(To be inserted after EWDA37.) 4 eupasg - o

EWD459.html

The pattern matching problem.

The problem that is solved in this chapter is a very famous one, that
has been tackled‘independently by many programmers. Yet we hope that our
treatment givés some pleasure to even those of my readers who considered them-

selves thoroughly familiar with the problem and its various solutions.

We consider as givern two sequences of values

p(O), p(1), e s p(N - 1) with N >1 and

x(0), x(1), ..., x(M - 1) with M >0

(usually M is regarded as being many times larger than N). The question to
be answered is: how many times occurs the "pattern", as given by the first

..sequence, in the second sequence?
| vhe Secan =q

Using (N i: 0<i<m: B(3))
tb denocte "the'n@mbef of différent values of i in the range 0 <i <m,
¥ for whicﬁ B(i) holds", a more-ﬁfecise‘deé&iption‘of the final relation R
that is to be established is

R: ’ count = (ﬂ i: O <i<M - N: match(i))

where the function match(i) is given by

i
it

for 0<i<M-N: ma’cch(i)v (A 5: 0 <5 <N: p(3) =x{i+3))

for i <O0or i>M- N: match(i) = false .

(To define match(i)'="false fof’those furthe: values dfn’i ,Mthhs'making it

a total function, is a matter of cqnveniencef) e

4

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD459.html

EWD459 - 1

If we take as invariant relation

P1: ~ count = (_N_ it 0<i<r: match(i)) and r =0

we have one which is trivially established by "eount, r:= 0, O" and, furthermore,

is such that (P1 and r >M - N) =R .

(The "matter of convénience" referred to above is that now the above inequality

will do the job.) This gives a sketch for the program:

count, r:= 0, O

do r <M - N - "increase r under invariance of P1 " od

and the reader is invited to work out for himself the refinement in which r

is always increased by '1;‘worst case the time taken by the execution of that
program will be proportional to M * N |

Depending on the patigrn,however,'much,larger increases of r seem
50metihé$‘ﬁoséible: if,kfor instahte, the patﬁernfis‘ (19'2;i3, 4, '5) and

‘match(r) 'has been found fq‘hold,’ "cdunt{lrk?_¢0Qﬁf + 1;"f +‘5""W°Qld leave

R

P1 ipnvariant! Considering the invariant relation.

P2: (_1}_3: O_<_j<k:’p(j) = x(r +j)) and OSkSN‘
(Which can be expected to play a role inmthg”repetitivé construct'ccmputing

match(r)),‘we can investigate, what we can gain byvtaking'that relation outside

the repetitive construct, i.e. we corisider:

count, r, k=0, 0, 0;

or<M--N- "increase r under invariance of Pt and P2 " od

(relation P2 ‘being vacuously'sétisfied by k=01).

In view of théIValidity’of,relation P2 and the formula for match(x)

 EWD459 - 2

the most natural thing to start the repeatable»statement'with}is to try to

determine match(r) : as the truth of match(r) can be concluded from

P2 and k = N we prescribe that k be increased as long as is necessary and

possible:

do k % N cand p(k) = x(r + k) - k:= k +1 od R (1)

upon termination of which --and termination is guaranteed-- we have

P2 and (k = N EEE,p(k) £ x(r + k))

from which we can conclude that match(r) = (k = N) . Thus it is known,
whether increasing r by 1 should be accompanied by "count:= count + 1"

or not. We would like to know, by how much r can be increased without fur-

ther increase of count and without taking any further x-values into account.

(The taking into accoﬂht of * x-values is done in statement (1): to do so is
its sﬁecific purposg! Here we are wiliing to exploit only properties of the

~—constant~- pattern;) -

If k =0, we conclude (because N>0) that métth(r) = false : the
relation PTﬂltheh”justifies an increase of 't by 1 ~-leaving P1 invariant

by léaving"count"unchanged-— but P2 does not justify any higher increase

of x ; and k =0 --making P2 vacuously true-- is maintained.

For geherél k deever, there is the‘folloWing afghmehtf.Defihe fdrv“
0<ixk<N the boolean function
dif(i, k) = (Ej: 0<j<k-i;p(§) £pli+3) .
From this it follows that"dif(k, k) = false . If, however, dif(i, k) = true}
‘we conclude --because O §;i'+ J < k-— on account of -the truth of P2

(€5:0<i<k-iip(i) Axlzrisi)) .

EWD459 - 3 X

that is: dif(i, k) => non match(r + i) . Therefore, the variable "count"
|
needs no further adjustments --besides the one on account of the value of
. in
match(r)—— when T is decreased by d(k) , where d(k) is the minimum

solution for i with 0 < i <k of the equation dif(i, k) = false -, or:

(A j: 0<j <k -i:p(j) =pbi+3)) @

The fact that d(k) is a solution of (2) implies

p(a(k)+ 1))

i

(A j: 0< i<k -alk): p(3)

which, with P2 amounts to

Il

(& 5: 03 <k - d(): p(3) = x(x + a(k)+ §))

"and as a result --besides the adjustment of "count" as implied by the value of

,match(i) ~— both P and P2 are kept invériant by "r, ki= 1 + d(k), k - d(k;™.

