EWDA482.html

Copyright Notice

The following manuscript
EWD 482: Exercises in making programs robust
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 110-119 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD482.html

Tth March 1975 EWD482 - 0

Exercises in makimpg programs robust.

{This is a sequel to the very exploratory EWD452: "About robustness and
the like" which was initisted in September 194 and closed on 31st January 1975.

In this report I shall pursue a very simple idea. Provided that we give
an adequate formulation of what we admit as "a single machine malfunctioning”,
we can interpret the effort as that of making a program in such a way that
under the assumption of at most a single malfunctioning, the machine will never
‘produce a wrong result as if it were the right one. I shall not, however,
start my considerations with a very precise definition of the class of mal-
functionings T am going to allow a single instance of: the probability that
I have designed a tool of which, after much hard labour, we must conclude that
it is insufficient for reaching our goal, is then just too high. I shall there-
fore start at the other end, and investigate the consequences aof applying a
technique which --with a certain amount of goodwill-- can be viewed as "making"
& program more robust"™ and afterwards analyse, which class of malfunctianings
it catches under the assumption of at most a single instance. The more elaborate
exercises, I am sorry to announce, will be rather painful ones, because we
cannot do them with too simple examples: if the example is very simple --like
forming the sum of a hundred stored values-- the only way to make the program
more robust boils (in some way or another) down to doing the computation twice
and I am --obviously!-- more interested in what we can achieve without paying
that price. (All by itself, this observation is already somewhat alarming:
under assumption of a perfect machine, we are used to break down the whole
computation a&s a succesion of little steps, all of them trivial by themselves,
but if they can anly be wade more robust by duplication, our robustness concerns
force us to consider larger "units". This seems a warning, that we are tackling

a nasty subject!)

* *
*

A very simple example to start with. A common program structure to es-
tablish a relation R is

(1) establish P; do BB — S od

where) (P and BB) =>-wp(5, P)
and (P and mon BB} = R

and we could replace (1) by
(2) establish P; do BB — S od; if P and mon BB - skip fi

where the added statement causes abortion if the loop terminates with
non P or BB , i.e. in a state in which we are not entitled to comclude the
validity of R.

Time-wise this seems an attractive modification, because it does not
generate an overhead on the repeatable statement S . An example would be
(for N 20) with

. 2
R: a’ <N and (a+1)2 > N and P: a <N
to add to the program
2 .

a:r= 0 {F‘}; do (a+1) ZN-—-a:=a+! od {R}

the checking statement

_:_iiasz and (a+1)2>w-.skip_f_i_

EWD482 - 1

But this example immediately illustrates the very restricted --i.e.
nearly empty-- range of applicability of this transformation: it only
works in those cases where finding the answer may be hard, but checking the
BNSWET i5 (always!) easy. These cases seem to be rather the exceptiaon than
the rule, and it would not amaze me if, often, when we think that we have
found an example, the property that the correctness of a result is sc easily
checked can be used to speed up the process of finding one. (The above square
root example is, -indeed, ridiculously inefficient for larger values of N.)

* *
*

What do we do, if --as for instance, when the correctness proof appeals
to the Linear Search. Theorem~- the verification of P and non BB amounts to
redoing the computation? Very crudely, if our first program operates on a
variable (Set) X

(3) establish P(x);
do BB{x) - 5(x) od ,

we could introduce a second set of variables, y say, and duplicate (under
the assumption of determinacy)

(4) establish P(x);
do BB(x) - 5{x) od;
establish P(y); ‘
do BB(y) - S(y) od;
if x = y - skip fi

o

We can also merge the two processes, hut

establish P(x) and P(y);
do BB(x) - s{x); s(y) od;
if x = y - skip Fi

is a little bit too optimistic if we allow --and I think that we should--
erronecus sequencing as would result from an erroneous evaluation of a guard
as, possible malfunctioning:

(5) establish P(x) and P(y);
do BB(x) - if BB(y) - s(y) fi; S(x) od;
if non BB(y) and x = y - skip fi

is in this sense safe.

Up till now, there has been no gain by the transition from (4) to (5).
But a fairly common structure of type (3), however, operates on a state
space (x, z) and has the general form

establish P1(z) and P2(x, z);
do B1(z) and B2(x, z) - Xi= f(x, Z); Zi= 9(Z> od

Here, repeated application of z:= g(z) generates a seduence of z-
values --on account of B1(z) possibly finite-- and in the variahle x , some
function value of this sequence of z-values is computed (collected, if you
prefer). The relation F1(z) ~=which z:= g(z) will keep invariant-- has been
introduced to represent any possible redundancy in the representation of z.
(IF this redundancy is absent, P1(z) does not depend on z at all, is
identically true and the remainder of this section —-probably the whole report--
is no longer applicahle.) If B2(x, z) is identically true, the sequencing
is independent of x and, therefore, of the function . If however, we
are looking for the first z-value (if any) that satisfies some property --e.g.
if we are looking for the smallest divisor less than the square root plus one—-

[y

EWD482 - 2

B2 indicates that the search can be stopped as soon as a z-value satisfying
the criterion has been found.

