible deterministic machine.

Our construction rules for predicate transformers fS must be such
that, whatever f5 we construct, it must have the following four hasic

properties:

1) P=0 implies fS{P) = f5(Q)
2) £s{F) = F

3) £5(P and Q) = £5(P) anc fs(qQ)
4) fs(P or Q) = fs{P) or rs(Q)

Predicate transformers enjoying those four properties we call "healthy'.

EWD372 - 4

Property ! assures that we are justified in regarding the predicates
as characterizing our true subject matter, viz. sets of states: it would be

awkward if £5{x > 0) differed from £s(0 <Ix) !

Property 2 is the so-called "Law of the Excluded Miracle" and does not

need any further justification.

The justificaticn for properties % and 4 becomes fairly obvious when
we consider, far instance, P = (o < x = 2) and @ = (1 < x 553) and require
that each initial state satisfying fS(P) is mapped into a single state
satigfying P and similarly for §. Conversely it can be shown that each
healthy predicate transformer f5 can be interpreted as describing the net
effect of a deterministic machine, whose actions are fully determined by

the initial state.

From our 1st and 4th properties we can derive a conclusion, Let P == 0;
from this it follows that there exists a predicate R such that we can write

Q =P or R. Cur 15t and 4th properties then tell us that

£s(Q) = £5(P or R) = £5(P) ar fS(R)

from which we deduce that

5) P =>0Q implies fs(P) == rs(Q) .

A further useful property of healthy predicate transformers can be

derived already at this stage. Properties 1 and 4 allow us to conclude for
any P f5{P) or fS(ncn P) = f5(p or pon P) = fS(T) .
Taking at both sides the conjunction with gfon fS(P) we reach

FS(nDn P) and non fS(P) = FS(T) and nan fS(P) .

Properties 1, 2 and 3 allow us to conclude for the same fS and same P

t5(P) and fS(non P) = £S{(P and non P} = f5(F) = F .

Taking in the last two formulae at both sides the disjunction we find for

healthy predicate transformers property
6) #s(non P) = fS(T) and nan fS{P)

or, replacing P by non P and taking the regation at both sides, its alterna-

tive formulaticn

EWD372 - §

61) non fS(P) = £S{non P) or non fS(T) .

The simplest predicate transformer enjoying the four basic properties

is the identity transformation:
fs(P) =P

The correspending statement is well known to programmers, they usually eall

it "the empty statement"”.

But it is very hard to build up very powerful programs from empty
statements alane, we need something more powerful. We really want to transform

@ given predicate P into a possibly different predicate fS(P).

Urne of the most basic operations that can be performed upon formal
expressions is substitution, i.e. replacing all occurences of a variable
by (the same) "samething else". If in the predicate P all occurrences of

n_ it

the variable "x" are replaced by (E), then we denote the result of this

tranformation by P
E — x :

Now we can consider statements S such that
fS(P) = p ,

where x is a "co-ordinate variable" of cur state space and E an expressiaon
of the appropriate type. The above rule introduces a whole class of.
statements, each of them given by three things

a) the identity of the wvariable x to be replaced

b) the fact that the substitution is the corresponding rule for
predicate transformation

c) the expression £ which is to replace every occurrence of x in P.

The usual way to write such a statement is
x 1= E

and such a statement is known under the name of an "assignment statement".

We can formulate the

Axiom of Assignment. When the statement S is of the form x 1= E .

its semantics are given by the predicate transformer S that is such that

far all P fS(P) = P .
E - x

The subsitution process leads to healthy predicate transformers.

- EWD372 ~ 6

Although from a logical point of view unnecessary -we can take this
predicate transformer to give by definition the semantics of what we call
assignment statements- it is wise to confront this axiomatic definition with
our intuitive understanding of the assignment statement -if we have one!-
and it is comforting te discover that indeed it captures the assignment

statement as we (may) know it, as the following examples show. They are

written in the format: {fS(P)} S {P}
{a > 0} xi= 1 {a = 0}
(1) < 2} ' xi= 1 {x < 2}

{a >0 and (x + 1) <9} xi=x+1 {a>0and x <9} .