-~

N,

Because the minimpmfsolu{ion of (2) depends ‘on -k and p only, we find:

begin glocon p, N, x, M; virvar count; ‘privar r, k; pricon dj

"initialize d";

. O : 2 % VIV Nt
¢ count, r, k := 0, 0, 0; R S ST AN

AR
M1 -

PP,
oo T

-~

IN

dok;éNgg_r_n_g_p(k)=x(r+k)-k:=k+1'9_d_;

if k = N — count:= count + 13 r, k 2= 1 + d(k), k - da(k)
ﬂo-<'k <Nox, k= +d(k) , k- d(k) R
0

k:\.—v’O-.r:>=r~41--1‘

EWD459 - 4

The only job left is the initializationkof the arréy variable d , i.e.
to establisﬁ for each =k satisfying 1 <k <N the minimum solution for i
of (2) . The Linear Search Theorem tells us that we should try i-values in
increasing order. It pays, however, to realize that this minimum value for i

has to be determined for a whole sequence of k-values. Let k1 > k2 and let

d(k1) be the minimum solution for i of (2) with k = k1 . From

(A j: 0<j <kt -dlkt): p(3) = p(d(k1)+ j)) and k1 > k2

it

follows: (A j: 0<j<x2 - d(k1):e p(5)

pla(k1)+ 3))

i.e. for k = k2 , d(k1) is also a solution for i of (2) , but not necessarily
the smallest! From that we conclude that d(k) is a monotonically nen~decreasing
function of k. And the algbrithm therefore investigates increasing values of
i , each time deciding whether for one or more k-values 1= d(k) can be
‘concluded (shopld‘be~established); Mbgé precisely:ylet'}j{i)',for given value
of"i be thé'ma§imum valu® §§N.e“i ’ sqch[tﬁétwﬁii e

| Cgos<j< () p(3) = pli +3)) 5
~ then d{k) - for all k such vtha‘t k- < j(‘i) (or: x < j(i)+ i), for
whiph no solution d(k) <i exists.,A; tHe values of i Qill'be tried in
increasing order and, as soon as,existing aé.minimal\solution, Qill be'reéorded
in the mgnoténicélly non-decreasing fﬁnctidn:vdbé the conditioh is

d.hib <k < j(i)+ i

‘and we get the following program:v

EWD459 - 5

"initialize d":

begin glocon p, N; virvar d; privar i

d vir int array, i vir int := (1), 0;

do d.hib # N -

begin glocon p, N; glovar d, ij; privar j;

J vir int := 0; i:t= i + 1;

_q_o_j<N-icandp(j)=p(i+j)..j;=j+1g_g;

do d.hib < j + i - d:hiext(i) od

Exercise 1. Give a formal correctness proof for the above initialization. (End

»

_of exercise 1,) '
, -
Exercise 2. With "r, k := r + d{(k), r & d(k)" for 0 <k , our algorithm
adjusts r and k without changing r + k .‘Inveétigafe-the slight gain
that is possible for 0 <k <N if it is kno@n that the xv—values’arevtvu::--i

valued. (End of exercise 2.)

Remark. Ourvfinql algorithm is 6ne, the execution time of which I regardvas
>to grow probdrfiénal tﬁ, M + N . Once one has set oneself the goal to find
;;if possible-~ an algoriihm with suchva performance, its actual development.v
Qoés not seem to’require much more than the usual care; the,cruciél’point
_seems the refﬁéél to be‘safisfiedv(without further invesfigation) with the
obvious M * N —algorithm; the development of which I have left as an exercise
fc the reader. A slight reformdlatibn of‘the probleﬁ, however, enables us to‘

recognize also here a general design principle, which might be called "The

e AT T

EWD459 - 6

Search for the Small Supefset." Suppose that we had not been asked to count

the number of matches, but to generate the sequence of r-values, for which

match(r) holds.

When a program‘has to generate the members of a set A , there are
(roughly) only two situations. Either we have simple, straightforward
"successor function” by means of which a next member of A can be generated
--and then the whole set can be trivially generated by means of repeated:
application of that successor function-- or we do not have a function like

that. In the latter case, the usual technique is to generate the members of

a set B instead, where

a) each member of A is a member of B as well
b) there exists a generator for successive members of B
'c) there exists & test whether a member of B ' belongs to A as well.

The algorithm then generé£Sé and inspects all members of B in turn.

If this technique,is to lead to a satisfacfory performance, three con-
ditions should be satisfied:
1) the members of set - B should be reasonably efficient to generate

2) . the test whether an element of B belongs to A ‘as well --partictlarly

in the case that it does not, for, usually, B is an order of magnithde larger
than A -- should be reasonably efficient

3) set B should not be unnecessarily large.

The trained problem solver, aware of the above, will consciously look

for a smaller set B than the obviodus one. In this example, the set of all

r-values satisfy'ing‘ 0<r<M~ N is the obvious one. Note, that in the

EWD459 - 7

‘previous chapter "An exercise attributed to R.W.Hamming" the replacement of
the set "qq" by the much smaller set "qqq" was another spplication of the
principle of The Search for the Small Superset. And besides "taking a relation
outside the repetitive construct" this illustrates the second strategical
similarity between the solutions presented in the current and in the previous

chapter. (End of remark.)