Again, we can merge to two copies, but what about letting the two state
spaces share the same =z ?

{6) establish P1{z} and P2(x, z) and P2(y, 2);
do BT(z)‘gEg B2 (x, z) —
if BT (z) and B2(y, z) - y:= fly, z) fi;
xXE= f(x, z); z2:= g z)

Ic
oL

H

if non (B1(z) and B2(y, z)) and x = y -+ skip fi .

How good is (6)? Suppase that the values of x , ¥y and z are currently
all correct, but that the evaluation of a guard is incorrect: as this incorrect
evaluation is supposed to be the only malfunctioning, it will either itself
cause abortion, or the next guard evaluation will do so. Suppose that the
value of x has been corrupted and that this was our only malfunctioning,
which is assumed to imply that y and 2z are and will remain correct.

There are three cases: either we will, during x # Y » encounter a case that
B2{x, z) # EE(y, z) and this will cause abortion; the second possibility is
that, although x # y remains, this will not oceur, but then the last guard
will cause abortion (on account of x = ¥). The third possibility is that this
last abartion will nﬂtlnccur, because in the mean time x = y has been re«
established, i.e. the (apparently information destroying) operation x:= f(x, z)
has absorbed the malfunctioning: apparently, it did not matter! For a corruption
of vy (with the assumption that then x and 2z are, therefore, correct) the
same applies. We are left with a corruption of z.

The operation z:= g(z) is already supposed to satisfy

(1) (P1(2) and B1(2)) = wp("z:= g(2)", P1(2)) ,

i.e. it is supposed not to destroy the validity of P1(z). If we assume that
the operation =2:= g(z) will, in addition,-not destroy the validity of nion P1(z)

(8) (non P1(z) and B1(2)) => wp("z:= g(2)", non P1(z))

--i.e. will keep P1(z) invariant in the strict serse-—, then changing the last
line of (6) into

if non (B1(2) and BE(y, z)) and x = y and P1(z) - skip fi

will guarantee that a corruption of =z will be caught as well, if we assume

that

(9) z is represented in such a redundant fashion, that any corruption of
it, that would not destroy the validity of P1{2} can be regarded as
a multiple malfunctioning, or, to put it in another way, each single
malfunctioning affecting. z will make P1(z) false.

* *
*

I have done extensive exercises with a program solving the following
problem: generate all cyclic arrangements of 16 zeroes and 16 ones, such
that all 32 possible configurations of 5 successive bits occur (and therefore:
exactly once).Another formulation of describing the same problem is: generate

all permatations ho . h31 of the numbers O through 31 that

0) hg = © , . ‘

EWD482 - 3

) for 0<i<3

2) suc(hi, hi+1
h.) ,

3) suc{h31, 0
where suc(a, b) = (a med 16 = b diy 2)

It is in the latter form that we shall tackle it. First of all:
because suc(O. x) has only the solutions x =0 and x = 1, and h % h.,
it follows that h, =1 . Therefore in a permutatian satisfying 0
1) and 2) it follows that h,, =16, for: sue(16, x) has as only solutions
" x=08nd x =1 and thus, for all i <31 we have h,# 16. In short, we
tan drop for the permutation requirement 3) as it is implied by the others,

-The original inner block as designed by W.H.J.Feijen, was essentially the
following one:

begin virvar x; privar h, p;j

x vir int array = {0); h vir int array := (0, 0);
p vir baol array := (0, true); do p.dom £ 32 - p:hiext(false) od;
do h(0) =0 =
begin glovar x, h, p; privar c;
if h.dom <32 . skip
[l h.dowm = 32 -
begin glovar x; glocon h; privar j;
Jjovir int := 0

do j #32 -'X:hiext(h(j)); jt=j+ 1 od

end

fi;

c yir int := 2 *(h.high mod 16);

do p(c) -
do odd(c) - t, h:hipop; p:(c): false 'od;
ci=c + 1

od;

h:hiext(c); p:(c): true

end

The extensive exercises, however, have been thrown into the waste-
paper basket, because they had a very ad hoc character and the proofs that
the resulting programs were resistant to a single malfunctioning either
failed or became so laborious as to become unconvineing. It was that dis-
appointing experience that prompted me to try to formulate --"in abstracto"
s0 to speak-- what I was really doing, while designing the above rabust
structure (6). My next experiment will therefore be to try the above general
technique in a hopefully systematic manner to this specific program. (In order
to keep the experiment fair, I shall not exploit the fact that something more
about the answer is known: it has been proved that the number of solutions
equals 2048 , but we continue as if this theorem were unknown to us.

