Ewpa96 - 0 (old)

EWDA496A.html

On-the-fly sarbage collection: ar exercise in cooperation.

by
Edsger W.Dijkstra *)
Leslie Lamport **) Note: This copy has been made
A.J.Martin *¥*x) before the last four authors
C.S.Scholten *%¥x) had had the opportunity to
E.F.M.Steffens ¥**x) express their agreement.

*) Burroughs, Plataanstraat 5, NL-4565 NUENEN, The Netherlands

**) Massachusetts Computer Associates Inc., 26 Princess Street, WAKEFIELD,
Mass. 01880, U.S.A.

*%%) Philips Research Laboratories, EINDHOVEN, The Netherlands

*#%%%) Philips-flectrologica B.V., APELDOORN, The Netherlands

Abstract. A technique is presented which allows nearly all of the garbage
detection and cellection activity to be performed by an additional processor,
operating concurrently with the processur(s) carrying out the computations
proper, Exclusion and synchronization contraints between the processors have

been minimized.
Key Words and Phrases: garbage collection, multiprocessing, cooperation between

sequential processes with minimized mutual exclusien, program correctness for

multiprocessing tasks.

CR Categories: 4.32, 4.34, 4.3%5, 4.39, 5.23.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD496A.html

Ewpags - 1 ()

On-the-fly garbage collection: an exercise in cooperation.

In any large-scale computer installation today, a considerahle amount
of time of the (general purpose) processor is spent on "operating the system”,
With the emerging advent of multiprocessor installations the question arises
to what extent such "housekeeping activities" can be carried out concurrently
with the cnmputation(s) proper. Because the more intimate the interference,
the harder the organization of the cooperation between the concurrent processes,
the problem of garbage collection was selected as one of the mcst challenging
--and, hopefully, most instructive!-- problems. Whether the following solution
is of any economic significance, is a question beyond the scope of this
article. .

We tackled the problem as it presents itself in the traditional imple-
mentation environment for pure LISP (and shall describe our solution in the
for that environment usual terminology, leaving the natural generslizations tn:
the reader). The data structure to be stored consists of a directed graph in
whlch each node has at most two UULgﬂln9|Edg85 more precisely: may have a
left- hand joutgoing edge and may have a right-hand outgoing edge. (Either of
them or both may be m1551ng.) At any moment in time all the nodes of the graph
must be "reachable" (via a directed path along the directed edges) from tne
or more fixed nodes --called "the roots"-- with a constant place in memory.

The storage allocafsd to each node is constant in time and equal in size, viz.
sufficient to accommodate two pointers --one for each p0331ble outgoing edge--
pointing to the node's immediate successors (if any: a missing edge is

coded by means of a special pointer-value that has been reserved for that
purpose). Given (the address Uf) a node, finding (the address nf) its left-

or right-hand successor node can be regarded in this representation as an
atomic, primitive action; finding its predecessor nodes, however, would imply

a search through memary.

For a reachable nﬁde an outgoing edge may be deleted, changed or added.
Note that deletion and change of an outgoing edge may turn a number of formerly
reachable nodes into unreachable anes: they become what is called "garbage”
Changing or adding an edge may direct the new edge towards a target node that
was already reachakble or towards a new node that has to be added to the data

structure; such a new node --which upon creatian has ro outgoing edges—- is

fwpage - 2 (old)

taken from the so-called "free list", i.e. a linked list of node (locations)
that are currently not used for storing a node from the data structure. Garbage
may arise anywhere in store and it is the purpose of the so-called "garbage
collector” to detect suck disconnected and therefare obsolete nodes and to

append them to the free list.

