EWD574 - O

html transcription

A letter to Professor Zohar Manna, 26 July 1976.

' Dear Zohar,

The fact that this letter has an EWD-number indicates that I intend to
give it 2 comewhat wider distribution than just you. If you wish to answer to it,
] can distribute your answer along the same channels, but, of course, only if you

so desire and authorize me to do so.

Last week I spoke to one of the attendants of the recent Summer School or-
ganized by the Mathematical Centre in Amsterdam, at which you were one of the lec-
turers. As far as he was concerned you have stolen the show: he was most impressed
by your performances and I thought that you might like to hear so. But that is

not the reason for writing this letter to you.

This letter has been prompted by the "Stanford Artificial Inteliigence
Laboratory Memo AIM—281/CDmputer Science Department Report No. STAN-CS-76-558"
of June 1976 and titled:

' Is "sometime" sometimes better than "always"? Intermittent assertions in

proving program correctness."

written by you and Richard Waldinger.

One seemingly irrelevant remark first. I hate computer-produced manuscripts
with all those different type founts ~-and all lines right-adjusted!-- if the price
to be paid is that all individual letters are ill-shaped. I just cannot read a
report like yours without conmstantly suppressing the desire %o clean my glasses
because all those fuzzy boundaries are so annoying. I much prefer a well-chosen,
single type fount manuscript produced on an excellent typewriter --this, of course,
excludes most of the IBM pingpong balls-- and I don't care about the right-adjustment
gither. (On the contrary: without it, significance can be given to additional spaces.)
1 consider this would-be service to the reader --or is it a service to the writer?--
as a misuse of electronics that I abhor just as vehemently as soft music in depart-
ment stores, waiting rooms, airports etc. (The anly thing printed decently on your
' report is the Stanford Seal in red on the cnver!) 1 hope that --possibly after
some thinking-- you will agree that this remark --although not so much addressed
to you personally-- is not so irrelevant: as computer scientist we have, more than

anybody else, I think, a responsibility in trying to prevent computer usage from



http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD574.html

EWD574 - 1
degrading our lives. The rest of this letter is addressed to you personally,

You and Richard Waldinger deserve each reader's compliments for the way
in which your report has been phrased: for that very reason it was a pleasure and
a privilige to read it. I think that I understood every sentence of it, something
that is in sharp contrast to what is usually dropped in my mailbox: reports of
which I am sure that I cannot understand --nor anybody else for that matter—- at
least one out of every eight sentences. Your report is exceptionally well-written.
Thank you, it is nice to see indispensable standards sometimes maintained! So much

for my compliments, you yourself can undoubtedly think of other nice things to say

about it.

When I read the abstract in which you announced to use "assertions that
must be true at some time when control is passing through the corresponding point,
but that need not be true every time" I was amazed to the point of being intrigued;
I tried to think of an example where ] would like to do that and could not think
of any, so I continued to read the report itself. Afterwards I realized why I could

not think of an example: you and I do not mean the same with "control passing

through a point",

programs:

Let me reproduce, for the sake of clarity of tﬁis letter, one of your

inEut(x y) )
start:

more: if

X
It
<

then finish: outgut(y)

eBlse reducex: if x >y
then x:= x -y
goto reducex
reducey: if x <<y
then y:= y - x
goto reducedy
goto more.

ote. In order to display the symmetry more clearly, I would always have written

on line 7 "reducey: if y > x" (End of note.)

‘Question. Would it not have been more consistent to position the last "goto more"



EWD574 - 2

with the "goto" under the "then" two lines higher? (End of questiOn.)
And in your treatment a vital role is played'by Lemma 1:

. if gometime x = agr ¥ = b1 and x, y >0 at more

then sometime x =y and y = max{u: u|a and u]bi} at more

1

(where *"p|q" should be read as "p divides q").

Now my privately preferred representatien for that code --with labels

inserted for the purpogse of this discussion-~ is:

X, y =X, Y;
10: do x >y = L1: x:1=x -y
ly>x-12: yi= y - x
od;

L%: print(y)

with at LO relation PO: gcd(x, y) = gcd(X, Y) and x >0 and y > 0
with at L1: PO and x > y
with at L2: PO and y > x

with at L3 relation R: y = ged(X, Y) bécause (PO and pot (x >y or vy >x)) =R .

'I'. , 2r
The reason fhat I was so amazed by your announcement is that in my view
control passes only once through |0 --viz. at the initiation of the do...od--
and only once through L3 --viz. at its completetion-- . If we wish to take a
closer look —-i.e. inside the repetitive construct-- we may observe control

passing a number of times throdgh L1 and L2 .