The above rules enable us to establish the semantics of the empty
program and of the program consisting of a single assignment statement. In
order to be able to compose more complicated predicate transformers, we
observe that the functional composition of two healthy predicate transformers
is again healthy. So this is a legitimate way of constructing a new one and

we are led to the

Axiom af Concatenation. Given two statements S1 and 52 with healthy

predicate transformers f51 and 52 respectively, the predicate transformer

S, given for all P by
£5({pP) = rs1(rs2(P))

is healthy and taken as the semantic definition cof the statement 5 that we

denote by 51 : 52

Functianal compasition is associative and we are therefore justified in
the use of the term "concatenation": it makes no difference if we parse

"St 5 52 ; 53" either as "(S1 ; 52); S3" or as "S1 ;(s2 ; S3)".

Relating the axiomatic definition of the concatenation operator ";" to
our intuitive understanding of a sequential computation, it just means that
each execution of 51 (when cDmpleted) will immediately be followed by an
execution af 52 and, conversely, that each execution of 52 has immediately
been preceded by an execution of 51, The functional composition identifies

the initial state of 52 with the final state of 51.

Looking for new programming language constructs implies looking for

— ’ £EwWD3T72 - 7

new ways af constructing predicate transformers, but all this, of course,
subject to the restriction that the ensuing predicate transformer must be
healthy. And a number of aobvious suggestions must be rejected on that greund,

such as: fS(P} = non fS1(P)

for that would violate the Law of the Excluded Miracle.

Also £5(P) = £S1{P) and £52{P)

must be rejected as such a f5 viaolates the basic property 4:
£5(P or Q) = fS1(P or Q) and £52(P or Q)
{rs1(P) or r51(aQ}} and {f52(P) or fs2(n)}

while

f5{P) or £5(Q) = {f$1{P) and ¥32{P}} oz {rs?(Q) and rs2(q) }

and they are in general different, as the first of the two leads to the

additional terms in the disjunction

{rs1(P) and 7s2(Q)} or {fs1(Q) and fs2(P}}

Similarly, if we choose
fs(P) = #51(P) or fs52(P)
property % is violated, because

fS(P and Q) = fS1(P and @) or £52(P and Q)

{rs1(P) and fs1{(Q)} ax {¥52(P) and *s52(Q)}

while

fS(P) and f5(Q) = {rS1(P) or fs2(P)} and {fs1(Q) or fsz(m)f

and here the second one leads to the additional terms in the disjurction

{£51(P) and ts2(0)} or {r51(Q) and fs2(P)}

This leads tc the suggestion that we look for fS1 and fS2 { in general
fSi) such that for any P and

i #£ 3 implies fSi(P) and ij(Q) =F .

Doing it for a pair leads to the

Axiom of Binary Selection. Given two statements S1 and 52 with healthy

predicate transformers f5! and fS52 respectively and a predicate B, the

predicate transformer f5, given for all P by

_— EWD372 - B

f5(P) = {B and £51(P)} or {non B and f52(F)}

is healthy and taken as the semantic definition of the statement 5 that we

denote by if B then S? else 52 fi .

(This is readily extended to a choice between three, four or any
explicitly enumerated set of mutually exclusive alternatives, leading to

the so-called case—construction.)

For an arbitrary given sequence fSi we can not hope that 1 # j implies
fSi(P) and ij(Q) = F for any P and (, but we way hope to achieve this if.
we can generate the fSi by & recurrence relation. Before we embark upon
such a project, however, we should derive a useful property of the predicate

transformers we have been willing to construct thus far.

If two predicate transformers 5 and fS' satisfy the property that for
all P: fS(F) = fS’(P), then we call fS as strong as f5' and fS!' as weak as
5.

(The predicate transformer given for all P by f5(P) = F is as strong
as any other, the predicate transformer given by fS(P) = T would be as
weak as any other if it were admitted, but it is not healthy: it violates

the Law af the Excluded Miracle.)

We can now formulate and derive our

Theorem of Monotonicity. Whenever in a predicate transformer fS, formed by

concatenation and/or selection, one of the constituent predicate transformers
is replaced by one as weak (strong) as the original one, the resulting

predicate transformer f5' is as weak (strmng) as f5.