In classical LISP implementations the computation proper proceeds wuntil
the free list is exhausted (or‘naarly sa}. Then the computation proper comes
to & grinding halt, during which the central processor is devoted to garbage
callection. Starting from the roots all reachable nodes are marked; upon com-
pletion of this marking phase all urmarked nodes that are not in the free
list are garbage and are appended to the free list, after which ocperation
the computation proper is recumed. The mirmor disadvantage of this arrangement
is the central processor time spent on the collection of the garbage; its major
disadvantage is the uppredictability of these garbage collecting interludes,
which makes it hard to design such a system so as to meet real time require-
ments as well. It was therefore tempting to investigate whether a second
processor --called "the collector"-- could collect garbage on a more continuous
basis, concurrently with the activity of the other processor -~for the purpose
of this discussion called "the mutator"-- which would be dedicated to the
computation proper. We have imposed upon our solution & few constraints. The
(micfnscopic) interference between collector and mutator should be minimal
-—i;e. no highly frequent mutual exclusion of elaborate activities, as this
would defy our aim of concurrent activity--, the overhead on the activity of
the mutator (as required for the cooperation} should be kept as small as
pnssible,'and, fimally, the ongoing activity of the mutator shaould not impair
the collecter's ability to identify garbage as such as soon as logically
possible. (Une synchronization measure is evidently unavoidable: when needing
a new node from the free list, the mutator may have to be delayed until the
collector has collected same gerbage. This is the now traditional producer/
consumer ceoupling; in the canfe*t of this article it must suffice to mention
that this form of synchronization can he achieved withoLt any need for mutual

exclusinn.)

A counterexample taught us that the goal "no overhead for the mutator"
is unattainable. Suppose that nodes A and B are permarently reachahle

via a constant set of edges, while node C is reachable only via an edge

EwDa96 - 3 Cold)

from A to C . Suppose furthermcre that from then on the mutator pexforms
with respect to C repeatedly the following sequence of operations:

1) making an outgoing edge from B +to point to C

2} deleting the edge fram A to C

%) making an outgoing edge from A to point to €

4) deleting the edge from B +to C .

The collector, which observes nodes one at a time, will discover that A and
B are reachable from the roots, but never needs to discover that [is
reachable as well: while A is observed by the ccllector, C may only be
reachable via B and the other way round. Therefore, when changing or adding
an edge, the mutator may have to mark in some way the target rnode of the new

edge.

When we start with all nodes white, and, furthermore, the combined
activity of collector and mutator can ensure that eventually all reachable
nodes become black, then all white nodes that are not already on the free list
can be identified as garbage. For each repetitive process --and the marking
process certainly is one-- we have always two concerns: firstly we must have
a monotonicity argument on which to base our proof of termination, secendly
we must find an invariant relation which, initially true and not being destroyed,

will still hold upon termination.

For the mormotonicity argument we suggest (Fairly nbviausly)

A) each node will only darken monctanically.

For the invariant relation during the marking phase --a relation which
must be satisfied both before and after marking-- we propose (perhaps less
obviously, but not unnaturally):

B) no edge will ever point from a black noce to 2 white one.

Additional action is required from thke mutator when it is about to
place an edge from a black rode to a white node: just placing it would cause
a8 violation of reguirement B . Requirement A tells us that the black source
node of the new edge has to remain black, and, therefore, requirement B im-
plies that the target node of the mew edge cannot be allowed to remain white.

But the mutator cannot make it just black, because that could cause a violation

of requirement B between the target node and its immediate successors. For

Ewpags - 4 (ol

that reason grey is introduced as an intermediate colour and the anly over-
head on the activity of the mutator will be --irrespective of the coleur of

the source node of the new edge--

"before placing a new edge, the mutator makes its new target

at least grey".

Note 1. Making a node "at least grey" turns a white node into a grey one and
leaves the colour of an initially grey or black node unchanged. It is assumed

to be available as an atomic, primitive action. (End of Note 1.)

When all the roots have been darkened, requirement B is satisfied ard
there are no grey nodes, we can conclude that all reachable nodes are black
and that, therefore, all white nodes are either garbage or on the free list.
Two problems, however, present themselves: the collector has to distinguish
between those two types of white nﬁdes and, more seriously, as long as the
nodes on the free list remain white, the mutator can create new grey nodes, and
for the collector it will in general be very hard to reach the state without
grey nodes and to detect that it has done so. The most elegant solution is
to arrange matters in such a way that (due to collector activity) the nodes
on the fres list will eventually become black as well, as this solves both
problems: when all reachable nodes are hlack, apd all nodes on the free list
are also black, further crestion of grey nodes is excluded and all white

nodes can be concluded to be garbage.