EWD482 - 4

To establish the connection: the general x of (6) correspands to the
output array x of our example and the role of the general z of (6) has
been taken over by the pair h, p in our example. Relation P2 ig the
simple (and naot too interesting) one: in our example it is

P2{x, h, p): the value of the array variable x "consists" of all solutions
in alphabetical order that precede alphabetically the permutations
that begin with
" h{0) ... h.high

"(The term "consists" is loose, but hopefully clear enough. It is further to
be noted that in the above formulation of P2 » the boolean “presence" array p
is not mentioned.)

Relation P1 is more interesting: it consists of two terms P1.1(h) and
P1.2(h, n):

P1.1(h): for all i satisfying h.lob <i < h.hib we have suc(h(i),h(i+1}

P1.2{(h, p): for all k satisfying 0 <k < 32,
p(k) implies that there exists 1 value for i, and
non p(k) implies that there exists no value for i , such that

h.lob <i < h.hib and h{(i) = k .

According to P1.1 , the integer array h contains in general redundant
information: a boolean array ~-manipulating the bits of the original statement
of the problem would have done the job also~-. Feijen replaced the boolean
array by an integer array for reasons of efficiency.

According to P1.2 the boolean presence array p stores purely addi-
tional information that follows functionally from h; it has been introduced
also for reasons of efficiency by Feijen.

And here lies our hope for gain: the redundancy that we need for the
robust presentation of z may already be present for efficiency's sake!

We may wonder, whether the redundancy provided by h and p is suf=-
ficient: because p follows uniquely from h , a scrambling of the value of
p will always violate P1.2 . It is, however possible to scramble h without
violating P1.1 nor P1.2 {it is difficult, but it can be done). This can
be remedied by replacing the boolean "presence" array p by an integer "place"
array p, satisfying the new :

P1.2(h, p): for all k satisfying 0 <k <32,
either p(k) = -1 and there exists no value i satisfying
h(l) =k ’
or 0< p(k) < h,hib and then i = p(k) is the only value for
i>0 (see below), satisfying h(i) = k.

As the cost is negligible and it is our plan to do a thorough job, 1 propose
to switch to the integer "place" array p. (The last requirement i >0 has
been added because it is a simplification to extend the array h at the low
end with h(—1) = 16 for the verification of P1.1 t upon removal of a top
element the array h does not become empty.)

The critical operation is now "z:= g(z)". We must change it so0 as to
satisfy (8) as well. We can, indeed, insert additional tests that would lead
to abortion if the intended modification of 2z would lead to a violation
of non P?(z) y but this is not sufficient, because how do we know that the

EWD4B2 - 5

correct new value of 2 has been assigned to it? (If Zi= g(z) would havye
acted as a skip, we might produce the same solution twice!)

The critical value, of course, is that of "™ if the initialization
of ¢ had erronecusly been carried out as

c vir int 1= 2 *(h.high mod 16) + 1

——

a whole class of solutions could be skipped.

So we had better concentrate upon the active scope of ¢ and repeat
our games (or similar ones: wait and sea). We have for the active scope of

€ --i.e. more precisely: until the extensiaon h:hiext(c)-— if all goes wel
the invariant relation

P3(h, c): suc(h.high, c)

Because (ggg P3(h, c)) £>-wp("h:hiext(c)", non P1.T(h))

it suffices, as far as our obligations versus the invariance of non P1.1{h
is concerned, to keep during the active scope, besides non P3(h, ¢) also
nnn(P1.1(h) and P3(h, c)) invariant, i.e. we do not need to check, whether

¢, hthipop

perhaps could destroy " non P1.T(h), because that woulg imply the emergence c
nan P3(h, c), which will not disappear unnoticed,

As P3(h, ¢) covers the four most significant digits of ¢, the least
- significant digit of ¢ seems to be our remaining Achilles heel,] propose
to count the number of sven numbers among

h(O) through h(h.hib), extended with ¢ during the latter's active scop

This will cateh Brroneous initializatian of c ; if the quard udd(c)
is erronecusly evaluated, an even ¢ will disappear without the count being
decreased, if the gaurd is eérroneously evaluated false, ci=c + 1 will in-
crease the number of even values, while it should decrease them by one, This
count is a kind of fancy parity bit, The full program is-shown on the next

(Warning: the proof reading of the program text on page EWD482 - 6 has not b
done with the same cars as I spent to the pages of my book,)

Let me give some explanatory notes.
The outer guard h{0) = 0 is not repeated automatically, if true: it only
matters, when we think that we have found a solution, and then it should be
confirmed by p(O) = 0; ‘this means that after the last solution has been four

and p 1) is already = 1, it would not be detected if the outer repetition wer
on for a while, Why should it?