Obviously we anly need to show this for the elementary transformer

canstructions.

Cancatenation, case 1:

Let S be: 51 ; s2

et 5' be: 51'; s2

let 51" be as weak as 51,
then for any P, fS(P) = £S1(Q} and f5'(P) = f317(Q), with Q = fs2{P);
as £51(Q) = f511(Q) for any Q, F5(FP) == f5'(P) for any P. QED.

- EWD372 - 9

Concatenation, case 2:

Let 5 be: s1 ;52

let S' be: St o 52!

let S2' be as weak as 52,
then for any 7, fS(P) = fs1(n) and fS‘(P) = fS1(R) where 0 = fS52(P) and
R = f52'(P). Because for any P, Q =R, it fellows from the healthiness of
fS1, that f5{P) == f5'(P) for any P. QED.

]

Binary selection, case 1:

Let 5 be: if B then S1 glse S2 fi
let 5' be: if B then S1' else 52 fji

let 51' be as weak as St,
then for any F
#5(P) = {B and £51(P)} or {non B and 752(P)}

=> {B and fS1'(P)} oz {pon B and fs2(P)} = rs*(P) . QED.

Binary selection, case 2, can be left to the industrious reader.

Let us now consider a predicate transformer G constructed, by means af
concatenation and selection, out of a number of healthy predicate transformers,
among which is fH. (This latter predicate transformer may be used "more than
once": then G corresponds to a program text in which the corresponding
statement H occurs more than once.) We wish ta regard this predicate trans-
former as a functian of fH and indicate that by writing G(fH), i.e. G
derives, by concatenation and/or selection with other, in this connection
fixed predicate tramsfTarmers, a new predicate transformer. We now consider the

recurrence Telation

) (1)

which is a tractable thing in the sense that if fH. is as strong (weak) as

0

FH1, it follows via mathematical induction from the Theorem of Monotonicity

that fH, is as strang (weak} as fH_+1 for all i. We should like to start the
i i

recurrence relation with a constant transformer FHO that is either as strong
or as weak as any other. We can do this far a predicate transformer as strong

as any other by choosing FHO = f5T0P , given by
fSTOP{P) = F for any P ,

(The predicate transformer f5STOP satisfies all the requirements for healthiness.)

And s0 we find ourselves considering the sequence of predicate transformers

- EWD372 - 10

given by fHO = fSTOP

and for i > 0: fH. = G{(fH.
i i=1

) (2)

with the property that
1) all in are healthy (by induction}
2) for i < j and any P: in(P) :>-ij(P)
Because all FHi are healthy and any P = T, we also know that for any P
fH (P} = fH_(T)
i i

We now recall that we were looking for f5, such that for any P and Q
1

and i # j we would bave fSi(P) and ij(Q) = F .

We can derive such predicate transformers from the FHi. As each FHi(P)

implies for the same P the next one in the sequence, we could try for i > Q
£S.(P) = fH_{P) and non tH. . (P) (3)
i i —_— = i1

i.e. the ij(P) is the "incremental tolerance", but -both on account of

the conjunction and on account of the negation- it is not immediately obvious
that such a construction is a healthy predicate transformer. Therefore we
praceed a little bit more carefully, first deriving a few other theorems

about two predicate transformers fS and f5', such that fS is as strong as f5',
i.e. fS(P) = f5'(P) for any P. Apother way of writing this same implicatian
is

F51{pP) = fs(P) o

{rs'(P) and pon 3(P)}

Referring to property 6' of healthy predicate transformers we can replace

"non fS(P)" and find
51 (P} = rs(P) or {r57(P) and {fS(non P) or mon £5({T)}}
Because FS(EEE P) =>'F5‘(QEE P) => non fS'(P), this reduces to

£51(P) = r5(P) or {f5'(P) and non £5(T)} (4)

from which we derive (by taking the conjunction with f5(T))
£51{P) and £5(T) = f5(P) (5)

and (by taking the conjunction with non fS(P))