Comparing my approach to yours I realized that I do not even consider
control passing through the guards x >y and y > x ; I consider the evaluation
of the quards x >y and y > x --which as far as I am concerned could take place
in parallel-- not as something "through which control passes™. In my view the
function of the control is to contful the execution of the assignment statements; -
the guards —-which in a sense are "part" of the control-- could be evaluated by
a separate "control computer", I hardly consider their evaluation as part of the
computation proper. The function of the computation proper is to decrease x by

. y or y by x , "control" has the secondary function to schedule these happenings

in such a way that the invariance of PO is maintained.

In this terminology the observation that "assertions sometimes hold"



EWDST74 ~ 3

boils down to the observation that ewvaluation of a guard needs only be requested
when its value is not known a priori. In that formulation the remark is nearly
trivial. - i 5
. Von Neumann's idea that the processor A that is doing the real work --
i.e. carrying out the assignment statements—- and processor B that is evaluating
the guérds —--i.e. figuring out what A has to do when-- could profitably be merged
into a single processor is some sort of a pun. (It is not as bad as his pun that
@ program should be able to modify its own instructions, but it is still a pun:
it does not distinguish between the traffic and the lights!) But this pun is
the kind of "rlattening" that shuuldionly be considered in the specific realm of
thought where it belongs, i.e. when we consider in more detail how to embed something
with a clear conceptual structure in a homogeneocus environment., Can you understand
that in retrospect I think it a great pity that Bob Floyd formulated his 1967
article in terms of that other ‘Von Neumann relic, the flowchart language? A choice
that is responsible for the all too common misunderstanding that the flow analysis

that isolates the "loops" is a key compnneﬁt of the inductive assertion method...

In other words, I have the feeling that part of the problem you feel you
.have solved has less- to do with programming as such than with the underlying —--but
rather arbitrary-- computational model you have chosen. For already guite some
time I have thé impression that with respect to both the theory and the practice
of programming no significant further progress is possible, unless we postulate
our semantics in a way that is absolutely independent of any computational model.
This may sound as heresy in your ears --I just don't know!-- but that paper by
you and Richard Waldinger has confirmed my impression. The problem with computational
models is that, by being overspecific, they are bound to lead one astray. This,
indeed, might sound as heresy in the ears-of someone who writes in his conclusions
about "the way programs work"™, for that wording betrays an undiluted operational
attitude. It is not the program that "works"! Agree?
* . *
Finally & few questions. 1In your conclusion you write: "If the lemmas
and the well-founded orderings for the induction are provided by the programmer,
to construct the remainder of the proof appears to be fairly mechanical. On the
.nther hand, to find appropriate lemmas and the corresponding orderings is as dif-

ficult a task as finding the invariant sssertions and well-founded orderings for

the conventional ways of eatablishind correctness and termination.”™ 1 believe




EWD574 - 4

yod. But should not then the conclusion be that, indeed, the raw code is an
inadequate starting point for verificaticA, s0 inadequate that it is, as a matter
of fact, silly to try to use it as such? And should not the conclusion be that

the programmer has only done a decent job and has only delivered a useful and
complete product, when he provides the lemmas, the invariant assertions etc.

as well? Should not the conclusion be that the division of labour, as attempted

in the sixties, in which the programmer produced just the raw code, has been proven

to be an unworkabkle interface?

I know that some people find it difficult to draw these conclusions because
they are afraid of their consequences; usually they phrase their objections in term:
of commiseration with "the average programmer", arguing that we cannot. increase the
burden on his shoulders. But that argument is a fallacy, because that is not what
I am proposing. By teaching the programmer to be aware of the role of the invariant
and of the nature of his inductive arguments we give him the mental tools that are
indispensable for doing his job properly: as soon as he masters their use he will

never again program without them!

Some people won't be able to use these tools to their advantage, but are
those able to program now? In any case I don't think that we should allow their
presence to prevent us from drawing above conclusions, which should have a prefound
influence on our teaching., I would like to be sure that the teaching of competent
programmers does not meet opposition that is inspired by the hope to keep @ target

of artificial intelligence alive!

Greetings and best wishes! Yours ever,

£ dsger .

Plataanstraat 5 prof.dr.Edsger W.Dijkstra
NL-4565 NUENEN Burroughs Research Fellow
The Netherlands