The'nperatimns, which are essentially of the form x:= f(x, z) and
yi= f(y, z) are themselves fully unchecked: if something goes wrong there
that is harmful, different values of x and ¥y will result. Note that
the test, whether a new solution has been found ig repeated: once for x
and once for y .

The conclusion that p(c) =0 holds, has to be confirmed, otherwise
the erroneous conclusion that extension with ¢ would lead to duplication
would cause possibly a large collection of solutions to be skipped. (This
additional confirmation was lacking in my first version of the robust program

EWD482 - 6

begin virvar x, y; privar h, p, n; n vir int = %;
x vir int array := (0); y vir int array = (O); h vir int array := (-1, 16, 0)

vir int array := (0, 0); do p.dom ié 32 ~ p‘hie"t('” od;

P vir
do h(0) =0 -
begin glovar x, y, h, p, n; privar c;
if h.dom.< %32 - skip. -~
f h.dom = 32 & if p(0O} = 0 = skip fi;

begin glovar x; glecon h; privar j; j vir int := O3

do j #.32 = xshiext(h(j)); j1= j + 1 od
end .
fi;
if h.dom < 32 - skip
[l h.dom = 32 - if p(O) = 0 - skip fi;
begin glovar y; glocon h; privar j; j vir int := Q;
do § £ 32 w yehiext(h(j)); ji= j + 1 od

end

fi;
c vir int = 2 *(h.high mod 16); ni=n + 1;
do ple) >0~ if ple) >0 - skip fi;
do odd(e) - if suc(h.high, c) — ¢, h:hipop fi;
if

ple) = h.hib + 1 o p:{c)= - 1 fi
od;

ci=c +1; ni=n -1

ed;
if suc('h.high, c) ~ h:hiext{c) fi;
if ple) =~ 1 = p:(c)= h.hib £i
end
od;
if h.dom = 2 and h(0) =1 32nd n=0and p(0) = -1 and p(1) = 0 =
begin glocon p; privar j; j vir int 1= 2; '
do p(§) = -1 and § <31 = ji= j + 1 od;
if p(§) = - 1 = skip £i
end

The comparison of the global values x and ¥y , which should be equal,

has been delegated to the surroundings.

EWDAB2 - 7

I observed the omission while typing these notes!) The conclusion that on
account of non p(c) > 0 the repetition has to be terminated is asked for
confirmation 7 lines lower,

The test odd(c) in the innermost repetition does not need further
‘confirmation, as all erroneous evaluation would leave its traces in a non-
correct value of n.

Finally, at the end of our original program, it is checked --somewhat
superfluously-- that h.dom = 2; the test h(0) = 1 is necessary for the con-
firmation that the outermost repetition has not stopped too early, thereby
possibly missing a number of the last solutiens., Finally P1.2(h, p) is
fully checked. (We can regard the test h.dom = 2 as part of that test, so
perhaps its presence is fully justified after all.)

And this concludes my treatment of this example.

* *
*

As the plurals in my title betray, I had originally in mind to deal wit
more examples. At second thought ! shall confine myself in this repart to thi
single example: I am already on the eighth page, with single space typing,
Although I had announced, that the exercises would be "rather painful ones",
I did not expect, that it would be so painful. So I think that I should send
the report now away, as it stands, hoping for helpful comments. Therefore a f
concluding remarks.

If the inefficiency of our final program "hurts", we should be aware of
the following considerations. Why does it "hurt"? Well, because the many test
-that we have inserted, are on the one hand assumed to absorb computer time,
on the other hand ~-unless the machine is completely lousy-- will be very
skew: of course, for if the machine were perfect, they would not give infor-
mation at all! The normal reaction to such very skew tests has been to devote
dedicated hardware to them (vide the parity check or the interrupt circuit).
If techniques, as displayed 'in this report, would be applied to general purpo
programs --note, that I have not made up my mind, whether- that would be a goo
thing!-- this conflict could perhaps be solved by the presence of some pro-
gram-controlled hardware that could do some of the checking in parallel with
the main computaticn.

For the time being, techniques as shown are probably more apprupriate
in special purpose environments, such as, for instance, micro-programs or
just the instruction cycle, One of the reasonms for undertaking all this was
my growing doubt, whether our techniques for the quality control of both,
chip design and chip construction, is sufficient. If techniques like the aboy:
can be transferred to that more microscopic level, we might feel confident

to catch in a single stroke both design errors and incidental machine malfunc.
tionings,

20th March 1975 prof.dr.Edsger W.Dijkstra
Plataanstraat 5 Burroughs Research Fellow
NUENEN - 4565

The Netherlands