£5'(P) and non S(P} = £5'(P) and non f5{T) . (6}

F rom (6) we conclude, because FHi (P) = in(P), that our tentative

-1
definition (3) leads to

EWD372 - 11

75, (P) = £H,(P) ard non fh__ (P)
= £, (P) and non i, (T) (7)

and because "man fH. !(T)" is a predicate independent of P, the fSi as
i=- \

defired by (3) are healthy,

Defining
K.=F and for i >0: K = f5 (T)
0 i i
it 1s easy to shaow that

i #] implies K. and Kj = F (8}
1

This is proved by a reductic ad absurdum., Let i < j and suppose

K. and K. £ F; then there exists a point v in state space such that
1 J

K_(v) and K_(u) = true
1]

Howaver, Ki(v) implies fH_(T)(u) which implies fH 1(T)(v) -because j-1 > i -
1 J-
which implies K_(v) = false and this is the contradiction we were after. In
J

other words: in each paint in state space at most ane K. is true.
: 3 LIUE

From (7) combined with in(P) = in(T) it follows that

75.(P) = K, and H_(P) (9)

1 1

which together with (8) leads to the conclusion that for any P and Q

i#j implies rs (P) ard ij(ﬂ) = F° (10)

and this is exactly the relation we have heen looking for.

In passing we note that, on account of (9), Ki = F implies FS_(P) = F;
1

on account of (7) this tells us that for any P FH,(P) = fH (P); we also
1

i-1
know that fH, 1(P) = fH,(P) for any P and we conclude fH_(P) = fH. 1(P).
1- 1 1 1=
As this holds for any P, we conclude in = fH, 1 and therefore
i-
= GLfH = GL{fH = f

iy = BOHL) = Bl) =
In other words

K. = F implies fH, 6 = fH, for j > 1

i J i-1 -
and K. = F for j > i (11}
J

Returning to {10) we conclude that with the aid of our sequence fSi

we can now form two new healthy predicate transformers, firstly

EWD372 - 12

fH{P) = (A i: 1 < i f‘Si(P)) ,

but that one, although healthy, is not interesting because on account of {70)

it is identically F; and secondly
FHIP) = (E 4: 1 < 4: rs. (7)) , (12)

The latter one is not identically F and we call it a predicate transformer
"composed by recursion". In formula (12), for each point v in state space,
such that fH(P)(v) = irue, the existential quantifier singles ocut a unigue

value of 1i.

Alternatively we may write

fH(P) = (E j: 1 < j: ij(F’)) : (13)
Tt is by now most urgent that we relate the ahove to our intuitive
understanding of the recursive procedure: then all aour formulae become quite

obvious.

First a remark about the Thearem of Monotonicity: it just states that if
we replace a compenent of a structure by a more powerful one, the modified
structure will be at least as powerful as the original ane. (Consider, for
instance, an implementation of a programming language that leads to program
abortion when integer overflow occurs, i.e. when an integer value outside
the range [—M, +M] is generated. When we modify the machine by increasing M,
all computations that were originally feasible, remain so, but pdssibly we

can do mare.)

Now for the recursion., All we have been talking about is a recursive
procedure (withuut local variables and without parameters) that could have

been declared by a text of the form

i.e. a procedure H that may call itself from various places in its body.

Mentally we are considering a sequence of procedures H with
i

proc HO: STOP corp
proc Hi: H. , H., H.o, corp

Our rules

—_ EWD372 - 173

fHg = fSTOP and for i >0 fH_ - 5(in_1)
are such that the predicate transformer in corresponds to our intuitive
understanding of the call of procedure Hi' In terms of the procedure H,

FHj describes what & call of the procedure H can do under the additional
constraint that the dynamic recursion depth will not exceed i. In particular,
FHi(T) characterizes the initial states such that the procedure call will
terminate with a dynamic recursion depth not exceeding i, while Ki characterizes
those initial states such that a call of H will give rise to a maximum

recursion depth exactly = i. This intuitive interpretation mekes our earlier
formulae guite obvious, fH(T) is the weakest pre-condition that the call will

lead to a termimating computation.