The simplest way to arrange that the nodes of the free list will be
coloured as well is to introduce an additional root from which all the nodes
on the free list (linked via edges!) are reachable. During the marking phase
the collector makes no distinction between the free list and the data structure
proper, and in the initial absence of black nodes it performs repeatedly

the following program --assertion names being added within braces-- :

marking phase: {PO}
make all roots at least gray {P1};
repeat for a node i ohserved by the collector to be grey:
make the left-hand successor of node iv (if_any) Et least grey;

make the right-hand successar of node i (if any) at least grey;

A\

Ewpags - 5 (old)

make node i black
until in a single scan in some order all nedes have been observed to
be non-grey {P2};
collecting phase:
process all nodes in some order, where "to process a node" means that
a white node is appended at the free list and a black node is made
white {PO}
Note 2. To make a node black is assumed to be an atomic, primitive action
available to the collector. The final colour of a rode made black by the
collector and "simultaneausly" made at least grey by the mutator will be
black, i.e. as if the two operations had been performed in some crder.

(End of Note ?.)

Note 3. To make a node white is assumed to be ap atomic, primitive action
available to the collector. The final colour of a node made white by the
collector and "simultaneously" made at least grey by the mutatcr will be
either white or grey, i.e. as if the two operations had been performed in

some order. (End of Note 3.)

Note 4. The mutator takes nodes away from ane end of the free list, the
collector appends nodes at the other end. The prevention of undesired inter-

ference between those two actions does not require mutual exclusion in time.

(End of Note 4.)

The assertions and conclusions justifying the design are the following.

POt There are no black nodes, and, therefore, requirement B (no adges

from & black node to a white node) is satisfied,.

Pl There are no edges from a black node to a white node and all roots are
at least grey; as a result the existence of a white reachable node {those on

the free list included) implies the existence of at leasst one grey node,

pP2: There are no grey nodes --see Note 5-- and as P! still holds, all
white nodes are garbage and will remain white as far as mutator activity is
concerned. This state is reached by the collector thanks to the monotonicity
of the colour history of each nede during the marking phase and the fact that
the collector effectiﬁaly darkens (at least node i !) as long as it finds a

grey node.

EWD496 - 6 (ol

PO: During the collecting phase requirements A and B may be vielated.
Requirement A is here inessential becauseéthe collecting phase does not
depend on it for termination and requirement B is restored at completion of
the collecting phase, because the mutator canfcreate a black node and all nodes

that were black have been made white by the collector.

Mote 5. The conclusion that there are no grey nodes whaen in a single scan

all nodes have been observed by the collector to he non-grey requires some
further justification, as one of the nodes observed to be non-grey --white,
to be precise-- in the meantimeicould have been made grey by the mutator.
Thanks to the continuing validity of P1 and the fact that the mutator leaves
&8 grey node grey, however, the conclusion is justified. Suppose that during
the scan the mutator has introduced a number of grey nodes. Consider the
moment of the first time that the mutator did so0; at that moment that node
was a white reachable node (those on the free list included) and, therefore,
it must have been so when the scan started. On account of Pl we can now
conclude that when the scan started a grey node must have existed. As the
mutator leaves grey nodes grey, the collector must have encountered that grey
node during the scan. Therefore, if during the scan the collector has not
encountered a grey node, the mutator cannot have created one either and the

conclusion "there are no grey nodes™ is therefore justified. (End of Note .)
g J

Note 6. It is assumed that when the collector establishes (the address of)

the left-hand successor of node i "simultaneously" with a redefinition of

the left-hand successar of node i by the mutator, the result will be as if
inspection and modificatian are done in some order: the collector will be
directed either towards the old or towards the new léftnhand successor. It

is not difficult to verify that under all circumsiances requirement B remains

fulfilled. (End of Note 6.)

Finally: at the beginning of a collecting phase some garbage may be white
and some way be black. At the end of that collecting phase all initially white
garbage has been collected, all initially black garbage has been made white
and will remain so during the next marking phase until it will be collected
during the next collecting phase. As a result we can guarantee that no garbage,

once created, will escape Being collected,

ewndags - 7 (clo

History and acknowledgements. (As in this combinmation this is our first exer-

cise in internatianal and inter-company cooperation, some internal credit should
be given as well.) After a careful censideration of a wider class of problems

the third and the fifth authors selected and formulated this problem and did

most of the preliminary investigations. The first author found a first solution
during a discussion with the latter, W.H.J.Feijen and M.Rem. It was independently
improved by the second author --to give the free list @ root and mark it as well
was his suggestion-- and, on a suggestion made by Jack Mazola, by the first and
the third author. The First and the fourth merged these embellishments and pro-

duced the version published abave.

30th May 1975