The Thecrem of Monotonicity was proved far predicate transformers
formed by concatenation and/or selection. If in the body of M one of the
predicate transformers f5 is replaced by f5', as weak (strong) as f3, then
G'(fH) will be as weak (stromg) as G(fH), giving rise to an fH; as weak
(strung) as in; as a result the Theorem of Monotonicity haolds alsa for

predicate transformers constructed via recursion.

Our axiamatic definitian of the semantics of a recursive procedure

fH,, = f3TOP and

0
for i > O: fH, = G{fH. ,) and

i i-1
finally: fH(P) = (£ i: i >0: fH, (P))

1
is nice and compact, in actual practice it has one tremendous diéadvantage:
for all but the simplest bodies, it is impossible to use it directly. th(P)
becomes a line, sz(P) becomes a page, etc. and this circumstance makes it
often very unattractive to use it directly. We cannot blame our axiomatic
definition of the recursive procedure for this unattractive state of affairs:
recursion is such a powerful technique for the construction af new predicate
transformers that we can hardly expect a recursive procedure "chosen at
random” to turn cut to be a mathematically manageable object. 50 we had better
discaver which recursive procedures can be managed intellectually and how. This
is nothing more nor less than asking for useful theorems about the semantics

of recursive procedures.

- EWDFT72 -~ 14

Now we are going to prove the Fundamental Invariance Theorem far

Hecursive Procedures.

Consider a text, called H", of the form
H": H' H' H'

to which corresponds a predicate transformer fH", such that for a specific
pair of predicates Q and R, the assumption 0Q => fH'(R) is a sufficient
assumption about fH' for proving Q = fH"(R) . In that case, the recursive

procedure H given by
prac H: H H H cor

(where we get this text by removing the dashes and enclosing the resulting

text between the brackets proc and corp) enjoys the property that

{0 and fH(T)} = £H(R) : (14)

(The tentative conclusion Q :>-FH(R) is wrong as 1s shown by the
example A proc H: H corp .)

We show this by showing that then for all i >0
{ @ and w1 (1)} = 1. (R) (15)

and from (15), (14) follows trivially. Relation (15) holds for i = O, and

we shall show if it holds for i = j-1, it will hold for i = j as well.

In the formulation of the Fundamental Invariance Theorem for Recursive
Procedures we have mentioned "a pair of predicates Q and R"; we did so,
because hesides the co-ordinate variables of the state space, in which the
computations evolve, and the constanis, they may contain free variahles as
well and they are paired by the fact that they are the same in a pair Q and R.
For instance, both Q and R may end with "and (x = xo)“, where "x" is a

co-ordinate variable and "x_ "

O

value of x will rewain unchanged, whatever its initial value. To denote a

a free variahle, thus expressing that the

specific set (or 5ets) af free variable values, we shall use small letters,

supplied as subscripts. Our statement of affairs, say
Q == fH"(R)

is then written down more explicitly as

- EWD372 - 15

Q => fH"(R)
e e

in arder to indicate that I and 8 are coupled by a set of free variables.

(As subseripts 1 shall use "e" for external and "i" for internal.)

Let us first consider, for the sake of simplicity, the case that the
text H" contains a single reference to H'. In the evaluatien of FH"(R),
e

let PTB be the argument that, working backwards, is supplied to fH'; with
P2 = fH'{P1)
e e

we can then write fH"(RE) = E(PEE) (16)

We can regard £ as a predicate transformer aperating on its argument

P2e, but considered as predicate transformer it is nat necessarily healthy:
it may violate the law of the Excluded Miracle. It enjoys, however the
other three properties:

P=0 implies E(P) = €{q)

€(P and @) = £(P) and E{Q)

£(P or Q) = E(P}.or E(Q)
and therefare alse the fifth:

P=>0 implies E{P) =>£(0)

The statement that with regard to the predicate pair Q and R the
assumption @ :>-FH‘(R) is a sufficient assumption about fH' in order to

prove 0 => fH"(R) amounts more explicitly to the following statement:

There exist for the free variables occurring in 0 and R a set i af

values (in general funﬁtionally dependent an the set E), such that

R. == P1
e

1

q = eln) . (17)

(Fmr instance, consider the statement
H": n:=n = 1; H'; ni=n + 1

with @] and R both: n = where n, is a free variable., Our proof for

"o’ 0

(n = nE) = fH"(n =

|
s
—

can be based on the assumption

l
3
—

(n = ni) => fH'(n =

EWD372 - 16

with n, = n =1,
i e
Here R and @ are bath: n = n and R, and Q. are both: n = n .)
e =] e 1 1

When we are now able to show that

L (T) = elrh,_ (1)) (18)
J J=

then it follows from (17) that
{n and fH {1)} == E{Q, and fH ,(T))
e] i i1

and as a result {Qj and FHj_1(T)} = fH'(Ri) is then a sufficient assumptian
about fH' to conclude that {Qe and ij(T)} == fH"(RE). Asg ij depends on
ij_1 as H" on H', this would conclude the induction step and (14) would

have been proved.

We have two holes to fill: we have to show (18) and we have to extend
the line of reasoning to texts of H", containing more than one reference ta

H'. Let us first concentrate on (18).

We have defined fH. = G(FH_ 1), but because for any P, we have
] J-
fH 1(P) = fH . 1(T), an identical definition would have been
J= J=

)

i.e. each predicate formed by applying fH. 1 is replaced by its conjunction
j-

fH. = G(fH. (T} and fH
j =1

j=1
with fH. 1(T). And therefore, instead aof
J-

P1 = FS(T) (i.e. P1 is the argument supplied to fH'
P2 = ij 1(P1) in the evaluation of FH"(T).)
fH (1) = e{P2)

J

we could have written equally well
P1 o= £5(T)
P2 = fH_ 1(91)
) i-
i (1) = E(P2 and il A1)
J -

1(T) and therefore, because the transformer E

enjoys the fifth property, we are entitled to conclude

But {P2 and il ST =
J- J-

fH (7) = e(fH. 1(T)) i.e. relation (18)
3 i-

To fill the second hole, viz. that in the text called H" more than

— EwWD372 - 17

one reference to H' may occur, is easier. Working backwards in the evaluation
of FH"(RE) means that we first encounter the innermost evaluatinn(s) af fH',
whose argument does not contain fH'. For those predicate transformers we
apply our previous argument, showing that for them the weaker assumption

G and ijJ(T) => fH'(R) is sufficient. Then its value is replaced hy Q,

(Dr Qi! if you preFer) and we start afresh. In this way the sufficiency of
the weaker assumption about fH' can be established for all geccurremces of

fH' -only & finite number!- in turn.

For the recursive routines of the particularly simple form
proc H: if B then 51; H else fi corp

we can ask ourselves what must be known about B and S!, when we take for

R the special form Q and nan B. Then

FH"(Q and nan B) = {B and £s1(+H' (Q and non B))} or {Q and non E}

In order to be able to conelude Q => fH"(Q and non B) on account of

Q= fH'(Q and non B), the necessary and sufficient assumption about f51 is

{0 and B} => £51(Q)

Procedures of this simple form are such useful elements that it is
generally felt justified to introduce a specific notation for it, in which
the recursive procedure remains anonymous: it should contain as "parameters”

the B and the 51 and we usually write
while B do 51 od
With the statement S of the above form, we have row praved that

{Q ard B} => 51(Q) implies {Q and £S{T)} => £5(Q and non B)

This is called "The Fundamental Invariance Theorem for Repetition".

— EwD372 - 18

Acknowlrdgements.

Acknowledgements are due to the members of IFIP Working Group 2.% on
Frogramming Methodolegy with wham I had the privilege to discuss a preliminary
version of this paper at the Munich meeting in April 1973, Among them, special
thanks deserve M.Woodger, whose imspiring influence and assistance with
respect to this work extended over the weeks both before and after that
meeting, J.C.Reynolds, who has drawn my attentionm to an incompleteness in
my first proof of the Invariance Theorem and finally, of course, C.A.R.Hzare,

because without his innovating wark mine would not have been possiblie at all.

Special thanks are further due to C.S.Scholten for cleaning up several
of my formal proofs and to my collaborators at the Technological University,
Eindhoven, W.H.J.Feijjen and M.Rem far their encouragement and comments while

the work was done.

Eindhoven, 8th May 1973

